
Using Thick Database Principles to
Leverage Oracle SQL and PL/SQL Part III:

Implementation Techniques

Peter Koletzke
Technical Director & Principal Instructor

Me
Designer

Handbook,
Second Edition

Designer
Handbook,

Second Edition

Developer
Advanced
Forms &
Reports

Developer
Advanced
Forms &
Reports

JDeveloper 3
Handbook

JDeveloper 3
Handbook

ORACLE
JDeveloper 10g
Handbook

Designer/2000
Handbook

Designer/2000
Handbook

ORACLE9i
JDeveloper
Handbook

• 34 yrs. database industry

• 30 yrs. consulting in Oracle arena
– Since Oracle 5.1C, SQL*Forms 2.3

• 38 yrs. as trainer/presenter

• User groups
– 350+ presentations, 12 awards

– 7+ yrs. total on boards of directors
• IOUG(-A), NYOUG, UTOUG

• Oracle ACE Director
– Since program inception in Aug. 2005

• Oracle Certified Master
– Since program inception in Dec. 2001

• 8 Oracle Press books coauthored
– 6262 pages total

3

You
• Job responsibilities?

– DBA, developer

• Development tools?
– Oracle Developer Forms/Reports
– APEX
– ADF, MAF
– MAX, VBCS
– Other JavaScript tools
– .NET
– PL/SQL
– Other

4

Series Overview

Thick
Concepts

• What is Thick Database?
• Why is Thick faster?
• Thick Advice

Business
Rules

• The subject is business rules
• Sample business rules systems
• Where to place business rules code

Techniques

• Thick Database objects
• Sample code
• Level of Thick

Earlier
sessions

Slides will be available on
the NoCOUG website.

A Brief Review

6

About Thick Database
• A code development strategy

– Maximize use of database code to simplify
the user interface

– The user’s device (client) runs minimal code

• Name plays off the term “thin client”
– A “Year of the Internet” term

– Means most processing occurs on a server

– Slightly outmoded now

• Thick database means “thin client”

A.k.a.
• Thick Database Approach
• Thick Database Paradigm
• Smart Database
• SmartDB
• Fat Database

Oracle prefers

7

Guiding Principles for Code
• Database code that implements business rules

in PL/SQL
– Using database features to enforce data integrity defined by

business rules seems obvious

• Database views to represent complex business
objects (SQL)
– Each view has an accompanying application

programming interface (API)
• Written in PL/SQL

– Interaction is with view and API

8

Benefits
• Application accuracy

– Business rules match application code
– Test plans can be generated from business rules system

• Productivity
– Can greatly simplify user interface code

• Code reusability
– Ease of application maintenance

• Faster performance
– Code is close to data storage – fewer messages, easy access
– Views also reduce the number of round trips needed

• Proper use of staff
– User interface developers can concentrate on UI code
– Database code developers can concentrate on database code

to support the UI

9

More Benefits
• Save cloud database processing time

– Application’s use of database is more efficient

– Proof in next section

– Less database processing time == lower cloud costs

– Save application processing time, too

• Simplify user interface development
– Database views and PL/SQL form API to the database

– Application code is reduced

– UI code technology can change without total
application rewrite

10

Two Related Strategies

1. System for tracking business rules
– Store definitions in database tables

– Code implementations linked to rules

– Linked to, or serves as, requirements documentation

2. Database features implement the business rules
– Constraints

– Database API: PL/SQL code, updatable views

Oracle is considering support for SQL Assertions:
https://community.oracle.com/ideas/13028

11

Agenda

Thick
Techniques

• Thick Database objects

• Sample code

• Level of Thick

“The towels were so thick there
I could barely close my suitcase.”

Yogi Berra

13

How Many Schemas?
• Two

– Connect schema
– Table owner schema (owns PL/SQL code and tables)

• OR Three
– Connect schema
– PL/SQL schema (bus rules and TAPI code; views) – (AUTHID DEFINER)
– Table owner schema (owns tables)

• OR Four (1)

– Connect schema
– API PL/SQL schema (owns API code; views; package per page)
– BR PL/SQL schema (owns bus rules code)
– Table owner schema (owns tables)

• Synonyms - optional
• DDL triggers – to guard against additional grants or disabling

triggers or creating synonyms

(1) Why Use PL/SQL? By Bryn Llewellyn

14

Database Components
• Tables – the usual

– No grants or synonyms to other schemas

• Table API packages
– INSERT, UPDATE, DELETE, (SELECT) procedures

– Call business rules validation code

• Views on the tables
– Queries can be arbitrarily complex

• INSTEAD OF triggers on the views
– Call the table API procedures

15

Agenda

Thick
Techniques

• Thick Database objects

• Sample code

• Level of Thick

16

Table API
• A PL/SQL package per table

– All data modification (“DML”) is accomplished through
procedures
• INS()

• UPD()

• DEL()

• LCK()

• Procedures are called only from INSTEAD OF
view triggers

• No grants to table at all

Demo 1

Code samples are
available in Appendix A.

17

Optional Table API Components
• A function can act as SELECT

– A bit trickier and not always necessary

– Virtual Private Database policies can filter data to all
SELECT statements instead

• Package enforcement global variable
– Trigger uses it to prevent “DML” statements outside of the

package
• Applies only to table owner because table has no grants

– Access only by Table API

18

Package Enforcement Global Variable

CREATE OR REPLACE TRIGGER employees_trbr
BEFORE INSERT OR UPDATE OR DELETE
ON employees
FOR EACH ROW

BEGIN
--
IF NOT employees_pkg.g_allow_dml
THEN

RAISE_APPLICATION_ERROR(-20199,
'You may not issue INSERT, UPDATE, or ' ||
'DELETE statements to this table.');

END IF;

-- other code for validating rules
END employees_trbr;

19

Database Views and Triggers
• Views on tables requiring access

• INSTEAD OF triggers on the views
–INSERT, UPDATE, DELETE row-level trigger

• Call Table API procedures

–Exceptions
• Cross-row validation requires statement-level

triggers on tables or application code

• Cross-table validation requires application code

Demo 2

20

SQL Flow

INSTEAD OF Trigger

View 1

Table 1 API

Table 2 API

Table 3 API

Database

“DML”
Table 1 Trigger

Table 1

Table 2 Trigger
Table 2

Table 3 Trigger
Table 3

“D
M

L”

21

Generate the Stub Code
• It’s all cookie cutter stuff at the start

– Table API – triggers and packages

– View INSTEAD OF trigger

• Use a prebuilt generator
– http://www.dbartisans.com/oracle/docs/PLSQL_Frameworks_

and_Libraries.pdf

– https://www.oddgen.org/

– André Borngräber, Ottmar Gobrecht
• https://github.com/OraMUC/table-api-generator

• Or roll your own generator

22

SQL*Developer Solution

• Select table

• From right-click menu: Table
 Generate Table API

• Be sure to Ctrl-F7 to
reformat it

• You may want to use it just
as a basis for your own
code

23

“NEW!” – Quick SQL

• quicksql.oracle.com

• An APEX app

• Youtube video published Feb. 2017

• Generates code for tables, views, constraints, etc.
(even sample data!) based on shorthand specs

• Settings control variations
– Table API is one of the options

24
Demo 3

25

A Gotcha: Cross-row Rules
• Row-level triggers can only check a single record
• Master-detail form

– One commit for changes to multiple records
– Update could be to master or detail(s) or both records
– Validation must occur between master and all details

• Also: between rows of the same table
– Row-level actions will not work

• In general: need to check business rules after all
insert, update, delete statements and before
commit
– Database does not offer a commit trigger

26

Example
• Department entity object

• StartDate and EndDate define active period

• Employees entity object
– Includes all employees hired or retired
– StartDate and EndDate define active period

• Business rules
1. Only one employee can be active in a particular job at

a time
2. The active period for an employee must fall within the

active period for the department.

27

Sample Scenarios
Departments

DepartmentId 90

DepartmentName Executive

StartDate 6/16/2003

EndDate

Employees
Employee
ID

LastName StartDate EndDate JobId Department
ID

100 King 6/17/2003 AD_PRES 90

101 Kochhar 9/21/2005 1/12/2007 AD_VP 90

102 DeHaan 1/13/2007 AD_VP 90

• Change DeHaan StartDate to 1/1/2007 and commit

• Change Dept 90 StartDate to 6/18/2003 and commit

28

Cross-row Validation Solution
• Call cross-table procedure from the UI code before

after other updates, before commit
– Uses current session and can query uncommitted data

– Query (or pass to procedure) master values and detail
records

– Process the values

– Return success or failure

29

Other Gotchas

• Can’t use a RETURNING clause for an INSERT on a
view with an INSTEAD OF trigger

• Views cannot have a ROWID column

30

“Real World” Code Examples

• Table APIs
– BR_RULE_PKG

– BR_RULE_TRBR

• Database views
– BR_RULE_VW

• INSTEAD OF triggers
– BR_RULE_VW_TRBR

• Business rules procedures
– BR_RULE_PKG.VALIDATE_BRRULE_ID()

Demo 4

31

Agenda

Thick
Techniques

• Thick Database objects

• Sample code

• Level of Thick

32

Main Levels

• Light

• Moderate

• Deep

• ExtremeCo
m

pl
ex

it
y,

 F
le

xi
bi

lit
y

33

Light: Application Code Only
• The simplest architecture

– Not really “Thick Database”

• Business rule statements in printed documents only
– No link between business rules statements and

programming code

– Difficult to maintain and report on business rules statements

• Most business rules code in the application

• Use database constraints

34

Moderate: Application Code with
Business Rules Repository

• “Modified Thick Database Approach”
• Business rules statements are stored in database

tables: a business rules repository
• Maintenance and reporting of business rules is easier

and more flexible
– Can report on groups of business rules
– Names of programmatic objects can be stored in the

repository
– ID numbers for business rules can be added to comments

in the application code

• Link requirements and test plans to business rules

35

Deep: Code Generation Engine
• Extremely Thick Database Approach

• Business rules repository as in Moderate

• The system generates application code (database and user
interface) from the business rules repository
– Business rules statements are tightly coupled to application code

• Downside: time consuming to produce an engine that can handle
all possibilities
– Possible compromise: settle for less than 100% generation

– For example, hand-code the UI application and generate the validation
code

Independent of Table API,
trigger, etc. stub generators

36

Benefits of Deep
• The code is immediately useable (100% generation)

• Development time is minimized

• Time spent on proper definitions of business rules
– Same for maintenance and enhancements

• A single engine can serve multiple applications

• Relatively immune to technology shifts
– Except the UI generator would need to be altered for a

different UI technology

37

Extreme: Business Rules Runtime Engine
• Generic code reads the business rules repository at runtime

– Generates the user interface dynamically
– Data are validated using the business rules repository definitions
– The tightest coupling between application and business rules

• Development process consists only of defining the business
rules
– Maintenance and enhancements are simple

• Downside: even more time consuming to produce this system
– Needs experts to create and maintain

• Relatively immune to technology shifts
– Although the runtime engine would need to be altered

for a different UI technology

38

Summary

• Leverage SQL: Database views, no grants to
tables

• Leverage PL/SQL: View INSTEAD OF triggers,
table triggers, table APIs

• Different levels of thick depending on available
time and talent

• Incorporating it requires some ramp-up
time: use a phased approach

39

Designer
Handbook
Designer

Handbook

Developer
Advanced
Forms &
Reports

Developer
Advanced
Forms &
Reports

JDeveloper 3
Handbook

JDeveloper 3
Handbook

ORACLE9i
JDeveloper
Handbook

ORACLE
JDeveloper 10g

Handbook

• Please fill out the evaluations

• 7 of 8 books co-authored with Dr. Paul
Dorsey, Avrom Roy-Faderman, &
Duncan Mills

• Slides will be on the NoCOUG website

