Using Thick Database Principles to
Leverage Oracle SQL and PL/SQL Part IlI:

Implementation Techniques

Peter Koletzke
Technical Director & Principal Instructor

. 0, ORACLE
A | ORACLE &

' Developer
Community

ACE Director

\

Me e

\ \\‘j

#

L

* 34 yrs. database industry e N o2
» 30 yrs. consulting in Oracle arena Handbook, Forms & -

Second Edition , Reports::-

— Since Oracle 5.1C, SQL*Forms 2.3
» 38 yrs. as trainer/presenter
» User groups _L'j_

— 350+ presentations, 12 awards sualis b 3 ORACLE; e .

-7+ yrs. total on boards of directors ﬁ JDeveloper JDeveloper 10g
« IOUG(-A), NYOUG, UTOUG = Har_]dbook Handbook

 Oracle ACE Director

— Since program inception in Aug. 2005
* Oracle Certified Master

— Since program inception in Dec. 2001
» 8 Oracle Press books coauthored

— 6262 pages total

cnacLe

Oracle JDeveloper 11g ===

Handbpok

You

» Job responsibilities?
— DBA, developer

* Development tools?
— Oracle Developer Forms/Reports
— APEX
— ADF, MAF
— MAX, VBCS
— Other JavaScript tools
—.NET
— PL/SQL
— Other

Earlier _J
sessions

Series Overview

« What is Thick Database?
« Why is Thick faster?
» Thick Advice

» The subject is business rules
» Sample business rules systems
* Where to place business rules code

Slides will be available on |§
the NoCOUG website.

» Thick Database objects
» Sample code
* Level of Thick

A Brief Review

About Thick Database

» A code development strategy

— Maximize use of database code to simplify | A.k.a.

the user interface * Thick Database Approach
* Thick Database Paradigm

— The user’s device (client) runs minimal code [Smart Dafabase]>

179 I H ” *| SmartDB
* Name plays off the term “thin client T Er e

— A “Year of the Internet” term
— Means most processing occurs on a server

— Slightly outmoded now ——
* Thick database means “thin client” E %

Oracle prefers

Guiding Principles for Code

Database code that implements business rules
in PL/SQL

— Using database features to enforce data integrity defined by
business rules seems obvious

» Database views to represent complex business
objects (SQL)
—Each view has an accompanying application

programming interface (API)
» Written in PL/SQL

—Interaction is with view and API

Benefits
» Application accuracy

— Business rules match application code
— Test plans can be generated from business rules system
* Productivity
— Can greatly simplify user interface code
» Code reusability
— Ease of application maintenance
» Faster performance
— Code is close to data storage — fewer messages, easy access
— Views also reduce the number of round trips needed
* Proper use of staff

— User interface developers can concentrate on Ul code

— Database code developers can concentrate on database code @
to support the Ul

More Benefits
» Save cloud database processing time

— Application’s use of database is more efficient

— Proof in next section

— Less database processing time == lower cloud costs
— Save application processing time, too

« Simplify user interface development
— Database views and PL/SQL form API to the database
— Application code is reduced

— Ul code technology can change without total
application rewrite

Two Related Strategies

1. System for tracking business rules
— Store definitions in database tables
— Code implementations linked to rules
— Linked to, or serves as, requirements documentation
2. Database features implement the business rules
— Constraints
— Database API: PL/SQL code, updatable views

Oracle is considering support for SQL Assertions:
https://community.oracle.com/ideas/13028

Agenda

 Thick Database objects

(o)) adVlSo’r Pleasanton ~
About Pleasanton Hotels Vacation Rentals Flights Restaurants Thingstodoc ssee
United States > California (CA) > Tri-Valley > Pleasanton > Pleasanton Hotels DoubleTree by Hilton Hotel Pleasanton at the Club

DoubleTree by Hilton Hotel Pleasanton at the Club

@®@@@®@)() 635 reviews #3 of 14 Hotels in Pleasanton
@ 7050 Johnson Dr, Pleasanton, CA 94588-3328 %, +1855-605-0318 [Hotel website

(@)@)@)®)®) Reviewed yesterday [Jvia mobile * Hotel's Favorite

“The towels were so thick there
| could barely close my suitcase.”

Yogi Berra

Level Contributor

How Many Schemas?

« Two
— Connect schema
— Table owner schema (owns PL/SQL code and tables)
* OR Three
— Connect schema
— PL/SQL schema (bus rules and TAPI code; views) — (AUTHID DEFINER)
— Table owner schema (owns tables)
« OR Four®
— Connect schema
— API PL/SQL schema (owns API code; views; package per page)
— BR PL/SQL schema (owns bus rules code)
— Table owner schema (owns tables)
* Synonyms - optional
» DDL triggers —to guard against additional grants or disabling
triggers or creating synonyms

(1) Why Use PL/SQL? By Bryn Llewellyn

Database Components

Tables — the usual

— No grants or synonyms to other schemas

Table API packages

— INSERT, UPDATE, DELETE, (SELECT) procedures
— Call business rules validation code

Views on the tables

INSTEAD OF triggers on the views /
— Call the table API procedures
Y

— Queries can be arbitrarily complex i‘ .

Agenda

e« Sample code

Table API

» A PL/SQL package per table

— All data modification (“DML") is accomplished through
procedures

« INS()
« UPD()
« DEL()

« LCK()

» Procedures are called only from INSTEAD OF o

view triggers T |
* No grants to table at all Code samples are | I

available in Appendix A. |

Optional Table API Components

» A function can act as SELECT
— A bit trickier and not always necessary
— Virtual Private Database policies can filter data to all
SELECT statements instead
» Package enforcement global variable

— Trigger uses it to prevent “DML”" statements outside of the
package
» Applies only to table owner because table has no grants

— Access only by Table API m”

Package Enforcement Global Variable

CREATE OR REPLACE TRIGGER employees_trbr
BEFORE INSERT OR UPDATE OR DELETE
ON employees
FOR EACH ROW
BEGIN
IF NOT employees pkg.g_allow_dml
THEN
RAISE_APPLICATION_ERROR(-20199,
"You may not issue INSERT, UPDATE, or = ||
"DELETE statements to this table.");
END 1IF;

-— other code for validating rules
END employees_trbr;

Database Views and Triggers

* Views on tables requiring access

* INSTEAD OF triggers on the views
—INSERT, UPDATE, DELETE row-level trigger
 Call Table API procedures

—EXxceptions

» Cross-row validation requires statement-level
triggers on tables or application code

» Cross-table validation requires application code

SQL Flow
/
~— Database
INSTEAD OF Trigger _
0 "I\ Table 1API Table 1 Trigger
_
Table 3 Trigger Table 2 Trigger
Table 3 Table 2

\ /

Generate the Stub Code

* It's all cookie cutter stuff at the start
— Table API — triggers and packages
— View INSTEAD OF trigger

» Use a prebuilt generator

— http://www.dbartisans.com/oracle/docs/PLSQL_Frameworks
and_Libraries.pdf

— https://www.oddgen.org/
— André Borngraber, Ottmar Gobrecht
* https://github.com/OraMUC/table-api-generator

 Or roll your own generator

SQL*Developer Solution

&3 Oracle SQL Developer

File Edit View MNavigate Run Team Tools Window Help

» Select table 3oa@ 96 0 o- & &
. . Connections L_)ElartPBQe 2 HR_XE F_'Dr:FP ARTMENTS
* From right-click menu: Table

onstraints | Grants | Statistics | Triggers | Flaghback | Dep

AAAAAAA

- Generate Table API g |mmsneNT 0 ;f: ,
« Be sure to Ctrl-F7 to S o S—
reformat it jjﬂf’ 'f '
* You may want to use it just i

as a basis for your own
code

i vileg * o Lock.
| Statistics »| Comment

4 Parallel..

4 Logging..

r Mo Paralle
fffff Rows.

Generate Table APL.
T

i 'Re Use as Template..

“NEW!” — Quick SQL

» quicksgl.oracle.com

 An APEX app

» Youtube video published Feb. 2017

» Generates code for tables, views, constraints, etc.
(even sample data!) based on shorthand specs

Settings control variations
— Table API is one of the options

QUiCk SQL [saved @Help 8 peter koletzke@compuserve.com ¥

+ worksheet & Clear &3> Load Samples Syntax i, Download ﬁ Settings

create or replace package body departments_api

procedure get_row |
p_id
P_name
P_locaticn
P_country

)

i

begin

for cl in (selset * from departments where id = p_id) leop

p_id in number default null,
p_name in varchar? default null

17.34 Customize Set Screen Reader Mode On @ .

A Gotcha: Cross-row Rules

* Row-level triggers can only check a single record

» Master-detail form
— One commit for changes to multiple records
— Update could be to master or detail(s) or both records
— Validation must occur between master and all details
» Also: between rows of the same table
— Row-level actions will not work
 In general: need to check business rules after all

insert, update, delete statements and before
commit

— Database does not offer a commit trigger

Example

» Department entity object

» StartDate and EndDate define active period
* Employees entity object

— Includes all employees hired or retired

— StartDate and EndDate define active period
* Business rules

1. Only one employee can be active in a particular job at
a time

2. The active period for an employee must fall within the
active period for the department.

Sample Scenarios

Departmentld _

Department

o1 oohhar |suzoos unomoor (A0 ve 1o |

» Change DeHaan StartDate to 1/1/2007 and commit
» Change Dept 90 StartDate to 6/18/2003 and commit

Cross-row Validation Solution

» Call cross-table procedure from the Ul code before
after other updates, before commit

— Uses current session and can query uncommitted data

— Query (or pass to procedure) master values and detail
records

— Process the values
— Return success or failure g

Other Gotchas

e Can'tuse a RETURNING clause for an INSERT on a
view with an INSTEAD OF trigger

e Views cannot have a ROWID column

2
)

“Real World” Code Examples

Table APIs

— BR_RULE_PKG

—~BR_RULE_TRBR

Database views

—~BR_RULE_VW

INSTEAD OF triggers
—~BR_RULE_VW_TRBR

Business rules procedures

— BR_RULE_PKG.VALIDATE_BRRULE_ID()

Agenda

Thick
IEEISEES . | ovel of Thick

Main Levels
Py .
3 e Light
X
Q
T Moderate
z
3 * Deep
3
W e Extreme

Light: Application Code Only

The simplest architecture
— Not really “Thick Database”
Business rule statements in printed documents only

— No link between business rules statements and
programming code

— Difficult to maintain and report on business rules statements
Most business rules code in the application
Use database constraints

Moderate: Application Code with
Business Rules Repository
» “Modified Thick Database Approach”

» Business rules statements are stored in database
tables: a business rules repository

« Maintenance and reporting of business rules is easier
and more flexible
— Can report on groups of business rules

— Names of programmatic objects can be stored in the
repository

— ID numbers for business rules can be added to comments

in the application code —
* Link requirements and test plans to business rules E g

Deep: Code Generation Engine

« Extremely Thick Database Approach Independent of Table API,
trigger, efc. stub generators
» Business rules repository as in Moderate
* The system generates application code (database and user
interface) from the business rules repository
— Business rules statements are tightly coupled to application code
* Downside: time consuming to produce an engine that can handle
all possibilities
— Possible compromise: settle for less than 100% generation

— For example, hand-code the Ul application and generate the validation
code

=

Benefits of Deep

The code is immediately useable (100% generation)
Development time is minimized

Time spent on proper definitions of business rules

— Same for maintenance and enhancements

A single engine can serve multiple applications

Relatively immune to technology shifts

— Except the Ul generator would need to be altered for a
different Ul technology

Extreme: Business Rules Runtime Engine

» Generic code reads the business rules repository at runtime
— Generates the user interface dynamically
— Data are validated using the business rules repository definitions
— The tightest coupling between application and business rules

» Development process consists only of defining the business
rules
— Maintenance and enhancements are simple

» Downside: even more time consuming to produce this system
— Needs experts to create and maintain

» Relatively immune to technology shifts

— Although the runtime engine would need to be altered Eg
for a different Ul technology -

Summary

» Leverage SQL.: Database views, no grants to
tables

e Leverage PL/SQL: View INSTEAD OF triggers,
table triggers, table APIs

 Different levels of thick depending on available
time and talent

e Incorporating it requires some ramp-up
time: use a phased approach

~ Developer
Advanced
Forms & JDeveloper 3
ms & o8
Reports

e /- Please fill out the evaluations \
ook B <« 7of8books co-authored with Dr. Paul

Dorsey, Avrom Roy-Faderman, &
Duncan Mills

» Slides will be on the NOoCOUG website

- /

Oracle JDeveloper11g ==c1»

Handbook

A Guide to Fusion Web Development

