
Kellyn Pot’Vin-Gorman,

DevOps Engineer and now Data Platform Architect,

Analytics and AI at Microsoft

DevOps and Decoys- Be Part of
the Solution with Automation

• Multi-platform DBA, (Oracle, MSSQL, MySQL,

Sybase, PostgreSQL, Informix…)

• DevOps Engineer in Azure and AWS

• Oracle ACE Director, (Alumni)

• Oak Table Network Member

• Idera ACE Alumni 2018

• STEM education with Raspberry Pi and

Python, including DevOxx4Kids, Oracle

Education Foundation and TechGirls

• Former President, Rocky Mtn Oracle User

Group

• Current President, Denver SQL Server User

Group

• Optimization, Linux and DevOps author,

instructor and presenter.

• Blogger, (http://dbakevlar.com) Twitter:

@DBAKevlar

• https://linkedin.com/in/kellyngorman

/kellyngorman

http://dbakevlar.com

Kellyn Pot’Vin-Gorman
Data Platform Architect at Microsoft, EDU Team

@DBAKevlar

We be bloggin’

http://dbakevlar.com/

A Few Facts

DBA Role is
Changing

Traditional DBA
Responsibilities

are being
Automated

New Challenges
are Being Faced

by Technical
Teams

New
Tools/Features

Available
Everyday

Automation is a Key to Much
of the Tech Acceleration

■ Less intervention from resources to

maintain, manage and operate database

platforms.

■ Advancement in tools to eliminate

resource demands.

■ More tool interconnectivity, allowing less

steps to do more

■ A resurgence of scripting to enhance

automation and graphical interfaces to

empower those who have wider demands.

Workloads to the Cloud

■ Simplify Resource Allocation and Management

■ Initial ease on cost, but not an Apple to Apple comparison

■ Can be migrated to any cloud, including- AWS, Oracle,Google Cloud, Azure or

combination.

■ Makes DevOps much easier.

– Automation

– Tool availability

– Cross platform consistency

– The cloud LIVES on DevOps

What I’m Demonstrating Today…

I work with Microsoft customers, so yeah, it’s going to be Azure…

This can easily be done with Oracle and I do it with Azure VMs in Azure all the time:

– Create Azure VM, flashgrid, Create RAC environment with Oracle.

– Create Azure VM with Oracle databases, (PDBs)

– Create Oracle database and migrate over to Azure DB and use the Oracle
Extension pack to simulate any features that aren’t direct migrations.

– Use Azure Data Gateway to connect to Oracle DBs and use Microsoft products

We’re all friends here…. ☺ The goal is to demonstrate how DevOps skills can be
used for a number of situations...

First Things First-

Our Use
Case

■ Large Percentage of
University Customers in MHE
Searching for same solution

■ EDU team created a Popular
Solution that allowed for
community involvement

■ Source data is Oracle and
SQL Databases,
spreadsheets and Access.

■ Multi-Tier Deployment- SQL
Databases, ADF, Analysis
Services, Data and Power BI

■ Ever-evolving

Limited Time, Limited Resources

■ Three TSP Data Platform Architects on the Team to Cover the US

■ 100’s of HigherEd Customers

■ All of them interested in a solution vs. a product.

■ All of them with different source databases or data sources.

H
ig

h
e
r

E
d

 A
n
a
ly

ti
cs

 S
o

lu
ti
o

n

Student Information System Data Factory

Data Warehouse

Analysis Services Power BI

Staging Database

SSIS DB

Deployment vs. Enjoyment

■ Teams from universities are made up of varied
technical backgrounds

– Data Scientists, DBAs, Data Analysts and
Educators

– Spend More time deploying than working
with the solution

– Slows down the time the EDU’s limited
resources get to work one-on-one with the
customers

– Discovered some customers lost interest
during the deployment phase or didn’t have
the time to deploy

Goal

Simplify

Simplify the deployment
with DevOps practices

Remove

Remove demands on
knowledge required to
deploy the solution.

Create

Create more time for
interaction and working
with the solution by the
education teams.

Build a Roadmap

Document All Pieces of
Deployment

•Identify any interactive vs. default
entries that will benefit the
deployment.

•Update documentation as you go.
Don’t try to do it in the end.

1

Categorize by Physical,
Logical and Interactive

•Build out Physical Deployment first,
as it is the foundation.

•Build in easy restart and clean up
steps to physical deployments

•Test and update any documentation
to reflect the automation

2

Begin to automate logical
slowly and in phases.

•Remove any manual steps or
configurations.

•Take advantage of any plugins that
ease work on end-users side

•Continue to accept feedback and
enhance.

3

What is Involved

■ 1. Two SQL Databases- one staging and one data warehouse

■ 2. Azure Data Factory with a SSIS Database

■ 3. Azure Analysis Services

■ 3. Three Power BI Reports

■ 4. CSV files for ongoing data loads, which will need to be configured for ongoing
workloads

■ 5. Multiple Solution and project files, some deprecated in VS 2017

■ * Data loads and configuration via Visual Studio or SSDT solutions already built in.

■ * Sample data files in Excel could be replaced with the customers own data.

The Solution Was Very Repeatable

■ Most resources and databases could have the same name in every deployment.

■ Outside of the CSV files containing example data, everything else could be deployed

without any changes by the customer if a few dynamic parameters were pushed to

the deployment.

■ Although official documentation existed, there were numerous versions and the

process had evolved with the introduction and ease of Azure deployment.

Already Using Github

■ Stable code, rarely changed

https://github.com/pleblanc72/msedubi

https://github.com/pleblanc72/msedubi

Visual Studio/SSMS Dev Tools

■ My predecessor and team members built in some automation already using solution

files!

– Awesome, these can be reused!

How Do From Point A to Point
Automate?

■ Perform the task in the User Interface FIRST.

■ Gather the information with the CLI to build out your scripts

■ Test and retest comparing to the UI deployment

■ Manage and maintain automation.

■ Don’t go back to manual processing or manual intervention.

■ Build out in phases- physical to logical, enhancing and
improving as we go along.

So Many Choices…

■ Multiple options to automate-

– Terraform

– PowerShell with Azure

Commands

– Azure DevOps

– Azure CLI with BASH

Terraform

■ Freemium Product

■ Came to Azure in 2016

■ Another robust product that allows for automation of processing via script.

■ Supports complex tasks and multi-platform deployments

Terraform
CLI

Azure CLI

■ Allows a command line interface to the Azure cloud

■ Can be installed locally on Windows, Mac and other OS platforms

■ Can be run inside a Docker Container

■ Can be used with the Azure Cloud Shell without installation.

■ Flexible and robust, allows for a CLI solution and automation via scripting in

PowerShell/BASH of Azure deployments.

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest

Once Installed

■ Test:

■ >az login

■ >az account show

<tenant ID>

<Subscription ID>

AZ CLI is Simple to Use and Robust

■ >C:\EDU_Docker>az vm create -n LinuxTstVM -g dba_group --image
UbuntuLTS --generate-ssh-keys

■ SSH key files 'C:\Users\kegorman.NORTHAMERICA\.ssh\id_rsa' and

'C:\Users\kegorman.NORTHAMERICA\.ssh\id_rsa.pub' have been generated

under ~/.ssh to allow SSH access to the VM. If using machines without

permanent storage, back up your keys to a safe location.

■ - Running ..

■ C:\EDU_Docker>az vm list –g dba_group

■ C:\EDU_Docker>az vm delete -n LinuxTstVM -g dba_group

■ Are you sure you want to perform this operation? (y/n): Y

Locating
Information on ADF

■ 1. Create one in the GUI

■ 2. Inspect the resource facts

via the CLI:

az resource list --

location eastus

Walk Before
You Run..

Began to
deploy

individual
resources.

Had a final
merge script,
(aka wrapper)

with a test
script.

Deployed
piece by piece
until phase I

was
completed.

Received
feedback from

peers and
customers as
proceeded.

Azure CLI Isn’t Enough – Cloud Shell

■ Enhanced Azure CLI commands into BASH script to deploy and automate.

■ A script to enhance automation and set variables to ease customer skill requirements
was required.

■ From the Azure Portal:

Or Direct: https://shell.azure.com/

Initial Build in BASH

■ Well, I’m a Linux Person

■ Script is interactive, accepting customer’s requested
naming conventions and requirements.

■ Builds out the physical resources in Azure

– SQL Server with a data warehouse and staging
database

– Azure Data Factory

– Azure Analysis Server

■ Creates firewall rules for Azure Cloud Shell

■ Creates all user access

■ Creates Database objects

New GitHub Repository

https://github.com/EDUSolution/AutoEDU

https://github.com/EDUSolution/AutoEDU

Two JSON Files, Dynamically Generated

Living Documentation

Made easier
transition as
redesigned.

Kept track of all
moving parts.

Offered insight
to those who

knew previous,
manual process.

Allowed for
roadmap to be

included.

Allowed for
troubleshooting
section as other
sections shrunk
with automation.

A Common Deployment Group

Why Not PowerShell

■ Love of the SQL Community

■ BASH is starting to become more

prevalent for Azure.

■ Numerous deployment areas still not

robust enough to manage the

requirements.

Automate the Logical

• Migrate any onsite SSIS pkgs and workflows to Azure

Data Factory

• ADF will build out an SSISDB in Azure SQL database

• Store projects in pipelines

• Schedule, report and check into a Github repository

to automate development cycle.

• SLN and PROJ files are recycled.

Next Steps

■ PowerShell version on hold-

– More likely know PowerShell over BASH if Microsoft professional.

– BASH only requires one main script to be updated with
enhancements and additions to the repository.

– Hardening script for security standards.

– Migrate all SSIS, (Integration Services) to Data Factory steps,
(Azure DevOps CLI already installed as part of the deployment).

– Build out scripts to scale up the current “demo” version to an
enterprise version.

– Script to automatically pause integration and factory services to
save on cost.

– Script out data workload inputs for new features/data model and
proprietary data loads.

– Build out all steps using Azure DevOps to continue the growth of
the automation.

Challenges?

No Reference Material on
How to Create an Azure
Data Factory from the

Command Line

Azure CLI offered
HOPE, but some of

it had to be built out
in the self-service

command of
“resource” and use

json strings.

The motto when
working with new
tools- “Learn to
Fish”

•Help menus and
examples online are
your best friend.

•Get a good text editor.

•You will be learning new
scripting languages

•Find support groups,
twitter handles and
help channels.

Success

■ Manual Process takes between two full days of
onsite meetings, to 8 weeks of remote meetings to
deploy.

■ New Automated process deploys in less than 15
minutes after customer answered questions in
interactive script.

■ Offers extensively more time for customer to work
with solution and Microsoft architects to work with
providing value to the customer on how to use Power
BI with Azure.

■ In first week, over two dozen customers requested
POC deployment with little assistance from heavily
limited resource team, allowing for more valuable
allocation of resources.

■ Now part of Partner development project to assist
partners with Azure deployments.

■ If the resources aren’t needed any longer, Dropping
Resource Group removes it all.

You Must Evolve

Data WILL come from
more than just SQL
Server and Azure SQL
Databases.

1

You will be expected to
do more with less.

2

Embrace automation
tools inside the
database platform,
(backup, recovery,
optimization,
maintenance tasks.)

3

Thank You
Learn more from Kellyn Pot’Vin-Gorman

@DBAKevlar kegorman@microsoft.com

