
Using Thick Database Principles to
Leverage Oracle SQL and PL/SQL Part I:

Save Cloud Costs and
Simplify User Interface Development

Peter Koletzke
Technical Director & Principal Instructor

Me
Designer

Handbook,
Second Edition

Designer
Handbook,

Second Edition

Developer
Advanced
Forms &
Reports

Developer
Advanced
Forms &
Reports

JDeveloper 3
Handbook

JDeveloper 3
Handbook

ORACLE
JDeveloper 10g
Handbook

Designer/2000
Handbook

Designer/2000
Handbook

ORACLE9i
JDeveloper
Handbook

• 34 yrs. database industry

• 30 yrs. consulting in Oracle arena
– Since Oracle 5.1C, SQL*Forms 2.3

• 38 yrs. as trainer/presenter

• User groups
– 350+ presentations, 12 awards

– 7+ yrs. total on boards of directors
• IOUG(-A), NYOUG, UTOUG

• Oracle ACE Director
– Since program inception in Aug. 2005

• Oracle Certified Master
– Since program inception in Dec. 2001

• 8 Oracle Press books coauthored
– 6262 pages total

3

You
• Job responsibilities?

– DBA, developer

• Development tools?
– Oracle Developer Forms/Reports
– APEX
– ADF, MAF
– MAX, VBCS
– Other JavaScript tools
– .NET
– PL/SQL
– Other

4

Thick Thoughts

• In the Days of Olde, you had to program in some non-DB
language to issue SQL to the database

• The introduction of PL/SQL changed that
– But in the early days, PL/SQL was more primitive so processing

in the UI language was still indicated

• Now PL/SQL and the database have become
more efficient, feature-full
– But Days of Olde thought patterns are still in place

– This leads to UI-heavy coding and less efficient
processing

5

Series Overview

Thick
Concepts

• What is Thick Database?
• Why is Thick faster?
• Thick Advice

Business
Rules

• The subject is business rules
• Sample business rules systems
• Where to place business rules code

Techniques

• Thick Database objects
• Sample code
• Level of Thick

Slides will be available on
the NoCOUG website.

Later
sessions

6

Agenda

Thick
Concepts

•What is Thick Database?

•Why is Thick faster?

•Thick Advice

7

The Other Extreme

I'm as thick as a plank.

—Princess Diana (1961-1997)

8

About Thick Database
• A code development strategy

– Maximize use of database code to simplify
the user interface

– The user’s device (client) runs minimal code

• Name plays off the term “thin client”
– A “Year of the Internet” term

– Means most processing occurs on a server

– Slightly outmoded now

• Thick database means “thin client”

A.k.a.
• Thick Database Approach
• Thick Database Paradigm
• Smart Database
• SmartDB
• Fat Database

Oracle prefers

9

Provenance

• Topic is rarely seen at conferences, but is not new

• Started trending many years ago
– ODTUG Business Rules Symposium Day 2001-2004

• Organized by Dr. Paul Dorsey of Dulcian, Inc.

– Thoughts evolved into Thick Database
• Conference sessions starting around 2006

10

Topic is Still Active
• dulcian.com

– Look in Resources | Conference Presentations…Thick Database

• Mike Smithers’ Blog
– https://mikesmithers.wordpress.com/tag/thick-database-paradigm/

• Toon Koppelaars, Oracle Real World Performance Group
– https://www.youtube.com/watch?v=8jiJDflpw4Y

– http://www.prohuddle.com/webinars/ToonKoppelaars/ThickDB.php

• Bryn Llewellyn, Distinguished Product Manager (Oracle)
– https://blogs.oracle.com/plsql-and-ebr/entry/why_use_pl_sql

– https://blogs.oracle.com/plsql-and-ebr/noplsql-versus-thickdb

11

Relatively Recent Dulcian Presentations

• A New View of Database Views
– https://www.slideshare.net/MishaRosenblum/2015-458-

rosenblumpptfinal?next_slideshow=1

• Why is the application running so slowly?
– https://www.slideshare.net/MishaRosenblum/why-is-the-

application-running-so-slowly

12

More Resources

• Anton Nielsen, concept2completion.com, APEX
and the Thick Database Paradigm

• Toon’s ODTUG 2017 slides
– http://thehelsinkideclaration.blogspot.com/2017/06/m

y-noplsql-versus-smartdb-deep-dive.html

• Database debunking
– http://www.dbdebunk.com/

13

Two Related Strategies

1. System for tracking business rules
– Store definitions in database tables

– Code implementations linked to rules

– Linked to, or serves as, requirements documentation

2. Database features implement the business rules
– Constraints

– Database API: PL/SQL code, updatable views

Oracle is considering support for SQL Assertions:
https://community.oracle.com/ideas/13028

14

Guiding Principles for Code
• Database code that implements business rules

in PL/SQL
– Using database features to enforce data integrity defined by

business rules seems obvious

• Database views to represent complex business
objects (SQL)
– Each view has an accompanying application

programming interface (API)
• Written in PL/SQL

– Interaction is with view and API

15

Drawbacks

• Time and effort required
– Design and set up
– Documenting standards
– Instructing staff

• Requirements on the IT shop side
– Architect/database designer
– Expert coder

• Develop generic code “engines” to run and/or
generate business rules code

• Need buy-in from management
– For all of the above

16

Some Benefits
• Application accuracy

– Business rules match application code
– Test plans can be generated from business rules system

• Productivity
– Can greatly simplify user interface code

• Code reusability
– Ease of application maintenance

• Faster performance
– Code is close to data storage – fewer messages, easy access
– Views also reduce the number of round trips needed

• Proper use of staff
– User interface developers can concentrate on UI code
– Database code developers can concentrate on database code

to support the UI

17

Big Benefit: Lower Cloud Costs

• Save cloud database processing time
– Application’s use of database is more efficient

– Proof in next section

• Less database processing time == lower cloud costs

• If application front-end is in cloud
– Thick DB saves application runtime processing

– Examples
• Java Cloud Service

• Container Cloud Service

18

Big Benefit: Simplifies User Interface Work
• Database views can represent multiple tables

– Arbitrarily complex logic
– Aggregate functions: MAX(), COUNT()
– Set operators: UNION, MINUS
– Calculation functions: first_salary()
– Even: a PL/SQL function cast as a table

• One view per application UI page
– The page submit commits the entire page
– Reminds one of mainframe “block submit”
– Back end code deals the data into

the proper tables

19

Some Changes Require Less UI Rewriting

• UI technology changes
– If code is in database, only UI needs rewriting

– Application logic in database can carry forward

• Table refactoring
– For example, if a set of tables used in UI views is

normalized into more tables
• Joins and query of view can be updated

• UI may not need to change

20

View 1

Table 1

Table 2

Table 3

Table 4

Thick Database UI Screen

View 1

Table 2Table 4

Table 3 Table 1

Database

Table 1

Table 2

Table 3

Table 4

Traditional Client UI Screen

Traditional vs. Thick Database UIs

21

Front-end Tool “Agnostic”
• Application Express (APEX)
• Application Development Framework (ADF)
• Mobile Application Framework (MAF)
• Oracle Forms
• JavaScript

– JavaScript Extension Toolkit (JET)
– Mobile Application Accelerator (MAX)
– Visual Builder Cloud Service (VBCS, formerly ABCS)

• PL/SQL Toolkit
• PHP: Hypertext Processor (PHP)
• Rails
• ColdFusion
• (whatever)

22

ADF

Tools’ Use of Thick Database

Database

View 3

ADF BC

APEX

Forms

MAF

JavaScript
(all types)

(others)

Table 1
Table 2

Table 3

View 4

REST
Services

Web
Services

(something
or nothing)

View 1 View 2

23

Agenda

Thick
Concepts

•What is Thick Database?

•Why is Thick faster?

•Thick advice

24

Toon Koppelaars’ Research

• Described in YouTube video
– “NoPLSql and Thick Database Approaches with Toon

Koppelaars”

– https://www.youtube.com/watch?v=8jiJDflpw4Y

• Related conference presentations

• Now uses the Oracle-preferred term “SmartDB”

(Slides with this icon contain content used with
Toon’s permission.)

25

What SmartDB is NOT

• NoPlSql
– Starts with OO model in the middle tier
– DB is just a bunch of tables
– “PL/SQL is proprietary - don’t use it.”
– “Database is for data, not logic because logic won’t scale.”
– Only SQL is issued from the user interface code
– API is primitive SQL: insert, update, delete, select
– Frameworks like EJB in Java hide the SQL but it is there: single

row SQL usually

• Problems
– Maintenance – code is in the UI code, not centralized

26

What SmartDB Is

• Starts with relational model

• API is PL/SQL
– All user interface code calls PL/SQL

– PL/SQL does SQL: insert, update, delete, select, MORE

– Logic takes place within the database

– Logic can issue single-row or array-based or set-based
statements

27

Again

• If you move logic out of the DB,
you put more stress on DB

• Save DB cycles by using SmartDB

28

Toon’s Team’s Testing

• Two row-by-row processing programs
– One in plain Java (no framework)
– One in PL/SQL (extreme approach – would never do this)

• Implement a number of business rules
– Various types of SQL statements
– 5 million rows

• Observe CPU use
– No app server process for PL/SQL
– NoPlSql – JVM on database server, no network
– How much database CPU?

29

Results #1

• Java on JDBC
– 45% DB server

– 25% CPU JVM – 703 DB-CPU seconds

– 26 minutes

– Didn’t add up to 100% Some wait time

– Log file sync waits – commits row-by-row

• PL/SQL
– 97% CPU – 371 DB-CPU seconds

– 6:23 minutes

30

Results #2

• Commit every 128 rows

• Java on JDBC
– 437 DB-CPU seconds

– 11 minutes

– Closer to 100%

• PL/SQL (does not have sync waits, committing is still
expensive)
– 97% CPU – 204 DB-CPU seconds

– 3:30 minutes

31

Results Summarized

• Elapsed drops by 3X, DB-CPU drops by 2X

• Tried in C on OCI
– 6:54 Minutes

– 332 DB-CPU seconds

• Why is PL/SQL so much faster?
– PL/SQL is in the same place as SQL – database, messaging

simplified; Java/C incur network hits

• Why is C OCI outperforming Java

32

Graphical analysis of what
occurs in each scenario

PL/SQL

Java

33

34

More CPU cycles: blame
network messaging

35

Results

• Single-row SQL, PL/SQL results in 2x speedup

• Business logic in PL/SQL results in 10x speedup
– NoPlsql has overhead for multiple business logic SQL

statements

– Shipping data in and out of app and db server is expensive

• Another factor not analyzed
– Network latency and waits

36

Unique to PL/SQL

• Multi-row handling for the destination of relational tables
– Set-based: INSERT .. SELECT

– Array processing: FOR ALL IN … INSERT

– OO doesn’t have this

– Of course, PL/SQL needs to be written to take advantage of this

• Set-based is 10x to 30x faster than row-by-row in PL/SQL

37

Compared to Set Processing

38

39

Findings

• Using DB as processing engine saves CPU licenses
– Fewer app servers needed to scale for more users

• Moved from NoPlsql to SmartDB
– Elapsed drops by 3X #SmartDB is faster

– DB-CPU drops by 2X #SmartDB is more scalable

Gets work
done faster

while at same
time using
less CPU

40

Summary of Testing Results

• PL/SQL has none of these
– No O/S startup for network layers

– No JVM involvement (for Java option)
• JVM and JDBC process overhead

• Shipping data in and out of processes

• JVM cleanup

– For C OCI, still have
• OCI statement preparation startup and cleanup

• Shipping data in and out

41

Agenda

Thick
Concepts

•What is Thick Database?

•Why is Thick faster?

•Thick advice

42

When Not to Use Thick Database

• If your organization is dedicated to “database
independence”
– Changing from Oracle to SQL Server, for example

• This is not a simple endeavor

– Forces applications to use ANSI SQL only
• Applications are “thicker” than the database

– Product app companies may need to be DB independent

• If your applications have few or simple
business rules
– Overhead of Thick Database may not be worthwhile

43

Thick Database Team Success

• If your team is expert in a development discipline other
than PL/SQL, selling ThickDB is difficult
– Experts in database design, SQL, and PL/SQL do not have deep

UI skills
– Experts in UI do not have deep DB skills
– Or, at least, this is very rare

• Success lies in “divide and conquer”
– Small team of DB developers
– Any size team of UI developers
– Exact numbers depend on the workload
– Bonus advice: consider Agile

44

Advice for UI Developers

• Rely on the frameworks to do what they are designed for
– For example, ADF

• Highly evolved, efficient, effective use of JDBC; Oracle Support-ed

• Similarly, EJB

• Writing custom overrides to framework code can lead to
disaster

• Or at least inefficiencies

• AND: there is no one to blame except yourself

45

Advice for DB Developers

• Learn the API points into the UI
– Helps communication with UI developers

• ADF example:
– doDML() method can call record-level business rules

code
• Constants tell you whether the DML is insert,

update, or delete

46

Do You Need an Oracle Database?

• No, but…
– A central location for business rules code is necessary

• Best in a database

– Views are needed to hide details of the data storage
• INSTEAD OF triggers may not be available

• So application may be responsible for calling the central code

– Table API concept may be possible
• DB2 supports PL/SQL

• You can always just allow access to views not tables

47

How to Transition to Thick Database

• Like applying any other standard while “in flight”

• Apply it 100% to new applications

• Can apply it to existing application enhancements

• Start small
– Incorporate user interface interaction with database views

• Refine as you go

• “Completely Thick” can be a longer-term
goal

48

Thick Database: A Gastronomic Delight

If the theory turns out to
be right, that will be

tremendously thick and tasty
icing on the cake.

—Brian Greene (1963-),
physicist

49

Summary

• Thick Database is driven by business rules

• Thick Database can improve UI simplicity,
productivity, system performance, application
accuracy, security

• ThickDB can save cloud computing costs

• ThickDB can use development team talent
more efficiently

50

Designer
Handbook
Designer

Handbook

Developer
Advanced
Forms &
Reports

Developer
Advanced
Forms &
Reports

JDeveloper 3
Handbook

JDeveloper 3
Handbook

ORACLE9i
JDeveloper
Handbook

ORACLE
JDeveloper 10g

Handbook

• Please fill out the evaluations

• 7 of 8 books co-authored with Dr. Paul
Dorsey, Avrom Roy-Faderman, &
Duncan Mills

• Slides will be on the NoCOUG website

