

Data and Application Modeling in the Brave New World of Oracle Sharding

NoCOUG @ PayPal – Spring 2019

John Kanagaraj, Sr. MTS, Architect @ PayPal • 09-May-2019

(Previously presented at Oracle OpenWorld 2018 @ SFO)

Agenda

Introduction

Sharding – What/Why/How

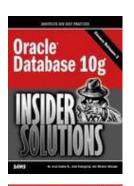
Data Model and Other Considerations

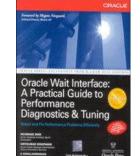
Introduction to Oracle Sharding

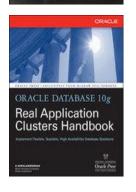
Wrap up: Q & A

Setting the Stage

- Audience Survey
 - Facing Data Scaling challenges?
 - Using Oracle (or other) Sharding methods?
 - Considering Sharding as a scaling method?
- Scope
 - What exactly is Sharding?
 - What are the cons?
 - What is the process to evolve to a Sharded system?
- What we will not get into (in detail, that is!)
 - Oracle Sharding features (Tons of other presentations for this!)




Speaker Qualifications

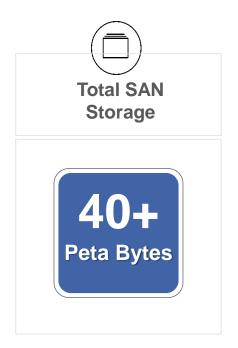

- Currently Sr. Database/Data Architect @ PayPal
- Has been working with Oracle Databases and UNIX for 3+ decades
- Working on various NoSQL technologies for the past 4 years
- Has worked on many Sharded applications Both Oracle and NoSQL
- Author, Technical editor, Oracle ACE Alumni, Frequent speaker
- Loves to mentor new speakers and authors!
- http://www.linkedin.com/in/johnkanagaraj

Two decades ago, our founders invented payment technology to make buying and selling faster, secure, and easier; and put economic power where it belongs: In the hands of people

About PayPal

Our 250+ Million consumers can accept payments in > 100 currencies, withdraw funds to their bank accounts in 56 currencies, hold balances in their PayPal accounts in 25 currencies and interact with 20M+ Merchants across 19K+ corridors

Almost 8000 PayPal team members provide support to our customers in over 20 languages

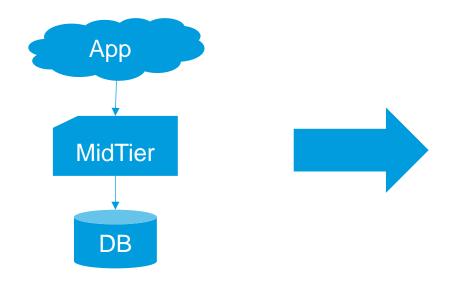

We are a trusted part of people's financial lives and a partner to merchants in 200+ markets around the world

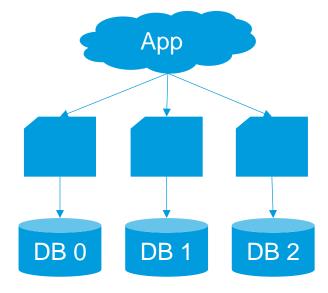
Database Footprint

Scaling is Hard!

Challenges at Scale

- Pushing the limits
 - Connections
 - Memory
 - Interconnect
 - CPU
 - DDL on busy tables
 - RAC reconfiguration
 - Redo rate
 - I/O latencies
 - SAN Storage limits
 - Replication latencies


- Separate reads for RO scaleout (ADG/GG)
- Split by Microservices/Data domains
- Connection multiplexing
- Write isolation
- Custom caching
- And finally
- Sharding!



Scaling is Shard!

What exactly is Sharding?

- App code addresses a single database
- Requires connection management layer
- Data model can be complex/multi-level
- Object relationships fully supported
- All Joins and Transactions fully available
- Scaling up is only option

- Objects chopped into pieces (Shard)
- Shards placed on multiple database
- All objects spread evenly* on shards
- New challenges at multiple levels:
 - Data model
 - Joins and Transactions
 - Connection and SQL routing
- Introduces "rigidity"

Sharding is Hard!

Sharding Challenges

			4 •
1 12t2		and Ira	nsactions
vala	MIDUEI	anu na	เเอลษแบเเอ

Type of Sharding: System, List, Range

Choice of Key to Shard

Access Pattern and Transaction limitations

Relaxing Normalization

Rigidity in future data model changes

Joins and SQL

No cross shard joins allowed

No cross shard SQL

"Sharded" SQLs need Shard key

"Sharded" vs. "Non Sharded" SQL

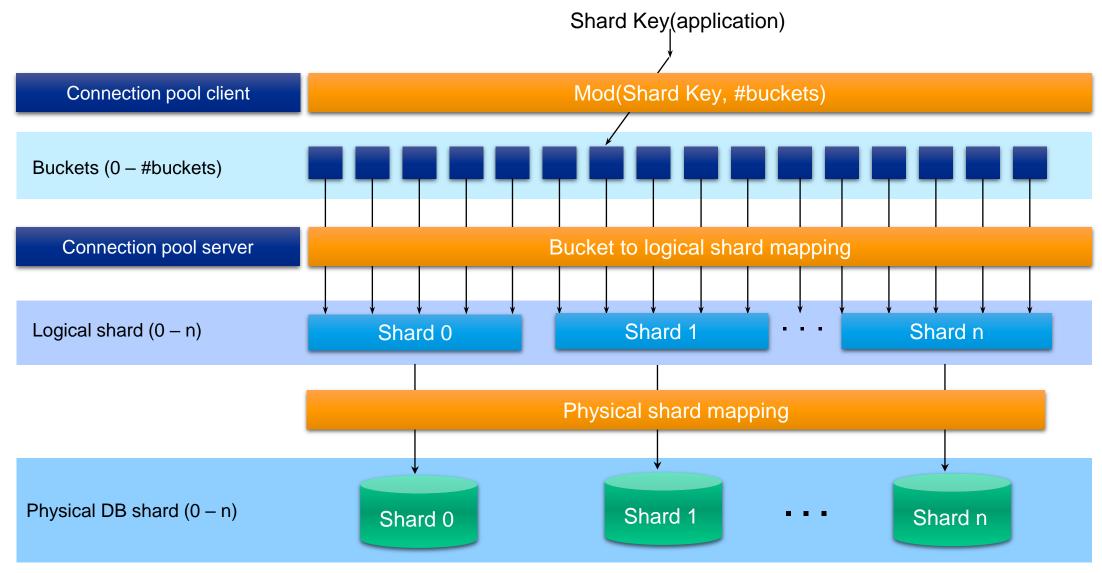
Rigidity in SQL evolution for supporting future requirements

Connections and routing

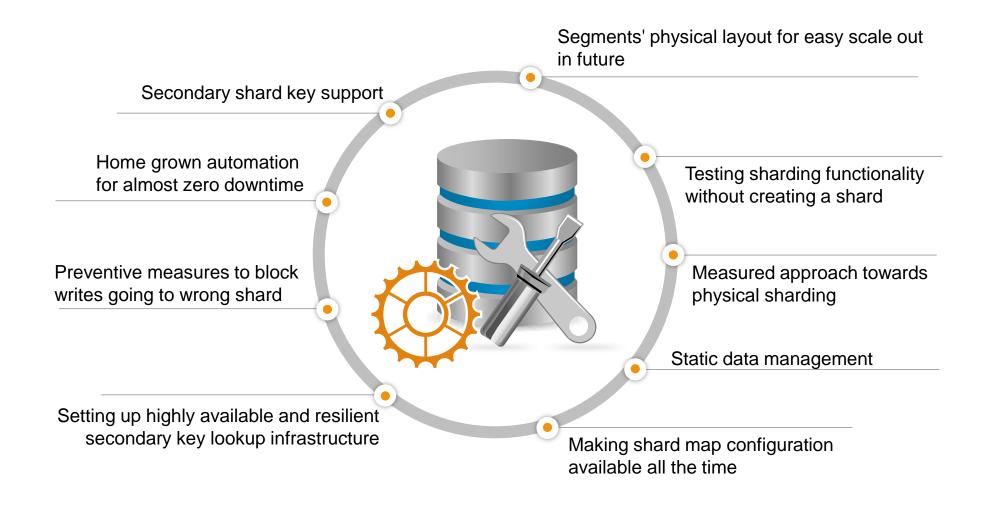
Methodology used to distribute data equally among all buckets

Connection pool exhaustion per shard

Scatter-gather resiliency model

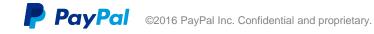

Separation of access by secondary keys

Monitoring enhancements for tracking each bucket and shard traffic


Key is Key!

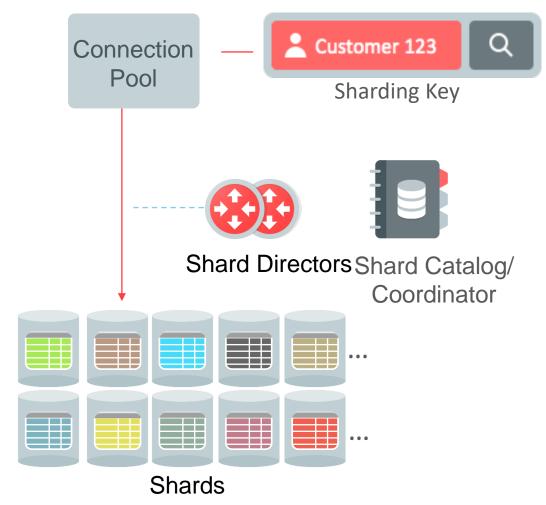
Sharding Framework

Sharding Implementation Challenges



©2016 PayPal Inc. Confidential and proprietary.

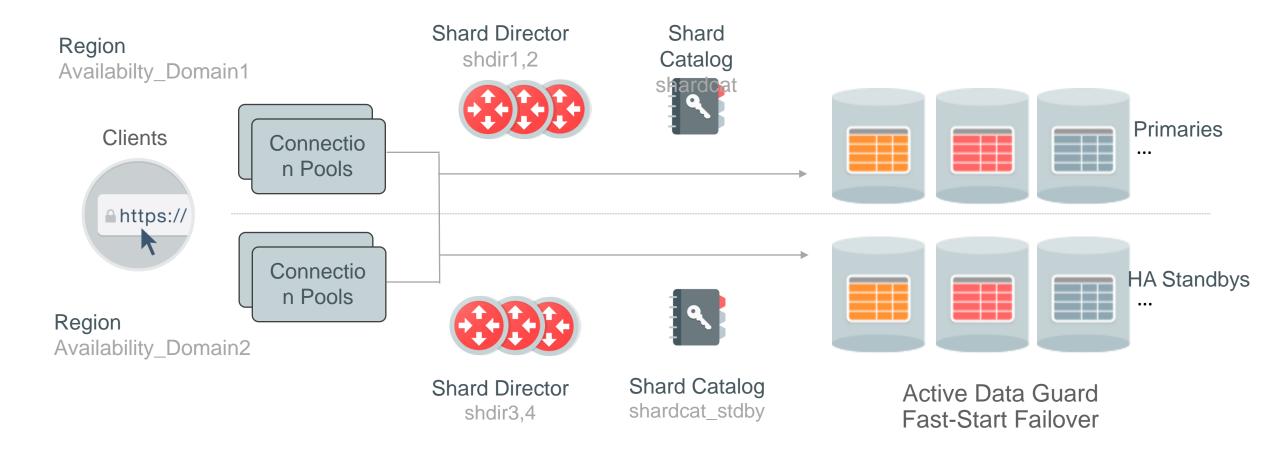
Sharding Principles


- Sharding is mostly a Scalability play
 - Also enables Data Sovereignty and Data Proximity
- "Key is Key" Choose one STRONG key and align. E.g. Account/User ID
 - Majority of access patterns should be via Shard Key
 - Non-shard key access can be expensive; forces "scatter-gather" pattern
- Data model challenges: CAP Theorem applies (2 or 3!)
 - Normalization is relaxed
 - No cross-shard transaction/query
 - Joins and ACID principles usually not available in Sharded systems (e.g. NoSQL)
- "Lookup" requirement for Common data elements Replicate to every shard
- Scheme for mapping logical to physical is critical for future scale-out

Sharding is Hard! But Oracle Sharding makes it easier!

Oracle Sharding | Architecture & Key Features

Slide Courtesy Oracle Corp



- Automated deployment of up to 1000 shards with replication (Active Data Guard and Oracle GoldenGate)
- Sharding methods
 - System-managed, User-defined Composite
- Centralized schema maintenance
 - Native SQL for sharded and duplicated tables
 - Relational, JSON, LOBs and Spatial support
- Direct routing and Proxy routing
- Online scale-out w/auto resharding or scale-in
- Midtier Sharding
 - Scale midtiers along with shards
- RAC Sharding
 - Gives a RAC DB, the performance and scalability of Oracle Sharding with minimal application changes

Oracle Sharding | Maximum Availability Architecture

Slide Courtesy Oracle Corp

Sharding: Typical Use Cases and Anti-patterns

Use Cases

- Large user-base facing application
 - Rapid and viral growth anticipated
 - Ever-increasing growth Y-o-Y
 - High data quality, effective SQL access
 - Scale out required for read and write
 - High Availability requirements
- "Fast Data" use cases
 - High / Fast Write rate
 - IoT: "Internet of Things" workload

Anti-patterns

- Complex data model with many relationships
- If Sharded design, presence of
 - Multiple "strong" keys or lack of strong key
 - Evolving data model not in line with original key
 - Complex/large transaction requirements: consistency
 - Large percentage of "scatter-gather", secondary key access
 - Active common workload that needs replication

Provide feedback via the Mobile App!

Link up with me on LinkedIn John Kanagaraj, PayPal

Oracle Sharding Sessions and Demos in OOW 2018

Slide Courtesy Oracle Corp

Monday, Oct 22nd

9 AM | High Availability and Sharding Deep Dive with Next-Gen Oracle Database [TRN4032] | **Moscone West-3007**

3.45 PM | Industrial-strength Microservice Architectures with Next-Gen Oracle Database [TRN5515] | **Moscone West-3003**

Tuesday, Oct 23rd

12:30 PM | Oracle Sharding: Geo-Distributed, Scalable, Multimodel Cloud-Native DBMS [PRO4037] | **Moscone West-3007**

3.45 PM | Data and Application Modeling in the Brave New World of Oracle Sharding [BUS1845] | **Moscone West-3007**

Thursday, Oct 24th

11 AM | Oracle Maximum Availability Architecture: Best Practices for Oracle Database 18c [TIP4028] | Moscone West-3006

1 PM | Using Oracle Sharding on Oracle Cloud Infrastructure [CAS5896] | Moscone West-160 PayPal

Sharding Demo Booth - 1615

High Availability, Moscone South Exhibition Hall

Contact:

Nagesh Battula
Sharding Product Management
srinagesh.battula@oracle.com

@OracleSharding & @NageshBattula https://www.oracle.com/goto/sharding

