Using Thick Database Principles to
Leverage Oracle SQL and PL/SQL Part I:

Save Cloud Costs and
Simplify User Interface Development

Peter Koletzke
Technical Director & Principal Instructor

. 0, ORACLE
A | ORACLE &

' Developer

ACE Director Community

Me e

\

#

\ \\‘j

L

» 34 yrs. database industry

Developer

Designer/2000 Designer Advanced.
« 30 yrs. consulting in Oracle arena | I R

— Since Oracle 5.1C, SQL*Forms 2.3
» 38 yrs. as trainer/presenter _

» User groups
— 350+ presentations, 12 awards] ‘!

_ JDeveloper 3 ORACLESi ORACLE
-7+ yrs. total on boards of directors Hand?ﬂﬂ JDeveloper JDeveloper 10g
* |OUG(-A), NYOUG, UTOUG =

Handbook Handbook
 Oracle ACE Director
— Since program inception in Aug. 2005
 Oracle Certified Master
— Since program inception in Dec. 2001
» 8 Oracle Press books coauthored
— 6262 pages total

Oracle JDeveloper 11g ===

Handbpok

You

» Job responsibilities?
— DBA, developer

* Development tools?
— Oracle Developer Forms/Reports
— APEX
— ADF, MAF
— MAX, VBCS
— Other JavaScript tools
—.NET
— PL/SQL
— Other

Thick Thoughts

* In the Days of Olde, you had to program in some non-DB
language to issue SQL to the database
* The introduction of PL/SQL changed that
— But in the early days, PL/SQL was more primitive so processing
in the Ul language was still indicated g

v

 Now PL/SQL and the database have become P
more efficient, feature-full g4
— But Days of Olde thought patterns are still in place °
— This leads to Ul-heavy coding and less efficient } 8

processing w

Series Overview

* What is Thick Database?
‘ * Why is Thick faster?
Thick . :
ooy © Thick Advice

» The subject is business ruies
» Sample business rules systems
Where to place business rules code

L

Later
sessions

®

Thick Dalabase objecls
Sample code
Level of Thick

Slides will be available on !E

the NoCOUG website.

@

L

Agenda

\What is Thick Database?

Thick
Concepts

The Other Extreme

A 177

i %

I'm as thick as a plank.

—Princess Diana (1961-1997)

P kS

About Thick Database

» A code development strategy

— Maximize use of database code to simplify | A.k.a.

the user interface * Thick Database Approach
* Thick Database Paradigm

— The user’s device (client) runs minimal code [Smart Dafabase]>

* Name plays off the term “thin client”) ‘;’Q“gl?fbase
— A “Year of the Internet” term
— Means most processing occurs on a server
— Slightly outmoded now ——

* Thick database means “thin client” E%

Oracle prefers

Provenance

» Topic is rarely seen at conferences, but is not new

 Started trending many years ago

—ODTUG Business Rules Symposium Day 2001-2004
» Organized by Dr. Paul Dorsey of Dulcian, Inc.

—Thoughts evolved into Thick Database
» Conference sessions starting around 2006

Topic is Still Active

dulcian.com
— Look in Resources | Conference Presentations...Thick Database
Mike Smithers’ Blog

— https://mikesmithers.wordpress.com/tag/thick-database-paradigm/
Toon Koppelaars, Oracle Real World Performance Group

— https://www.youtube.com/watch?v=8jiJDflpw4Y

— http://www.prohuddle.com/webinars/ToonKoppelaars/ThickDB.php
Bryn Llewellyn, Distinguished Product Manager (Oracle)

— https://blogs.oracle.com/plsgl-and-ebr/entry/why use pl _sql
— https://blogs.oracle.com/plsgl-and-ebr/noplsql-versus-thickdb

Relatively Recent Dulcian Presentations

« A New View of Database Views

— https://www.slideshare.net/MishaRosenblum/2015-458-
rosenblumpptfinal?next_slideshow=1

 Why is the application running so slowly?

— https://www.slideshare.net/MishaRosenblum/why-is-the-
application-running-so-slowly

4

d DULCIAN
} o SOFTWARE SOLUTIONS THAT WORK

More Resources

« Anton Nielsen, concept2completion.com, APEX
and the Thick Database Paradigm

e Toon's ODTUG 2017 slides

— http://thehelsinkideclaration.blogspot.com/2017/06/m
y-noplsgl-versus-smartdb-deep-dive.html

» Database debunking
— http://www.dbdebunk.com/

Two Related Strategies

1. System for tracking business rules
— Store definitions in database tables
— Code implementations linked to rules
— Linked to, or serves as, requirements documentation

2. Database features implement the business rules

— Constraints
— Database API: PL/SQL code, updatable views

Oracle is considering support for SQL Assertions:
https://community.oracle.com/ideas/13028

Guiding Principles for Code

» Database code that implements business rules
in PL/SQL

— Using database features to enforce data integrity defined by
business rules seems obvious

« Database views to represent complex business
objects (SQL)
—Each view has an accompanying application

programming interface (API)
* Written in PL/SQL

—Interaction is with view and API

Drawbacks

* Time and effort required
— Design and set up
— Documenting standards
— Instructing staff

* Requirements on the IT shop side

— Architect/database designer

— Expert coder

» Develop generic code “engines” to run and/or
generate business rules code

* Need buy-in from management e
— For all of the above N

Some Benefits

» Application accuracy
— Business rules match application code
— Test plans can be generated from business rules system
* Productivity
— Can greatly simplify user interface code
» Code reusability
— Ease of application maintenance
» Faster performance
— Code is close to data storage — fewer messages, easy access
— Views also reduce the number of round trips needed
* Proper use of staff
— User interface developers can concentrate on Ul code

— Database code developers can concentrate on database code
to support the Ul

Big Benefit: Lower Cloud Costs

» Save cloud database processing time
— Application’s use of database is more efficient
— Proof in next section
» Less database processing time == lower cloud costs

« If application front-end is in cloud
— Thick DB saves application runtime processing

— Examples
» Java Cloud Service
» Container Cloud Service

Big Benefit: Simplifies User Interface Work

» Database views can represent multiple tables
— Arbitrarily complex logic
— Aggregate functions: MAX(), COUNT()
— Set operators: UNION, MINUS
— Calculation functions: first_salary()
— Even: a PL/SQL function cast as a table
* One view per application Ul page
— The page submit commits the entire page
— Reminds one of mainframe “block submit”

— Back end code deals the data into
the proper tables

Some Changes Require Less Ul Rewriting

« Ul technology changes
— If code is in database, only Ul needs rewriting
— Application logic in database can carry forward

» Table refactoring

—For example, if a set of tables used in Ul views is
normalized into more tables
« Joins and query of view can be updated
» Ul may not need to change

Traditional vs. Thick Database Uls
Traditional Client UL Screen < Dafabase 3
e N R
Table 1 N Table3 | | _ _________ L Table it
v
Table 2 Tﬂble 4 _____________ - P IGDie 4 lable
T A
—— I
Thick Database UI Screen
View 1 View 1
| Table 1 L/ Table 3 |
e o = - = - P e e e e e e e e e]
B 2
| Table 2 i | Table 4 i
e e e e e [e e e e
‘-...______ ______,.../

Front-end Tool “Agnhostic”

» Application Express (APEX)
» Application Development Framework (ADF)
» Mobile Application Framework (MAF)
* Oracle Forms
« JavaScript
— JavaScript Extension Toolkit (JET)
— Mobile Application Accelerator (MAX)
— Visual Builder Cloud Service (VBCS, formerly ABCS)
* PL/SQL Toolkit
* PHP: Hypertext Processor (PHP)
* Rails
» ColdFusion
» (whatever)

Tools’ Use of Thick Database

APEX

)

Forms

Database

ADF ADF BC

A
A 4

View 1 View 2

Web Lwl (Views

MAF [« > b |] o
- Services [._ _ ._ .
JavaScript REST TTabl il i :

It Services Table2] |:

e Table 3
(something i
(©ihers) or nothing)
v

P
..l l ‘
-.II d

l

[TT1
Ll

Agenda

Thick Why is Thick faster?

Concepts

Toon Koppelaars’ Research

» Described in YouTube video

—“NoPLSql and Thick Database Approaches with Toon
Koppelaars”

— https://www.youtube.com/watch?v=8jiJDflpw4Y
» Related conference presentations
* Now uses the Oracle-preferred term “SmartDB”

(Slides with this icon contain content used with
Toon’s permission.)

Youl %)

What SmartDB is NOT

* NoPISql
— Starts with OO model in the middle tier
— DB is just a bunch of tables
— “PL/SQL is proprietary - don’t use it.”
— “Database is for data, not logic because logic won’t scale.”
— Only SQL is issued from the user interface code
— APl is primitive SQL.: insert, update, delete, select

— Frameworks like EJB in Java hide the SQL but it is there: single
row SQL usually

* Problems

— Maintenance — code is in the Ul code, not centralized

You[TD

What SmartDB Is

e Starts with relational model

APl is PL/SQL
— All user interface code calls PL/SQL
— PL/SQL does SQL: insert, update, delete, select, MORE
— Logic takes place within the database

— Logic can issue single-row or array-based or set-based
statements

You[TD)

Again

* If you move logic out of the DB,
you put more stress on DB

» Save DB cycles by using SmartDB

YoulR)

Toon’s Team'’s Testing

* Two row-by-row processing programs

— One in plain Java (no framework)

— One in PL/SQL (extreme approach — would never do this)
* Implement a number of business rules

— Various types of SQL statements

— 5 million rows

 Observe CPU use

— No app server process for PL/SQL
— NoPISgl — JVM on database server, no network
— How much database CPU? Yol

Results #1

e Java on JDBC
—45% DB server
—25% CPU JVM - 703 DB-CPU seconds
— 26 minutes
— Didn’t add up to 100% Some wait time
— Log file sync waits — commits row-by-row

. PL/SQL

—97% CPU - 371 DB-CPU seconds
— 6:23 minutes

YoulR)

Results #2

o Commit every 128 rows

e Java on JDBC
— 437 DB-CPU seconds
— 11 minutes
— Closer to 100%

* PL/SQL (does not have sync waits, committing is still
expensive)

— 97% CPU - 204 DB-CPU seconds
— 3:30 minutes

YoulR)

Results Summarized

» Elapsed drops by 3X, DB-CPU drops by 2X

e Tried in C on OCI
— 6:54 Minutes
— 332 DB-CPU seconds
 Why is PL/SQL so much faster?

— PL/SQL is in the same place as SQL — database, messaging
simplified; Java/C incur network hits

* Why is C OCI outperforming Java

YoulTH

: Code path for delete

| gaice L_;..—..: i Graphica! analysis of whaT
D sl e occurs in each scenario
g - =
. PL/SQL
— A Stretched Java/JDBC
- FlameGraph to show
) = it takes 2x CPU
=
-
= _ Java

YoulTH

437 CPU seconds

NoPlsgl Consistently Results in Worse IPC (insns per cycle)

"Perf stat" output summary 50% more instructions

for duration of each run

Requiring 90% more CPU]
PLSQL NoPlsql
Instructions | 455G 670G
Total cycles | 660G 1220G /’j Considerable worse IPC
lnsnsfcy[fle 0,69 0,55 . Basically means: you run on a slower CPU
Branches 856G 129G
BranchMisses 0.96 236
%BMIS 1.03% 1.76%
CacheRefs 266G 54G
CacheMisses 0.13G 0.295G
%CMIS 0.5% 0.55%

ORACLE' ORACLE e You i
REAL-WORLD PERFORMANCE e -2

NoPlsgl consistently results in worse IPC (instructions/cycle)

"Perf stat" output summary [50% more instructions]

for duration of each run
% Requiring 90% more CPU J
PLSQL NoPlsqg|
Instructions | 455G 670G /
1220G More CPU cycles: blame

G '
Total cycles| | 660G A Considerable worse IPC] .
Insns/cycle | 0,69 0,55 network messaging
Branches 85G 129G
BranchMisses | 0.96 2.36 | % Caused by more branch misses]
%BMIS 1.03% 1.76%
CacheRefs 266G 54G
CacheMisses | 0.13G 0.295G | % And more cache misses]

%CMIS 0.5% 0.55%

ORAGLE: ORACLE
« REAL-WORLD PERFORMANCE

Results

» Single-row SQL, PL/SQL results in 2x speedup

» Business logic in PL/SQL results in 10x speedup

— NoPlIsgl has overhead for multiple business logic SQL
statements

— Shipping data in and out of app and db server is expensive
» Another factor not analyzed
— Network latency and waits

YoulR)

Unique to PL/SQL

» Multi-row handling for the destination of relational tables
— Set-based: INSERT .. SELECT
— Array processing: FOR ALL IN ... INSERT
— OO doesn’t have this
— Of course, PL/SQL needs to be written to take advantage of this

» Set-based is 10x to 30x faster than row-by-row in PL/SQL

YoulR)

Compared to Set Processing

In perspective

Row-by-row PLSQL 204 .

Row-by-row NoPlsgl 437 |

ORACLE

REAL-WORLD PERFORMANCE

ORAGLE!

700
Our results visualized
600
Java/JDBC PLSQL row-by-row PLSQL set-based
DB-CPU 437 204 7 500
APP-CPU 217 0 0
Elapsed 660 204 7
400
WAPP-CPU
300 mDB-CPU
200
100
®
g
0 —
Java/JDBC PLSOL row Pl‘;[.)L_JeT-
by-ro based
i : Youl T
ORACLE’

Findings

» Using DB as processing engine saves CPU licenses
— Fewer app servers needed to scale for more users
* Moved from NoPIsgl to SmartDB
— Elapsed drops by 3X = #SmartDB is faster
— DB-CPU drops by 2X - #SmartDB is more scalable

Gets work
done faster
while at same
time using
less CPU

YoulR)

Summary of Testing Results

 PL/SQL has none of these
—No O/S startup for network layers

—No JVM involvement (for Java option)
* JVM and JDBC process overhead
 Shipping data in and out of processes
* JVM cleanup

—For C OCl, still have
» OCI statement preparation startup and cleanup @

» Shipping data in and out (M Tube}

Agenda

Thick

SRR . Thick advice

When Not to Use Thick Database

* If your organization is dedicated to “database
independence”
— Changing from Oracle to SQL Server, for example
» This is not a simple endeavor
— Forces applications to use ANSI SQL only
» Applications are “thicker” than the database
— Product app companies may need to be DB independent

* If your applications have few or simple

business rules ‘%'

— Overhead of Thick Database may not be worthwhile

Thick Database Team Success

 If your team is expert in a development discipline other
than PL/SQL, selling ThickDB is difficult

— Experts in database design, SQL, and PL/SQL do not have deep
Ul skills

— Experts in Ul do not have deep DB skills
— Or, at least, this is very rare

» Success lies in “divide and conquer”
— Small team of DB developers
— Any size team of Ul developers
— Exact numbers depend on the workload
— Bonus advice: consider Agile

Advice for Ul Developers

» Rely on the frameworks to do what they are designed for

— For example, ADF
» Highly evolved, efficient, effective use of JDBC; Oracle Support-ed
» Similarly, EJB
« Writing custom overrides to framework code can lead to
disaster
* Or at least inefficiencies
* AND: there is no one to blame except yourself

Advice for DB Developers

» Learn the API points into the Ul
—Helps communication with Ul developers
o ADF example:

—doDML() method can call record-level business rules
code

» Constants tell you whether the DML is insert,
update, or delete

Do You Need an Oracle Database?

* No, but...

— A central location for business rules code is necessary
» Best in a database

— Views are needed to hide details of the data storage
» INSTEAD OF triggers may not be available
» So application may be responsible for calling the central code

— Table API concept may be possible

» DB2 supports PL/SQL
* You can always just allow access to views not tables

How to Transition to Thick Database

Like applying any other standard while “in flight”
Apply it 100% to new applications

Can apply it to existing application enhancements
Start small

— Incorporate user interface interaction with database views
Refine as you go

“Completely Thick” can be a longer-term
goal

‘VT

)
)
i

)

Thick Database: A Gastronomic Delight
If the theory turns out to
be right, that will be

tremendously thick and tasty
icing on the cake.

—Brian Greene (1963-),
2 physicist é

Summary

* Thick Database is driven by business rules

e Thick Database can improve Ul simplicity,
productivity, system performance, application
accuracy, security

» ThickDB can save cloud computing costs

* ThickDB can use development team talent
more efficiently

K- Please fill out the evaluations \

<« 7 of 8 books co-authored with Dr. Paul
Dorsey, Avrom Roy-Faderman, &
Duncan Mills

» Slides will be on the NoCOUG website

o /

Oracle JDeveloper11g ===

Handbook
A Guide to Fusion Web Development

..........

