
© 2018 PayPal Inc. All rights reserved. Confidential and proprietary.

Powering Databases @ Scale with
Mid-Tier Proxy

Kamlakar Singh
PayPal
May 2018

© 2018 PayPal Inc. All rights reserved. Confidential and proprietary.

Agenda
• Why DB Proxy?
• Core Design Principles
• High Level Architecture
• Process Architecture
• DB Horizontal Scaling (Sharding)
• Monitoring/State log
• Resiliency Use Case

2

© 2018 PayPal Inc. All rights reserved. Confidential and proprietary.

Some Statistics
• 100 Billion SQLs on peak day of the year

• 2 ms response time (client -> DB proxy -> DB)

• 350+ Oracle Databases, Multiple client tech stacks

• 1K NoSQL Hosts

• 43 PB Total SAN Storage

• Resilient, Available, Performant @ Scale

3

© 2018 PayPal Inc. All rights reserved. Confidential and proprietary.

Why DB Proxy?

DB Resource

• Efficient
Transaction
aware
connection
multiplexer

• Supports
persistent
connections from
clients and to DB
server

Polyglot and
ORM

• Supports C++,
Java, Python

• Works seamlessly
with DAL,
Hibernate, and
container
provided
connection pool

Scalability

• Sharding

• Inter-cluster
routing:
Transparent SQL
Routing to replica
DB

• Intra-cluster
routing:
Transparent R/W
split

Horizontally scaled Data Access Gateway to scale, manage and protect database

DB
Maintainability
• Transparent

connection
migration to
support DB
maintenance

• Reflects bind
variables in DB
session
(v$session)

Resiliency

• Surge Protection
(Queue, Bouncer
and SQL Eviction)

• Tolerance for DB
unavailability (no
markup/mark
down required)

• Transparent SQL
failover

4

© 2018 PayPal Inc. All rights reserved. Confidential and proprietary.

Principles
• Learn how to keep it simple

• Be in love with problem statement not with the solutions (solutions of today require

continual adjustment, often times complete re-architecture)

• Thin client (micro-service friendly, features/complexity in server)

• Developers want features/capabilities not ilities (it is Platform team’s job to ensure

ilites)

• Backward compatibility, correctness trumps performance

• Resiliency is harder than performance

• CPU/memory neutral: every major release to undergo extensive profiling

• Creativity is needed during design, well defined policies in production

• Default like crazy, prefer convention over configuration

• Robustness/Quality

5

© 2018 PayPal Inc. All rights reserved. Confidential and proprietary.
6

Java C++ App Python App

C++ lib

Master

Multiplexer Pool

Replica

Write
Worker Pool

Read
Worker Pool

Replica
Worker Pool

Cache
Worker Pool

Cache

Python libJDBC driver

C
on

ne
ct

io
n

p
oo

l

High Level Architecture

Replica queue

Write queue

Read queue

Cache queue

Stats/Config

Shared Memory

AES-NI AES-NI AES-NI

© 2018 PayPal Inc. All rights reserved. Confidential and proprietary.

MUX MUX MUX

7

Master
Process

Process Architecture

Worker queue

Worker queue

Worker queue

State Log

Stats/Config

Shared Memory

MUX s

MUX MUX MUX Worker

3. spawns
2. spawns

1. creates

5. Listen on Unix Domain Socket (UDS)

6. Connects to UDS

MUX MUX MUX Worker
MUX MUX MUX Worker

4. Connects

Mux is highly concurrent code with

Several capabilities added year

over year. Worker is simple

Procedural code dealing with single

DB connection. This architecture lends

Itself easily to support other DB

Technologies such as MySQL, PostgreSQL

© 2018 PayPal Inc. All rights reserved. Confidential and proprietary.

How Multiplexer Helps?

2.1 request

Client1
1 connect

Worker

2.1 request
2.2 response

3.2 response

4.2 response

5 disconnect

3.1 request

4.1 request

Client2

1 connect

3.1 request

4 disconnect

c2

c1

c1

c1

3.2 response

2.2 response

c2

8

© 2018 PayPal Inc. All rights reserved. Confidential and proprietary.

Transaction Handling

2.1 request
2.2 response

Client1
1 connect

WORKER-1

2.1 request
2.2 response

3.2 response

4.2 response

5 disconnect

3.1 DML request

4.1 commit request

Client2

1 connect

3.2 response
3.1 request

4 disconnect

DML/Transaction Handling

c2

c1

c1

WORKER-2

c2

9

© 2018 PayPal Inc. All rights reserved. Confidential and proprietary.

DB horizontal Scaling aka Sharding
• “Entity” abstraction with well defined distribution key
• “Entity” can map to multiple tables
• Atomic transaction is restricted to single ”Entity” i.e. it can not span multiple entities (2PC is

hard to scale)
• Cross ”entity” transactions managed as “business logic” or “workflows”
• Separation of “Scale-agnostic upper layer” (maps to app) and “Scale-aware lower layer”

(maps to connection pool)
• “Scale-agnostic upper layer” (app) can only assume that an entity instance lives on a single

machine and nothing more
• “Scale-aware lower layer” i.e. connection pool is aware of the actual placement of the entities

and reports policy violations if any, to aid proactive discovery of bugs in app code
• Number of shards can be changed at connection pool layer requiring no change to the app

10

© 2018 PayPal Inc. All rights reserved. Confidential and proprietary.

DB horizontal Scaling

11

© 2018 PayPal Inc. All rights reserved. Confidential and proprietary.

State log
• Monitoring vs debugging
• State log is central to connection pool health monitoring

12

10/12/2017 01:19:45: vpool init acpt wait busy schd fnsh quce asgn idle bklg strd
10/12/2017 01:19:45: cp.w 0 26 4 0 0 0 0 4 119 0 0
10/12/2017 01:19:45: cp.r 0 44 0 1 0 0 0 1 235 0 0
10/12/2017 01:19:46: cp.w 0 28 1 1 0 0 0 2 125 0 0
10/12/2017 01:19:46: cp.r 0 44 0 1 0 0 0 1 231 0 0
10/12/2017 01:19:47: cp.w 0 29 1 0 0 0 0 1 122 0 0
10/12/2017 01:19:47: cp.r 0 42 1 2 0 0 0 3 239 0 0
10/12/2017 01:19:48: cp.w 0 26 3 0 0 0 0 3 123 0 1
...
...

DB worker/Connection states Client Connection states

© 2018 PayPal Inc. All rights reserved. Confidential and proprietary.

Resiliency Features
• Bouncer
• Surge Queue
• SQL Eviction
• Adaptive Surge Queue (CoDel Based)

13

© 2018 PayPal Inc. All rights reserved. Confidential and proprietary.

Bouncer
• Configured by default
• Number of MUX processes determined by the system (No config)
• One of the MUX processes acts as Bouncer

• Watches resource consumption by monitoring shared memory
• When resources are all occupied, bounces new connection requests
• Stops bouncing when system recovers

14

© 2018 PayPal Inc. All rights reserved. Confidential and proprietary.

Surge Queue
• Configured by default
• MUX process maintains surge queue

Surge queue can grow to typically 30% of configured resources
Automatically backs off from accepting new connections
Small time out for items placed in surge queue
Large surge queue is counter-productive

15

© 2018 PayPal Inc. All rights reserved. Confidential and proprietary.

SQL Eviction
• Augment Shared memory to keep track of SQL execution times
• Evict longest running SQLs
• SQL Eviction =>

Evict SQL taking longer than x seconds
Do not nuke connection (do not cause another issue)
Post eviction recover Session
Throttle the rate of Eviction

16

© 2018 PayPal Inc. All rights reserved. Confidential and proprietary.

SQL Eviction (CoDel Based)
• Minimize entropy during SQL eviction (anti-entropy)

Hard-eviction on Oracle (and “spread the bad news”)
Soft-eviction in Surge queue (based on the bad news)
Can’t soft-evict 100%

• Make SQL eviction parameter-less
Controlled Delay (CoDel) based scheme
Distinguish between good and bad queue
No need to configure tune thresholds on per service basis

• Fresh work before stale
Change request handling policy from FIFO to LIFO)

17

© 2018 PayPal Inc. All rights reserved. Confidential and proprietary.

Solution

18

© 2018 PayPal Inc. All rights reserved. Confidential and proprietary.

One Last Comment…
• We are planning to Open Source

• JDBC driver
• DB Proxy Server (Mux and Worker)
• Support MySQL

19

© 2018 PayPal Inc. All rights reserved. Confidential and proprietary.

Thank You

