
Trends and Game-Changers in the Cloud

Iggy Fernandez

"Infrastructure as Code" demo by Artem Danielov

NoCOUG Journal

Latest Issue

NoCOUG Journal Archive

wget www.nocoug.org/Journal/NoCOUG_Journal_{2001..2018}{02..12..3}.pdf

Agenda

- Competition from Oracle
 - Bonus: Oracle Database licensing in the cloud
- Infrastructure as Code
 - Bonus: Demo of creating a RAC cluster
- Cloud-Native SQL Databases

Competition from Oracle

State of the Cloud

2017 Global IT Spend	\$3.5 Trillion
2017 Public Cloud Revenue	\$270 Billion
2016 Operational DBMS Market	\$34.4 Billion
2016 Oracle Corporation Revenue	\$37 Billion
2017 AWS Revenue	\$17.5 Billion
2016 Oracle Database Revenue	\$13.9 Billion
2016 Open Source Database Market	\$1 Billion
2016 NoSQL Database Market	\$1.5 Billion
2016 AWS Database Revenue	\$1.7 Billion

Oracle Cloud Infrastructure: Complete Services

COMPUTE

Bare metal, GPUs, VMs

Up to 52 CPU cores, 8 GPUs, 768 GB RAM, 51 TB local NVMe SSD, 5M IOPS

STORAGE

NVMe, Block, File, Object, Archive

Predictable IOPS Block Storage for up to 98% less than AWS, High scale file & object storage

DATABASE

Bare metal, VMs, RAC, Exadata

Up to millions of transactions per second; Full RAC and Active Data Guard support

CONTAINERS Containers and Kubernetes

Fully managed, certified Kubernetes service with Docker containers

NETWORKING VCN, Load Balancing

Isolated private networks with reserved IPs, subnets, security lists, firewalls, load balancing

EDGE

DNS, VPN, FastConnect, Email

Global DNS, global private connectivity at up to 97% less, email delivery

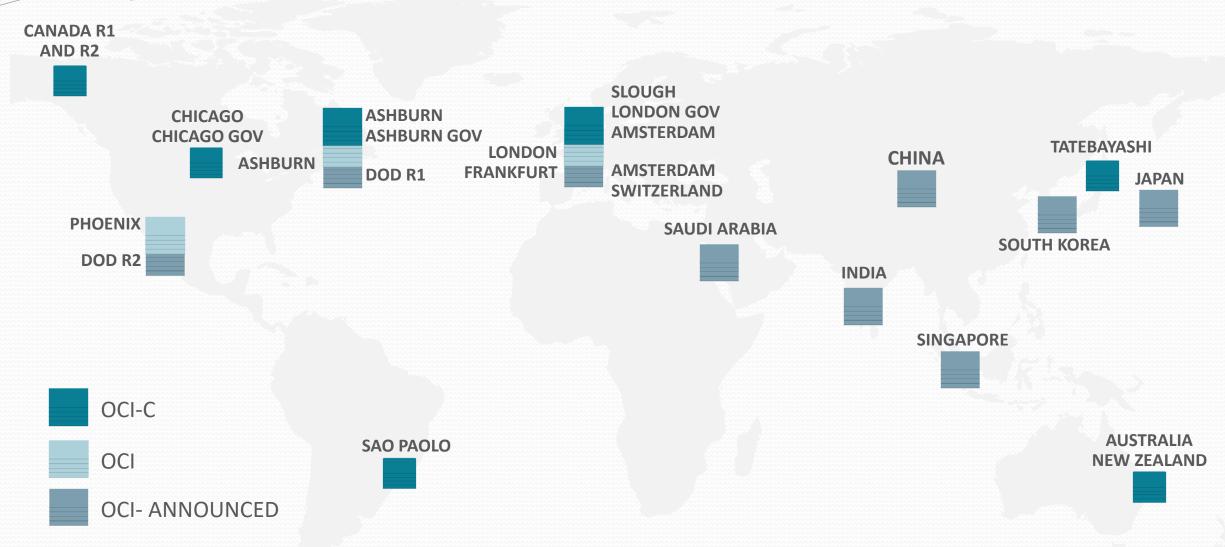
RAVELLO Migrate VMware or KVM

Move VM environments, retaining existing networking, to the cloud

CLOUD AT CUSTOMER IaaS, PaaS, Exadata On-premises

Subscription-priced cloud infrastructure, PaaS, and database managed by Oracle

DATA MOVEMENT Storage appliance, Data Transfer



Software NAS gateway, data ingest service with full chain of custody (HDD or appliance)

Some Highlights

- Flat, non-blocking network
 - Predictable low latency without noisy neighbors
- Off-box IO virtualization
 - Secure bare metal servers without Oracle management software overhead
- Direct-attached NVMe storage
 - Millions of IOPS if you need it

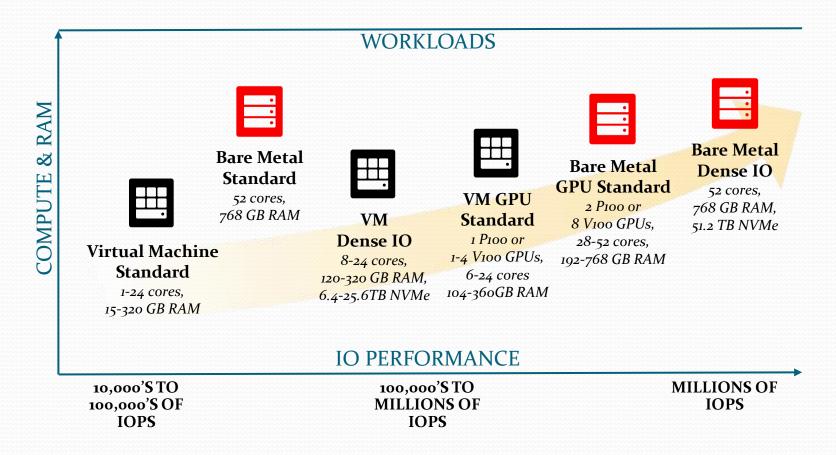
Regions

Network Design

- Flat network, based on Clos network design, speeds traffic by reducing the switches between any two hosts
- High speed interconnects: 2 x 25Gbps bandwidth
- Predictable, low latency < 100µs expected one-way latency between hosts in an availability domain

No charge for storage performance

- Oracle
 - NVMe SSD
- AWS
 - Provisioned IOPS SSD

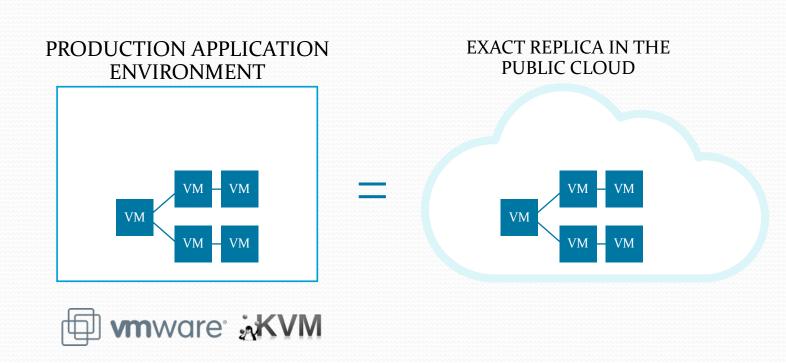

Storage Types

- Local NVMe SSD storage
 - VMs and Bare Metal compute with up to 51 TB local storage; backed by performance SLA
- Block Storage
 - Network NVMe SSD block storage with 60 IOPS/GB; Max 25K IOPS, 320 MB/s per volume; backed by performance SLA
- Object and Archive Storage
 - Object storage with S₃ and HDFS compatibility
- File Storage
 - Low cost network NVMe SSD file storage with 150 MB/s per TB

Shapes

Shapes

- Virtual Machines or Bare Metal
- Up to 52 Intel Xeon cores
- Up to 8 V100 GPUs per instance
- Up to 51 TB local NVMe SSD storage
- Dual 25 Gbps network interfaces
- Up to 1 PB network NVMe SSD block storage per instance



Cloud at Customer

- Oracle Cloud at Customer
- Exadata Cloud at Customer
- Big Data Cloud at Customer
- SaaS Cloud at Customer

Lift-and-shift Vmware and KVM apps

 Applications move to the cloud "as-is," without requiring changes of any kind to the VMs, networking or storage

Volume Groups

- Group together multiple block storage volumes and perform crashconsistent, point-in-time, coordinated backups and clones across all the volumes in the group
- Point-in-time consistent and coordinated backups and clones of running enterprise applications that span multiple storage volumes across one or more compute instances

Data Transfer Appliance

- Oracle-branded, purpose-built storage appliance to cost-effectively and easily migrate data to the cloud
- Up to 150TB per appliance
- Free

Autonomous Everything

- Autonomous Data Warehouse
- Autonomous Transaction Processing

Oracle Database licensing in the cloud

- Per-core and per-thread licensing are not compatible with the Oracle contract
- The core-factor is not applicable to cloud providers other than Oracle
- "If a cloud provider can offer Oracle contract-compliant and auditcompatible mechanisms for tracking all physical processors where Oracle software is installed and/or running, then the customer may be able to consider applying their hardware-based licenses in these clouds."—
 Reference NoCOUG Journal
 - Dedicated hosts (EC2 only)

Infrastructure as Code

What?

- Tools that allows you to programmatically manage, version, and persist your IT infrastructure as code
- Use declarative syntax to describe your infrastructure
- Persist descriptions in configuration files that can be shared, reviewed, edited, versioned, preserved, and reused

Problems

- Server Sprawl
- Configuration Drift
- Snowflake Servers
- Fragile Infrastructure
- Erosion

Principles

- Systems Can Be Easily Reproduced
- Systems Are Disposable
- Cattle, Not Pets
- Systems Are Consistent
- Processes Are Repeatable
- Design Is Always Changing

Practices

- Use Definition Files
- Self-Documented Systems and Processes
- Automatically Generating Documentation
- Version All the Things
- Continuously Test Systems and Processes
- Small Changes Rather Than Batches
- Keep Services Available Continuously

Outcomes

- Every element of the infrastructure can be rebuilt quickly, with little effort
- All systems are kept patched, consistent, and up to date
- Standard service requests, including provisioning standard servers and environments, can be fulfilled within minutes, with no involvement from infrastructure team members
- SLAs are unnecessary
- Maintenance windows are rarely, if ever, needed
- Changes take place during working hours, including software deployments and other high-risk activities

Examples

- Proprietary
 - Cloud Formation (Amazon Web Services)
 - Azure Resource Manager (Microsoft Azure)
- Open-Source
 - Terraform (Oracle Cloud Infrastructure)

Languages

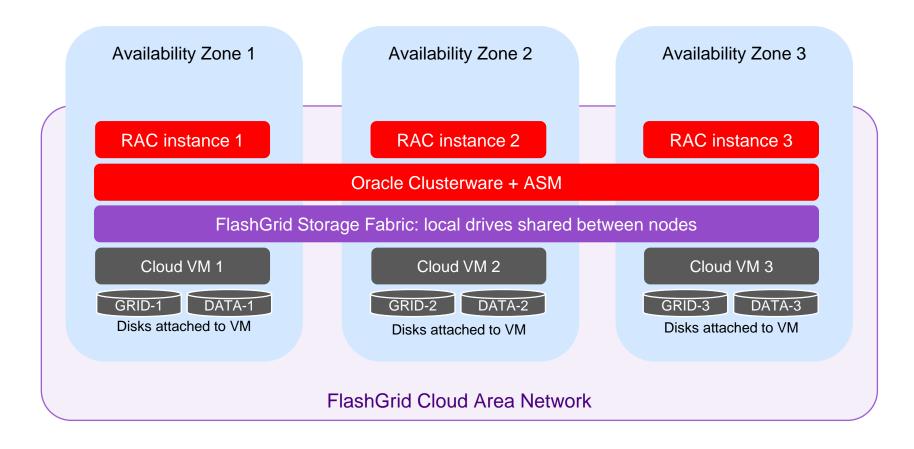
- JSON
- YAML
- HCL

Infrastructure-as-Code Demonstration

Creating an entire Oracle RAC cluster using a JSON configuration file

- FlashGrid SkyCluster Intro
- FlashGrid SkyCluster Architecture:
- Demo: configuring and deploying SkyCluster with Oracle RAC in AWS EC2

FlashGrid SkyCluster Intro



- Active-Active high availability with 2+ database nodes
- Infrastructure-as-Code deployment with a few mouse clicks
- Proven Oracle RAC database engine
- 24/7 support

Run your most critical Oracle databases in the cloud

FlashGrid SkyCluster | Oracle RAC in Public Clouds

- FlashGrid Cloud Area Network creates a high-speed network overlay with multicast, VIPs, and QoS
- FlashGrid Storage Fabric creates shared storage from locally attached disks
- Proven Oracle Clusterware and ASM for high availability and data mirroring

IaC Demo: Deploying SkyCluster with Oracle RAC in AWS

Start the <u>video</u> to see a demo of creating a RAC cluster in AWS using IaC approach.

Note that there is one more layer on top of IaC that we call Engineered-System-as-Code. It makes deployment of the cluster even easier.

Cloud-native databases

Flashback to 2007 Dynamo Requirements: Extreme Availability

"Customers should be able to view and add items to their shopping cart even if disks are failing, network routes are flapping, or data centers are being destroyed by tornados. Therefore, the service responsible for managing shopping carts requires that it can always write to and read from its data store, and that its data needs to be available across multiple data centers."

Reference: <u>Dynamo: Amazon's Highly Available Key-value Store</u>

Flashback to 2007 Dynamo Requirements: Extreme Performance

"There are many services on Amazon's platform that only need primary-key access to a data store. For many services, such as those that provide best seller lists, shopping carts, customer preferences, session management, sales rank, and product catalog, the common pattern of using a relational database would lead to inefficiencies and limit scale and availability. Dynamo provides a simple primary-key only interface to meet the requirements of these applications."

Reference: <u>Dynamo: Amazon's Highly Available Key-value Store</u>

Flashback to 2007 Dynamo Requirements: Extreme Scale

"Since each service uses its distinct instance of Dynamo, its initial design targets a scale of up to hundreds of storage hosts [only]."

Reference: <u>Dynamo: Amazon's Highly Available Key-value Store</u>

Dynamo Requirements Summary

- 1. Extreme availability
- 2. Extreme performance
- 3. Extreme scalability

Dynamo Solution: Functional Segmentation

- Best seller lists, shopping carts, customer preferences, session management, sales rank, and product catalog
- Increases overall site availability by avoiding a single point of failure
- No distributed transactions (eventual consistency)

Dynamo Solution: Sharding

- employee (employee#, name, birthdate)
- jobhistory (employee#, jobdate, title)
- salaryhistory (employee#, jobdate, salarydate, salary)
- children (employee#, childname, birthyear)

Dynamo Solution: Replication

- Shards are replicated
- No distributed transactions (Eventual consistency)

Dynamo Solution: BLOBs

- Shopping carts are stored as binary objects (i.e., blobs) identified by unique keys. No operations span multiple data items and there is no need for relational schema.
- "You can keep a car in a file cabinet because you can file the engine components in files in one drawer, and the axles and things in another, and keep a list of how everything fits together. You can, but you wouldn't want to."—Esther Dyson

Dynamo Solution: Summary

- Functional segmentation
- Sharding
- Asynchronous replication
- Key-value (BLOBs)
- Autocommit
- No distributed transactions
- Eventual consistency
- No SQL

But Wait, There's More!

- Cloud-native
 - No VMs to configure
 - No backups to configure
 - No standby databases to configure
 - No software to choose
 - No patches to install

Google Cloud Spanner

- Functional segmentation
- Sharding
- Asynchronous replication
- Key-value (BLOBs) Relational model, interleaved tables (Oracle-style table clusters)
- Autocommit Transaction support
- No distributed transactions
 Distributed transactions
- Eventual consistency
 ACID consistency
- No SQL SQL
- Google Cloud Platform only (Uses atomic clocks and GPS)

But Wait, There's More!

- Cloud-native
 - No VMs to configure
 - No backups to configure
 - No standby databases to configure
 - No software to choose
 - No patches to install

Calvin/FaunaDB

- Functional segmentation
- Sharding
- Synchronous replication
- Relational model "Document-relational" model
- Table clusters
- Transaction support
- Distributed transactions
- ACID consistency
- SQL "Relationally complete" FQL (SQL support is on the roadmap)
- Google Cloud Platform only (uses atomic clocks and GPS)
- 500,000 TPC-C transactions per second on a cluster of commodity machines

But Wait, There's More!

- Cloud-native
 - No VMs to configure
 - No backups to configure
 - No standby databases to configure
 - No software to choose
 - No patches to install

Thank you!

https://www.linkedin.com/in/iggyfernandez/

https://www.linkedin.com/in/artem-danielov-66668a1/