

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Everything Developers Need to Know About
Integrating JSON into Oracle Database
NoCOUG - WINTER CONFERENCE 2018
Pleasanton, California

Mark D Drake
Product Manager
Server Technology
February 22, 2018

Confidential – Oracle Internal/Restricted/Highly Restricted

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The preceding is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

Confidential – Oracle Internal/Restricted/Highly Restricted 3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Program Agenda with Highlight

Confidential – Oracle Internal/Restricted/Highly Restricted 4

Introduction

SODA: Simple Oracle Document Access

SQL/JSON: Reporting and Analytics for JSON data

Oracle Dataguide : Understanding your JSON data

Accelerating JSON Query performance

Generating JSON from relational data

1

2

3

4

5

6

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Everything Developers Need to Know About
Integrating JSON into Oracle Database
Introduction

Confidential – Oracle Internal/Restricted/Highly Restricted 5

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public 6

Oracle 12c JSON document store

SQL

No-SQL Application
development using

SODA

JSON Documents
Stored and Managed

Using Oracle Database

SQL based reporting
and analytical operations

on JSON Documents

Oracle Database 12c

JSON

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Oracle Database 12c JSON value propositions

• Support NoSQL Application Development on the Oracle Database

• Combine flexibility of JSON with strengths of the relational model

• Avoid costs and overheads associated with Polyglot persistence

• Enable full power of SQL’s reporting and analytical capabilities to be applied
to JSON documents

Confidential – Oracle Internal/Restricted/Highly Restricted 7

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Oracle Database 12c JSON capabilities

• JSON documents are stored using VARCHAR, CLOB and BLOB data types

• Query and update JSON documents using SQL and PL/SQL

• Optimize operations on JSON documents using indexing, in-memory and
Exadata smart storage techniques

• Discover information about the structure and content of JSON documents

• Generate JSON documents from database content (Relational, XML, JSON)

• Integrate JSON with other type of content (Multi-Model database)

8

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Everything Developers Need to Know About
Integrating JSON into Oracle Database
SODA : Simple Oracle Document Access

Confidential – Oracle Internal/Restricted/Highly Restricted 9

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public 10

Core Capabilities for Document Workloads

Oracle 12c JSON document store

SQL

No-SQL Application
development using

SODA

JSON Documents
Stored and Managed

Using Oracle Database

SQL based reporting
and analytical operations

on JSON Documents

Oracle Database 12c

JSON

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

SODA: Simple Oracle Document Access

• A simple NoSQL-style API for Oracle

– Collection Management: Create and drop collections

– Document Management: CRUD (Create, Retrieve, Update and Delete) operations

– List and Search: (Query-by-Example) operations on collections

– Utility and Control: Bulk Insert, index management

• Developers can work with Oracle without learning SQL or requiring DBA support

– Same development experience as pure-play document stores

• Supports JSON and ‘Binary’ content

• Currently available for Java and REST. Other implementations are planned

– Rest enables access from all common programming and scripting languages

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

SODA for REST

• Collection of Micro-Services for working with JSON documents stored in
Oracle Database 12c

• URI patterns mapped to operations on document collections

• Can be invoked from almost any programming language

• Distributed as part of Oracle REST Data Services (ORDS 3.0)

• HTTP Requests and Responses with JSON Payloads

• Stateless model, no transaction support

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Sample services provided by SODA for REST
GET /SODAROOT/schema List all collections in a schema

GET /SODAROOT/schema/collection Get all objects in collection

GET /SODAROOT/schema/collection/id Get specific object in collection

PUT /SODAROOT/schema/collection Create a collection if necessary

PUT /SODAROOT/schema/collection/id Update object with id

POST /SODAROOT/schema/collection Insert object into collection

POST /SODAROOT/schema/coll?action=query Find objects matching filter in body

• SODAROOT is typically one of “/ords/schema/latest/soda” or
“/ords/pdbname/schema/latest/soda

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Storing JSON documents using Node.js and SODA for REST

• Use “Request-Promise-Native” module to POST to the Collection URI

• Supply the document using the key "JSON“

• Returns server metadata for the new entry

function createCollection(collectionName, document, username, password) {

const requestOptions = { method : 'POST'

, uri : getDocumentStoreURI() + collectionName

, headers : setContentType('application/json')

, JSON : document

};

const results = await request(options).auth(username, password, true);

return results;

}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

SODA for Java

• Implementation of SODA for Java programmers

• Classes for

– Collection Management

– CRUD operations on JSON documents

–Query-by-Example for document searching

– Utility and control functions

• Much simpler than JDBC for working with collections of JSON documents
stored in Oracle Database

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

SODA for Java

• SODA for Java uses a JDBC connection to talk to the database

• SODA for Java is transactional

– Transactions are managed using the JDBC connection

• Supports hybrid model with JDBC and SODA based operations on the same
connection

• Open Source implementation distributed via Github

– https://github.com/oracle/SODA-FOR-JAVA

Oracle Confidential – Internal/Restricted/Highly Restricted 16

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

SODA for Java: Inserting a document

• InsertAndGet returns the an updated OracleDocument which been
updated with the metadata generated by the insert operation

public class SODAHelper {

private static final Gson gson

= new GsonBuilder().setDateFormat("yyyy-MM-dd'T'HH:mm:ssZ").create();

public OracleDocument insertDocument(OracleDatabase db, String name, JsonObject document)

throws … {

OracleCollection collection = db.openCollection(name);

OracleDocument oraDocument = db.createDocumentFromString(gson.toJson(document));

oraDocument = collection.insertAndGet(oraDocument);

return oraDocument;

}

…

}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

SODA: Sample Query-By-Example documents

• Order By

• Exact Match

• List of Values

• Full Text Searching

• Multiple Predicates with Ordering

–

• Distance Search

{"$query":{},"$orderby":{"releaseDate":-1}}

{"location.geoCoding":{

"$near":{

"$geometry":{

"type":"Point",

"coordinates":[37.8953,-122.1247]

},

"$distance":5,

"$unit":"mile"

}}}

{"location.city":"SAN FRANCISCO"}

{"id":{"$in":[245168,299687,177572,76757]}}

{"plot":{"$contains":"$(colour)"}}

{"movieId":109410,

"startTime":{

"$gte":"2016-09-12T07:00:00.000Z",

"$lt":"2016-09-13T07:00:00.000Z“

},

"$orderby":{"screenId":1,"startTime":2}

}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Soda for PL/SQL and Soda for OCI

• Restricted Functionality available with next release of Oracle Database

– Enables safe CRUD operations on SODA collections

– Limited Support for QBE and other SODA functionality

• Further Enhancements including QBE and cursor will made available via
incremental patches

• SODA for OCI enables development of native SODA implentations for
popular scripting frameworks

Confidential – Oracle Internal/Restricted/Highly Restricted 19

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Confidential – Oracle Internal/Restricted/Highly Restricted 20

Architecture
Oracle Movie Ticketing Application

HTML5, JavaScript
and Angular.js

JavaScript

Oracle JSON
Document Store

HTML5, JavaScript
and Oracle JET

Java

SODA for
REST

HTTP

SODA for
Java

JDBC

SODA for
Java

JDBCHTTP

REST
Services

HTTP

REST
Services

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Confidential – Oracle Internal/Restricted/Highly Restricted 21

Movie Ticketing Data Model : Document Collections

Movie

THEATER

Screening Ticket
Sale

Poster

http://database.us.oracle.com/pls/htmldb/f?p=301:329:211712350585153::NO:329:P329_ID:327613833672377725496201035658417593589

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Demo

22

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Everything Developers Need to Know About
Integrating JSON into Oracle Database

Confidential – Oracle Internal/Restricted/Highly Restricted 23

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public 24

Built on Foundation of Oracle Database

Oracle 12c JSON document store

Applications
developed using

SODA APIs

JSON Documents
Stored and Managed

Using Oracle Database

SQL based reporting
and analytical operations

on JSON Documents

Oracle Database 12c

SQLJSON

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Oracle 12c JSON document store

• JSON documents stored and managed by the Oracle Database
• Multi-Modal (XML, Spatial, Graph and Relational)

• Enterprise-Grade High Availability and Security

• Scalability and Performance
• Exadata and Real Application Clusters

• Available in the Oracle Cloud
• Oracle Exadata Express, Oracle Database Cloud Service, Oracle Cloud at Customer

25

Built on Foundation of Oracle Database

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Oracle 12c JSON document store

• Comprehensive query and index capabilities

• SQL

• JSON Path Expressions and Query-By-Example (QBE)

• Domain specific language including XQuery, Full-Text and SPARQL

• Domain specific indexing

• Transactions and ACID consistency

• Scalable Performance

• Indexing, RAC, In-Memory, Exadata, Sharding

26

Core Capabilities for Document Workloads

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

JSON Sharding Support

• Predicate evaluation is pushed to each shard

– Supports SQL/JSON operators and Oracle Simplified Syntax for JSON

– Conditions are evaluated on each shard using local JSON Search index

• Fragment and Scalar Value extraction is pushed to each shard.
– Supports Oracle Simplified Syntax for JSON as well as SQL/JSON Operators

• JSON data guide generation can be pushed to each shard.

• Requires Oracle Database 18c

Oracle Confidential – Internal/Restricted/Highly Restricted 27

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

9 types of JSON Query operations were tried

Scaling for 2 Nodes was 1.97

Scaling for 4 Nodes was 3.64

Confidential – Oracle Internal/Restricted/Highly Restricted 28

Scalability testing for JSON query operations

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Everything Developers Need to Know About
Integrating JSON into Oracle Database
SQL/JSON: Reporting and Analytics for JSON data

Confidential – Oracle Internal/Restricted/Highly Restricted 29

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public 30

All the power of SQL when needed

Oracle 12c JSON document store

Applications
developed using

SODA APIs

JSON Documents
Stored and Managed

Using Oracle Database

SQL based reporting
and analytical operations

on JSON Documents

Oracle Database 12c

SQLJSON

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Querying JSON using SQL

• Simple Queries using simplified syntax

• Advanced queries using JSON Operators and JSON path expressions

31

select JSON_VALUE(JSON_DOCUMENT, '$.screens[0].ticketPricing.adultPrice' returning NUMBER(5,3))
from THEATER

where JSON_VALUE(JSON_DOCUMENT, '$.id' returning NUMBER(10)) = 1

select toClob(t.JSON_DOCUMENT)

from THEATER t

where t.JSON_DOCUMENT.id = 1

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Querying and Updating JSON

• Oracle provides two mechanisms for working with JSON from SQL

– A “Simplified Syntax” that enables simple operations directly from SQL

– JSON operators that enable more complex operations
• Included in the SQL 2017 standard

• Syntax developed in conjunction with IBM

• Both techniques use JSON path expressions to navigate JSON documents

– JSON path syntax is derived from JavaScript

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

SQL/JSON operators
Operator Description

IS [NOT] JSON o test whether some data is well-formed JSON data.
o used as a check constraint.

JSON_VALUE o select a scalar value from some JSON data, as a SQL value.
o used in the select list or where clause or to create a functional index

JSON_QUERY o select one or more values from some JSON data as a SQL string
o used especially to retrieve fragments of a JSON document

JSON_EXISTS o test for the existence of a particular value within some JSON data.

JSON_TABLE o project some JSON data to a relational format as a virtual table

JSON_TEXTCONTAINS otest for existence based on a text predicate

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Querying JSON using SQL

• Support joins between JSON documents

34

select t.JSON_DOCUMENT.name, m.JSON_DOCUMENT.title

from THEATER t, "Movie" m, "Screening" s

where t.JSON_DOCUMENT.id = s.JSON_DOCUMENT.theaterId

and m.JSON_DOCUMENT.id = s.JSON_DOCUMENT.movieId

and s.JSON_DOCUMENT.startTime = '2017-02-07T12:25:00-08:00‘

NAME TITLE

-------------------------------- --------------------------------

Regal Jack London Stadium 9 The Boy

Regal Jack London Stadium 9 The Wild Life

UA Stonestown Twin Equals

Century 20 Daly City and XD Ice Age: Collision Course

CineLux Chabot Cinema Cafe Society

Tiburon Playhouse 3 Theatre Equals

Century Theatres at Hayward Florence Foster Jenkins

Alameda Theatre & Cineplex The Secret Life of Pets

Renaissance Grand Lake Theatre Hail, Caesar!

Piedmont Theatre Equals

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Filtering based on JSON Path Expressions

• Passing clause allows Bind Variables to be used to set JSON Path variables

• Exists clause used when searching for an object inside an array

Oracle Confidential – Internal/Restricted/Highly Restricted 35

select t.JSON_DOCUMENT.name

from THEATER t

where JSON_EXISTS(

JSON_DOCUMENT,

'$?(@.id== $ID)'

passing 1 as "ID"

)

NAME

Regal Jack London Stadium 9

select m.JSON_DOCUMENT.title

from "Movie" m

where JSON_EXISTS(

JSON_DOCUMENT,

'$?(@.runtime >= $RUNTIME && exists

(@.crewMember?

(@.job == $ROLE && @.name == $NAME)

)

)'

passing 120 as "RUNTIME",

'Director' as "ROLE",

'Steven Spielberg' as "NAME"

)
TITLE

Bridge of Spies

The BFG

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Working with multiple values

select THEATER_ID, NAME, STREET, CITY, ZIP

from THEATER,

JSON_TABLE(

JSON_DOCUMENT, '$' columns (

THEATER_ID NUMBER(4) path '$.id'

, NAME VARCHAR2(16) path '$.name'

, STREET VARCHAR2(24) path '$.location.street'

, CITY VARCHAR2(32) path '$.location.city'

, STATE VARCHAR2(02) path '$.location.state'

, ZIP NUMBER(5) path '$.location.zipCode'

)

) tm

where ZIP = 94115

THEATER_ID NAME STREET CITY ST ZIP

---------- ---------------- ------------------------ ----------------------------- -- ------

29 1881 Post Street SAN FRANCISCO CA 94115

30 Clay Theatre 2261 Fillmore Street SAN FRANCISCO CA 94115

36 Vogue Theatre 3290 Sacramento Street SAN FRANCISCO CA 94115

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Working with Arrays
select td.*

from THEATER,

JSON_TABLE(

JSON_DOCUMENT, '$' columns (

THEATER_ID NUMBER(4) path '$.id'

, NAME VARCHAR2(16) path '$.name'

, NESTED PATH '$.screens[*]' columns (

AUDITORIUM NUMBER(2) path '$.id'

, CAPACITY NUMBER(4) path '$.capacity'

, THREE_D VARCHAR2(5) path '$.features.threeD'

, RESERVATIONS VARCHAR2(5) path '$.features.reserveSeats'

)

)

) td

where THEATER_ID = 3

THEATER_ID NAME AUDITORIUM CAPACITY THREE RESER

---------- ---------------- ---------- ---------- ----- -----

3 UA Berkeley 7 1 80 false false

3 UA Berkeley 7 2 109 false false

3 UA Berkeley 7 3 89 false false

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Simple Analytical query
select THEATER_ID, NAME, sum(CAPACITY) TOTAL_SEATS

from THEATER,

JSON_TABLE(

JSON_DOCUMENT, '$' columns (

THEATER_ID NUMBER(4) path '$.id'

, NAME VARCHAR2(16) path '$.name'

, ZIP NUMBER(5) path '$.location.zipCode'

, NESTED PATH '$.screens[*]' columns (

CAPACITY NUMBER(4) path '$.capacity'

)

)

) td

where ZIP = 94115

group by THEATER_ID, NAME

order by TOTAL_SEATS

THEATER_ID NAME TOTAL_SEATS

---------- ---------------- -----------

36 Vogue Theatre 941

29 1107

30 Clay Theatre 1042

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Working with GeoJSON content

• GeoJSON is used to represent
spatial information in JSON
documents

• JSON_VALUE supports returning
GeoJSON as SDO_GEOMETRY

• Enables Oracle Spatial queries on
GeoJSON content
– Eg Find Theaters within 5 Miles of my

current location

• Create spatial indexes on GeoJSON
using JSON_VALUE

select JSON_QUERY(JSON_DOCUMENT,'$.location.geoCoding')

from THEATER t

where t.JSON_DOCUMENT.name = 'New Rheem Theatre'

GEOJSON

{

"type":"Point",

"coordinates":[37.8603689,-122.1269685]

}

select JSON_VALUE(JSON_DOCUMENT,'$.location.geoCoding'

returning SDO_GEOMETRY) SDO_GEOMETRY

from THEATER t

where t.JSON_DOCUMENT.name = 'New Rheem Theatre'

SDO_GEOMETRY

SDO_GEOMETRY(2001, 4326, SDO_POINT_TYPE(37.8603689,

-122.12697, NULL), NULL, NULL)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Piecewise updates of JSON documents

• Piecewise update supported via PL/SQL

• API Similar to GSON
– parse()
• Converts a variable or column containing JSON into a object.

– isArray(), isObject(), isString() ,etc.
• Determine the type of the value portion of a key:value pair

– get, put
• Access the value portion of a key:value pair as an object or array

– get_String, get_Number:
• Access the value portion of a key:value pair as scalar

– stringify, to_string
• Converts a PL/SQL JSON data type back into textual JSON

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

JSON Update Example

WITH FUNCTION updateTax(JSON_DOC in VARCHAR2) RETURN VARCHAR2 IS

jo JSON_OBJECT_T;

price NUMBER;

taxRate NUMBER;

BEGIN

jo := JSON_OBJECT_T(JSON_DOC);

taxRate := jo.get_Number('taxRate');

price := jo.get_Number('total');

jo.put('totalIncludingTax', price * (1+taxRate));

RETURN jo.to_string();

END;

ORDERS as (

select '{"taxRate":0.175,"total":10.00}' JSON_DOCUMENT

from dual

)

select JSON_DOCUMENT, updateTax(JSON_DOCUMENT)

from ORDERS;

JSON_DOCUMENT UPDATETAX(JSON_DOCUMENT)

------------------------------- ---

{"taxRate":0.175,"total":10.00} {"taxRate":0.175,"total":10.00,"totalIncludingTax":11.75}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

NoSQL Development and JSON Support in
the Next Generation of Oracle Database
Dataguide : Understanding your JSON data

Confidential – Oracle Internal/Restricted/Highly Restricted 42

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Data Guide : Understanding your JSON documents

• Metadata discovery: discovers the structure of
collection of JSON documents

–Optional: deep analysis of JSON for List of Values, ranges,
sizing etc.

• Reports/Synopsis of JSON structure

– Flat and Hierarchical Representations

• Snapshot and Dynamically maintained variants

• Automatically Generate
– Virtual columns

– Relational views, including relational views over arrays

Oracle Confidential – Internal/Restricted/Highly Restricted 43

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Flat and Hierarchical map of JSON document structure
[

{ "o:path": "$.movieId",

"type": "number",

"o:length": 8 },

{ "o:path": "$.screenId",

"type": "number",

"o:length": 2 },

{ "o:path": "$.startTime",

"type": "string",

"o:length": 32 },

{ "o:path": "$.theaterId",

"type": "number",

"o:length": 2 },

{ "o:path": "$.ticketPricing",

"type": "object",

"o:length": 64 },

{ "o:path": "$.ticketPricing.adultPrice",

"type": "number",

"o:length": 8 }, …

{ "o:path": "$.seatsRemaining",

"type": "number",

"o:length": 4

}

]

{

"type" : "object",

"properties" : {

"id" : {

"type" : "number",

"o:length" : 2,

"o:preferred_column_name" : "JSON_DOCUMENT$id"

},

"name" : {

"type" : "string",

"o:length" : 64,

"o:preferred_column_name" : "JSON_DOCUMENT$name"

},

"screens" : {

"type" : "array",

"o:length" : 4096,

"o:preferred_column_name" : "JSON_DOCUMENT$screens",

"items" : {

"properties" : {

"id" : {

"type" : "number",

"o:length" : 2,

"o:preferred_column_name" : "JSON_DOCUMENT$id_1“

},…

}

}

}

}

}

}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Creating a snapshot JSON data guide

• Use SQL function JSON_DATAGUIDE to generate a snapshot dataguide.

– Arguments controls whether the output format is flat or hierarchical

– The Hierarchical dataguide is actually a JSON schema

• Use SQL to filter and group documents
– The result is a point-in-time snapshot based on on the matching JSON documents

select JSON_DATAGUIDE(

JSON_DOCUMENT,

dbms_json.FORMAT_FLAT,

dbms_json.PRETTY

)

from "Screening"

select JSON_DATAGUIDE(

JSON_DOCUMENT,

dbms_json.FORMAT_HIERARCHICAL,

dbms_json.PRETTY

)

from "Screening"

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Creating a dynamic JSON data guide

• Dynamic data guides are a function of the JSON search index

– “SEARCH_ON NONE” option restricts the index to just metadata

• The data guide is maintained in real-time

• An ‘on change’ option allows a PL/SQL procedure to be called every time a
new key is discovered

• The index captures all paths present at the time the index is built plus all
paths added by subsequent insert and update operations

• It cannot track when the last document to contain a given path is deleted

ALTER INDEX THEATER_SEARCH REBUILD PARAMETERS ('DATAGUIDE ON')

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

JSON dataguide use-cases

• SQL based Reporting and Analytical operations on JSON metadata

• Generating relational views of your JSON data

– Views are based on JSON_TABLE operator

– Views of non-repeating keys or the keys in a particular array
• PATH argument controls which keys are included in the view

– Automatically generates unique column names
• Key can be amped to a user-supplied column name

• Exposing JSON content as virtual columns

• Auditing changes in the structure of your JSON

– Preventing new keys being added

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Using SQL to query a data guide

• Use JSON_TABLE to get SQL access
to a data guide

JSON_PATH JSON_TYPE LENGTH

----------------------------- ---------- -----------

$.movieId number 8

$.screenId number 2

$.seatsRemaining number 4

$.startTime string 32

$.theaterId number 2

$.ticketPricing object 64

$.ticketPricing.adultPrice number 8

$.ticketPricing.childPrice number 4

$.ticketPricing.seniorPrice number 4

WITH DATA_GUIDE AS (

SELECT json_dataguide(JSON_DOCUMENT) JDG

FROM "Screening“

)

SELECT jt.*

FROM DATA_GUIDE,

json_table(JDG, '$[*]' COLUMNS (

JSON_PATH VARCHAR2(40) PATH '$."o:path"',

JSON_TYPE VARCHAR2(10) PATH '$."type"',

LENGTH NUMBER PATH '$."o:length"')

) jt

ORDER BY jt.JSON_PATH

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Creating a relational view of JSON content
desc THEATER_VIEW

Name Null? Type

--------------------------- -------- -------------

ID NOT NULL VARCHAR2(255)

CREATED_ON NOT NULL TIMESTAMP(6)

LAST_MODIFIED NOT NULL TIMESTAMP(6)

VERSION NOT NULL VARCHAR2(255)

JSON_DOCUMENT$id NUMBER

JSON_DOCUMENT$name VARCHAR2(64)

JSON_DOCUMENT$city VARCHAR2(32)

JSON_DOCUMENT$state VARCHAR2(2)

JSON_DOCUMENT$street VARCHAR2(64)

JSON_DOCUMENT$zipCode VARCHAR2(8)

JSON_DOCUMENT$phoneNumber VARCHAR2(4)

select count(*) COUNT

from THEATER_VIEW

where "JSON_DOCUMENT$zipCode" = 94115

COUNT

3

call DBMS_JSON.CREATE_VIEW_ON_PATH(

'THEATER_VIEW',

'THEATER',

'JSON_DOCUMENT',

'$.id‘

)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Creating views over repeating keys [Arrays]

desc AUDITORIUM_VIEW

Name Null? Type

--------------------------- -------- -------------

ID NOT NULL VARCHAR2(255)

CREATED_ON NOT NULL TIMESTAMP(6)

LAST_MODIFIED NOT NULL TIMESTAMP(6)

VERSION NOT NULL VARCHAR2(255)

THEATER_ID NUMBER

NAME VARCHAR2(64)

CITY VARCHAR2(32)

STATE VARCHAR2(2)

STREET VARCHAR2(64)

ZIP VARCHAR2(8)

PHONE_NUMBER VARCHAR2(4)

AUDITORIUM_ID NUMBER

CAPACITY NUMBER

THREE_D VARCHAR2(8)

RESERVED_SEATING VARCHAR2(8)

ADULT_PRICE NUMBER

CHILD_PRICE NUMBER

SENIOR_PRICE NUMBER

select THEATER_ID,NAME,AUDITORIUM_ID,CAPACITY

from (select THEATER_ID,NAME,AUDITORIUM_ID,CAPACITY,

MAX(CAPACITY) over () MAX_CAPACITY

from AUDITORIUM_VIEW)

where CAPACITY = MAX_CAPACITY

order by THEATER_ID, AUDITORIUM_ID

call DBMS_JSON.RENAME_COLUMN(

'THEATER',

'JSON_DOCUMENT',

'$.id',

DBMS_JSON.TYPE_NUMBER,

'THEATER_ID')

call DBMS_JSON.RENAME_COLUMN(…)

call DBMS_JSON.RENAME_COLUMN(…)

…

call DBMS_JSON.CREATE_VIEW_ON_PATH(

'AUDITORIUM_VIEW',

'THEATER',

'JSON_DOCUMENT',

'$.screens'

)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Data Guide: Adding virtual columns

• Adds virtual columns for keys that
occur at most once in a document

• Cannot add virtual columns for keys
within arrays due to cardinality

desc "Screening"

Name Null? Type

------------------- -------- --------------------------

--

ID NOT NULL VARCHAR2(255)

CREATED_ON NOT NULL TIMESTAMP(6)

LAST_MODIFIED NOT NULL TIMESTAMP(6)

VERSION NOT NULL VARCHAR2(255)

JSON_DOCUMENT BLOB

declare

V_DATAGUIDE CLOB;

begin

select JSON_HIERDATAGUIDE(JSON_DOCUMENT)

into V_DATAGUIDE

from "Screening";

DBMS_JSON.ADD_VIRTUAL_COLUMNS(

'"Screening"', 'JSON_DOCUMENT', V_DATAGUIDE

);

end;

desc "Screening"

Name Null? Type

------------------- -------- ------------------------

ID NOT NULL VARCHAR2(255)

CREATED_ON NOT NULL TIMESTAMP(6)

LAST_MODIFIED NOT NULL TIMESTAMP(6)

VERSION NOT NULL VARCHAR2(255)

JSON_DOCUMENT BLOB

movieId NUMBER

screenId NUMBER

startTime VARCHAR2(32)

theaterId NUMBER

adultPrice NUMBER

childPrice NUMBER

seniorPrice NUMBER

seatsRemaining NUMBER

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Data Guide: Auditing the structure of your JSON

• Simple ‘on change’ procedure that
records new keys in a log table

• Attach the procedure to the
dataguide

• The change procedure is called
once for each new path found
while building the index

• The change procedure is called
every time a new path is found
during insert and update
operations

CREATE PROCEDURE LOG_JSON_CHANGES(

P_TABLE_NAME VARCHAR2,

P_COLUMN_NAME VARCHAR2,

P_PATH VARCHAR2,

P_JSON_TYPE NUMBER,

P_TYPE_LENGTH NUMBER)

as

begin

insert into JSON_CHANGE_LOG

values (P_TABLE_NAME, P_COLUMN_NAME, P_PATH,

P_JSON_TYPE, P_TYPE_LENGTH,

SYS_CONTEXT('USERENV','CURRENT_USER'),

SYS_EXTRACT_UTC(CURRENT_TIMESTAMP));

end;

CREATE INDEX SCREENING_SEARCH

ON "Screening" (JSON_DOCUMENT) FOR JSON

PARAMETERS ('SEARCH_ON NONE

DATAGUIDE ON

CHANGE LOG_JSON_CHANGES')

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Everything Developers Need to Know About
Integrating JSON into Oracle Database
Accelerating JSON Query performance

Confidential – Oracle Internal/Restricted/Highly Restricted 53

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

JSON Search Index : A universal index for JSON content

• Supports searching on JSON using key, path and value

• Supports range searches on numeric values

• Supports full text searches:
– Full boolean search capabilities (and, or, and not)

– Phrase search, proximity search and "within field" searches.

– Inexact queries: fuzzy match, soundex and name search.

– Automatic linguistic stemming for 32 languages

– A full, integrated ISO thesaurus framework

Oracle Confidential – Internal/Restricted/Highly Restricted 54

create search index THEATER_SEARCH on THEATER (JSON_DOCUMENT) for JSON

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

JSON Search Index : A universal index for JSON content

• Supports searching on JSON using key, path and value

• Supports range searches on numeric values

• Supports full text searches:
– Full boolean search capabilities (and, or, and not)

– Phrase search, proximity search and "within field" searches.

– Inexact queries: fuzzy match, soundex and name search.

– Automatic linguistic stemming for 32 languages

– A full, integrated ISO thesaurus framework

Oracle Confidential – Internal/Restricted/Highly Restricted 55

create search index THEATER_SEARCH on THEATER (JSON_DOCUMENT) for JSON

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Exadata support for JSON operations

• Exadata Smart Scans

• Exadata Smart Scans execute
portions of SQL queries on Exadata
storage cells

• JSON query operations ‘pushed
down’ to Exadata storage cells

–Massively parallel processing of JSON
documents

Oracle Confidential – Internal/Restricted/Highly Restricted 56

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Oracle Database In-Memory support for JSON

• Accelerate query operations on JSON
using Oracle Database In-Memory

• Virtual columns, included those
generated using JSON Data Guide
loaded into In-Memory Virtual
Columns

• JSON documents loaded using a highly
optimized In-Memory binary format

• Query operations on JSON content
automatically executed using Oracle
Database In-Memory

Oracle Confidential – Internal/Restricted/Highly Restricted 57

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Virtual Columns with in-memory expressions enabled

• Create a table with one or more JSON_VALUE based virtual columns

– Use JSON data guide to generate the Virtual columns

• Use “alter table tablename INMEMORY ” to enable Oracle Database In-
Memory

– JSON expressions are evaluated for each row, results are packed into the In-Memory
column store

• Queries are evaluated against the column store
– Simple queries against the Virtual columns executed ~=35 times faster

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Virtual Column query with in-memory expressions enabled
select count(*)

from "Screening"

where "movieId" = 278154

and "startTime" between '2017-02-07T12:00:00-08:00' and '2017-07-02T16:00:00-08:00'

COUNT(*)

7488

Execution Plan

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 26 | 1146 (20)| 00:00:01 |

| 1 | SORT AGGREGATE | | 1 | 26 | | |

|* 2 | TABLE ACCESS INMEMORY FULL| Screening | 462 | 12012 | 1146 (20)| 00:00:01 |

Predicate Information (identified by operation id):

2 - inmemory("movieId"=278154 AND "startTime">='2017-02-07T12:00:00-08:00'

AND "startTime"<='2017-07-02T16:00:00-08:00')

filter("movieId"=278154 AND "startTime">='2017-02-07T12:00:00-08:00'

AND "startTime"<='2017-07-02T16:00:00-08:00')

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Optimizing JSON Operators and parsing

• JSON operators can all be accelerated using Oracle Database In-Memory

– Applies to JSON_VALUE, JSON_QUERY, JSON_TABLE and JSON_EXISTS

– Also applies to queries written using Oracle’s simplified syntax for JSON

• JSON is loaded into an In-Memory column in an internal binary format
– In Memory format is smaller than textual representation

– Uses an internal transient dictionary for encoding tokens

– Support limited to documents <= 32Kbytes

• JSON Operators are evaluated against the in memory format
– In Memory format does not require parsing

–Queries evaluated against the binary format execute ~=2 times faster

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

In-Memory support: JSON Path plan - in-memory enabled
select m.JSON_DOCUMENT.title

from "Movie" m

where JSON_EXISTS(

JSON_DOCUMENT,

'$?(@.runtime >= $RUNTIME && exists(@.crewMember?(@.job == $ROLE && @.name == $NAME)))'

passing 120 as "RUNTIME", 'Director' as "ROLE",'Steven Spielberg' as "NAME"

)

Execution Plan

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 3 | 4557 | 2 (0)| 00:00:01 |

|* 1 | TABLE ACCESS INMEMORY FULL| Movie | 3 | 4557 | 2 (0)| 00:00:01 |

--

Predicate Information (identified by operation id):

1 - inmemory(JSON_EXISTS2("JSON_DOCUMENT" FORMAT JSON , '$?(@.runtime >=

$RUNTIME && exists (@.crewMember?(@.job == $ROLE && @.name ==

$NAME)))' PASSING 120 AS "RUNTIME", 'Director' AS "ROLE",

'Steven Spielberg' AS "NAME" FALSE ON ERROR, "M"."SYS_IME_OSON_0001000001650FAD")=1)

filter(JSON_EXISTS2("JSON_DOCUMENT" FORMAT JSON , '$?(@.runtime >=

$RUNTIME && exists (@.crewMember?(@.job == $ROLE && @.name ==

$NAME)))' PASSING 120 AS "RUNTIME",'Director' AS "ROLE",

'Steven Spielberg' AS "NAME" FALSE ON ERROR,

"M"."SYS_IME_OSON_0001000001650FAD")=1)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Everything Developers Need to Know About
Integrating JSON into Oracle Database
Generating JSON from relational data

Confidential – Oracle Internal/Restricted/Highly Restricted 62

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

JSON Generation

• Operators defined by SQL Standards body

– JSON_ARRAY, JSON_OBJECT, JSON_ARRAYAGG and JSON_OBJECTAGG

– Nesting of operators enables generation of complex JSON documents

• Simplifies generating JSON documents from SQL Queries
– Eliminate syntactic errors associated with string concatenation

• Improves performance

– Eliminate multiple round trips between client and server

• BLOB / CLOB support enables generation of large JSON documents in
Oracle Database 18c

Oracle Confidential – Internal/Restricted/Highly Restricted 63

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

JSON_ARRAY: Representing rows as arrays

• Generates a JSON Array from each row
returned by the query

• The Array contains one item for each column
specified in the JSON_ARRAY operator

• Arrays can contain heterogeneous items

Oracle Confidential – Internal/Restricted/Highly Restricted 64

select JSON_ARRAY(EMPLOYEE_ID, FIRST_NAME, LAST_NAME) JSON

from HR.EMPLOYEES

JSON

[100,"Steven","King"]

[101,"Neena","Kochhar"]

[102,"Lex","De Haan"]

[103,"Alexander","Hunold"]

[104,"Bruce","Ernst"]

[105,"David","Austin"]

[106,"Valli","Pataballa"]

[107,"Diana","Lorentz"]

[108,"Nancy","Greenberg"]

[109,"Daniel","Faviet"]

[110,"John","Chen"]

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

JSON_OBJECT : Representing rows as objects

• Generates a JSON Object from
each row returned by the
query

• The Object contains a key:value
pair for each pair of arguments

Oracle Confidential – Internal/Restricted/Highly Restricted 65

select JSON_OBJECT(

'Id' is EMPLOYEE_ID,

'FirstName' is FIRST_NAME,

'LastName' is LAST_NAME

) JSON

from HR.EMPLOYEES

JSON

--

{"Id":100,"FirstName":"Steven","LastName":"King"}

{"Id":101,"FirstName":"Neena","LastName":"Kochhar"}

{"Id":102,"FirstName":"Lex","LastName":"De Haan"}

{"Id":103,"FirstName":"Alexander","LastName":"Hunold"}

{"Id":104,"FirstName":"Bruce","LastName":"Ernst"}

{"Id":105,"FirstName":"David","LastName":"Austin"}

{"Id":106,"FirstName":"Valli","LastName":"Pataballa"}

{"Id":107,"FirstName":"Diana","LastName":"Lorentz"}

{"Id":108,"FirstName":"Nancy","LastName":"Greenberg"}

{"Id":109,"FirstName":"Daniel","LastName":"Faviet"}

{"Id":110,"FirstName":"John","LastName":"Chen"}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

JSON_OBJECT : Columns as Keys

• Columns can be used as the key or the value

Oracle Confidential – Internal/Restricted/Highly Restricted 66

select JSON_OBJECT(

OBJECT_TYPE is OBJECT_NAME

) JSON

from ALL_OBJECTS

WHERE OWNER = 'HR'

and OBJECT_NAME like ‘%EMP%'

JSON

--

{"TABLE":"EMPLOYEES"}

{"INDEX":"EMP_DEPARTMENT_IX"}

{"INDEX":"EMP_EMAIL_UK"}

{"INDEX":"EMP_EMP_ID_PK"}

{"INDEX":"EMP_JOB_IX"}

{"INDEX":"EMP_MANAGER_IX"}

{"INDEX":"EMP_NAME_IX"}

{"INDEX":"JHIST_EMPLOYEE_IX"}

{"INDEX":"JHIST_EMP_ID_ST_DATE_PK"}

{"TRIGGER":"SECURE_EMPLOYEES"}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

JSON_ARRAYAGG: Embedding arrays in documents

• Generates a JSON Array from the results of a nested sub-query

Oracle Confidential – Internal/Restricted/Highly Restricted 67

select JSON_OBJECT(

'departmentId' is d.DEPARTMENT_ID,

'name' is d. DEPARTMENT_NAME,

'employees' is (

select JSON_ARRAYAGG(

JSON_OBJECT(

'employeeId' is EMPLOYEE_ID,

'firstName' is FIRST_NAME,

'lastName' is LAST_NAME,

'emailAddress' is EMAIL

)

)

from HR.EMPLOYEES e

where e.DEPARTMENT_ID = d.DEPARTMENT_ID

)

) DEPT_WITH_EMPLOYEES

from HR.DEPARTMENTS d

where DEPARTMENT_NAME = 'Executive'

DEPT_WITH_EMPLOYEES

--

{

"departmentId": 90,

"name": "Executive",

"employees": [

{

"employeeId": 100,

"firstName": "Steven",

"lastName": "King",

"emailAddress": "SKING"

}, {

"employeeId": 101,

"firstName": "Neena",

"lastName": "Kochhar",

"emailAddress": "NKOCHHAR"

}, {

"employeeId": 102,

"firstName": "Lex",

"lastName": "De Haan",

"emailAddress": "LDEHAAN"

}

]

}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

JSON_OBJECTAGG: Objects from Name Value pairs

• Create a JSON OBJECT from tables
containing name/value pair data

• JSON_OBJECTAGG is an aggregation
operator

– Use Group By if the table contains data
from multiple objects

select JSON_OBJECTAGG(NAME,VALUE)
from V$PARAMETER
group by TYPE

Oracle Confidential – Internal/Restricted/Highly Restricted 68

select JSON_OBJECTAGG(PARAMETER,VALUE)

from NLS_DATABASE_PARAMETERS
{

"NLS_RDBMS_VERSION" : "12.2.0.1.0",

"NLS_NCHAR_CONV_EXCP" : "FALSE",

"NLS_LENGTH_SEMANTICS" : "BYTE",

"NLS_COMP" : "BINARY",

"NLS_DUAL_CURRENCY" : "$",

"NLS_TIMESTAMP_TZ_FORMAT" : "DD-MON-RR HH.MI.SSXFF AM TZR",

"NLS_TIME_TZ_FORMAT" : "HH.MI.SSXFF AM TZR",

"NLS_TIMESTAMP_FORMAT" : "DD-MON-RR HH.MI.SSXFF AM",

"NLS_TIME_FORMAT" : "HH.MI.SSXFF AM",

"NLS_SORT" : "BINARY",

"NLS_DATE_LANGUAGE" : "AMERICAN",

"NLS_DATE_FORMAT" : "DD-MON-RR",

"NLS_CALENDAR" : "GREGORIAN",

"NLS_NUMERIC_CHARACTERS" : ".,",

"NLS_NCHAR_CHARACTERSET" : "AL16UTF16",

"NLS_CHARACTERSET" : "AL32UTF8",

"NLS_ISO_CURRENCY" : "AMERICA",

"NLS_CURRENCY" : "$",

"NLS_TERRITORY" : "AMERICA",

"NLS_LANGUAGE" : "AMERICAN"

}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Everything Developers Need to Know About
Integrating JSON into Oracle Database
Summary

Confidential – Oracle Internal/Restricted/Highly Restricted 69

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Why choose Oracle Database 12c and SODA

• Oracle Database 12c can satisfy the data management requirements for
modern application development stacks

• Using Oracle and SODA is a simple as using any other No-SQL based
document store technology

• SODA allows applications to be developed and deployed without any
knowledge of SQL and without DBA support.

• Applications can take full advantage of the capabilities of Oracle Database

• Using Oracle Database protects existing investment in data management
software and skills

Confidential – Oracle Internal/Restricted/Highly Restricted 70

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public 71

Fast Application Development + Powerful SQL Access

JSON Support in Oracle Database

Application developers:
Access JSON documents using RESTful API

PUT /my_database/my_schema/customers HTTP/1.0

Content-Type: application/json

Body:

{
"firstName": "John",

“lastName”: "Smith",

"age": 25,

"address": {

"streetAddress": "21 2nd Street",

"city": "New York",

"state": "NY",

"postalCode": "10021“,

"isBusiness" : false },

"phoneNumbers": [

{"type": "home",

"number": "212 555-1234“ },

{"type": "fax",

"number": "646 555-4567“ }]

}

select

c.json_document.firstName,

c.json_document.lastName,

c.json_document.address.city

from customers c;

firstName lastName address.city

----------- ----------- --------------

“John” “Smith” “New York”

SQL Developers and Analytical tools:
Query JSON using SQL

Oracle Database 12c

JSON

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 72

Where do Customers go to learn more?

http://www.oracle.com/technetwork/database/application-development/oracle-document-store/index.html

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Learn More about Oracle, JSON and SODA

• Oracle JSON document store on the Oracle Technology Network

– http://otn.oracle.com/database/application-development/oracle-document-
store/index.html

• Downloadable Oracle XML and JSON Code samples on Github

– https://github.com/oracle/xml-sample-demo

– https://github.com/oracle/json-in-db

Oracle Confidential – Internal/Restricted/Highly Restricted 73

http://otn.oracle.com/database/application-development/oracle-document-store/index.html
https://github.com/oracle/xml-sample-demo
https://github.com/oracle/json-in-db

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Learn More about Oracle, JSON and SODA

• Tutorial: “SQL/JSON Features in Database 12.2”

– http://livesql.oracle.com or https://tinyurl.com/JsonIn12c

• Tutorial: “Using SODA for REST with Exadata Express Cloud Service

– https://tinyurl.com/SodaExadataExpress

• JSON Blog (Beda Hammerschmidt)
– https://blogs.oracle.com/jsondb

Oracle Confidential – Internal/Restricted/Highly Restricted 74

http://livesql.oracle.com/
https://tinyurl.com/JsonIn12c
https://tinyurl.com/SodaExadataExpress
https://blogs.oracle.com/jsondb

