
Visualizing ASH
John Beresniewicz

NoCOUG 2018

Agenda
• What is ASH?

• Mechanism and properties

• Usage: ASH Math, Average Active Sessions

• ASH Visualizations

• EM Performance: Wait class details, Top Activity,

• EM Treemaps: Enterprise Loadmap, ASH Analytics

• Visual Investigation of ASH dumps using R and ggplot

What is ASH?

• Active Session History (V$ACTIVE_SESSION_HISTORY)

• Session State Objects sampled every 1000 ms by MMNL

• ACTIVE (non-idle) session state data captured into circular
memory buffer

• Latch-less and efficient, sampling is independent of session
activity

• “Fix-up” mechanism updates recent samples with new data 
(TIME_WAITED not known when sampled session is waiting)

Standard usage: ASH Math

• COUNT(*) = DB Time (seconds)

• ASH is a FACT table where each row equals one second of
session DB Time

• Use GROUP BY to break down DB Time by any of the many
dimensions of ASH

• Aggregate ASH samples to Decompose DB Time over various
dimension combinations

Visualizing ASH in EM

• Performance Page > Wait Class drill-down

• Top Activity Page

• ASH Analytics

• SQL Monitor

EM Performance Page

EM Top Activity - ASH

Average Active Sessions

ASH Treemaps

EM ASH Analytics

Exploring ASH dumps visually
using R and ggplot

Tools and raw data

• Tools: Anaconda, R, RStudio, ggplot2, dplyr 
(Hadley Wickham’s stuff)

• Data: some old 10g ASH dumps

• 10.2.0.1 Enterprise Edition

• 4-node RAC ASH dump > 4 separate trace files

Data import and preparation
• Getting started was easy: 

 
ashDF <- read.csv(ashfilepath,header=FALSE)

• HOWEVER: real analysis required significant data munging

• multiple trace files per dump

• join in wait event and wait class names

• import microsecond sample times

• add state boolean: time_waited > 0 = WAIT else CPU

• add “CPU” wait-class

DB Time over Time (AAS)

What and why?

• Standard usage: 
  
Aggregate ASH samples into Average Active Sessions

• Investigate consistency across RAC instances

• Investigate sampler independence, sample id consistency?

• Compute AAS over wait classes by 1-minute intervals

x = sample time, color wait class

color by instance

color wait class, facet instance

x = sample id, color wait class

color by instance, hmmm

facet instance, color wait class

sample id vs. sample time

AAS by minute, color wait class

Wait class colors

It took significant effort
to finalize the wait class

color scheme.

ASH Sampler timing

What and why?

• Micro-second sample times in ASH dump data

• Does the sampler do well at keeping to fixed interval?

• Use inter-sample time diffs to analyze sampler consistency

• diff_msecs = sample_time - lag(sample_time)  
expressed in microseconds, grouped by instance number

density plot of diff_msecs

violin plot of diff_msecs

plot diff msec - 1000

color by instance

filter “good” ones out

skewed distribution with long tail

zoom in on the action

diffs in 10 ms intervals?

ha! (serialization, scheduler?)

consistency across samplers

See what we got:
observed event counts

Box plot of log10(TIME_WAITED)

latency box plots by wait class

by event id

not helpful

faceted by wait class

free x-axis so geoms fill space

See what could be: 
estimated event counts

What and why?
• Patent US9633061B2 granted in 2017 

(Uri Shaft, Graham Wood & John Beresniewicz)

• Methods for determining event counts based on time-sampled data
(i.e. ASH)

• Estimate average event latencies from samples:

• est latency = est DBtime / est count

• EST_COUNT = MAX(1000000 / TIME_WAITED, 1)  
(when 0 < time_waited, and sample interval = 1000 ms)

• Performance Metric: Estimated Event Latency over past minute

https://patents.google.com/patent/US9633061B2/en?assignee=Oracle+International+Corporation&inventor=beresniewicz

density plot: observed event
count by latency

latency density weighted by
estimated count

together  
(blue = observed, red = estimated)

violin density plot, observed

faceted by instance

weighted by estimated count

together, the balloon squeeze

looks cool, but is it useful?

facet by wait class, misleading

much better view

Back to raw data

all samples over time - overplots

reduce point size and alpha

facet wait class, theme_dark

theme_bw

reduced alpha and point size

estimated 1 min avg latencies 
color by instance, facet by wait class

ASH Visualization

• ASH data is highly dimensional and temporally fine-grained

• Ask questions and visualize to investigate

• Understand the visualization and whether it answers question

• Iterate visualizations by changing geometry attributes

• Experiment liberally, but be true to the data

