
OLTP Database Optimizations for
high-volume and high-velocity use

cases

0

AGENDA

1

• Fast-o-meter and weight-o-meter

• Index me

• Extra miles with Trigger

• Descale writes in RAC

• Summary and Q & A

• Fast Data Copy (if time is kind )

©2017 PayPal Inc. confidential and proprietary

Fast-o-meter and weight-o-meter

Read

IOPS

Write

IOPS

Execs/se

c

>75K >75K >500K

Read

PayLoad/sec

Write

PayLoad/sec

>0.5GB >0.5GB

readTime

p95

readTime

p99

writeTim

e

p95

writeTime

p99

3ms 6ms 10ms 15ms

Index Usecase #1

©2017 PayPal Inc. Confidential and proprietary. 3

Problem Statement: Right-hand Index contention on heavy duty tables

Artifacts:

 Surrogate key id based

 Unique index as based on database sequence

 Issue exposed only in high concurrent fast usecases

Solve#1: Re-create index as reverse

Issues:

 Range scan expensive

 Still a bottleneck as close keys still share

same block

HEADER_FILE HEADER_BLOC

K

EXTENTS

171 28882 1

row#0[8021]

col 0; len 2; (2): 02 c2

row#1[8010]

col 0; len 2; (2): 03 c2

row#2[7999]

col 0; len 2; (2): 04 c2

row#3[7988]

col 0; len 2; (2): 05 c2

Block# 28883

A B

100 100

200 101

300 102

400 103

Select A,B from tabdemo1

where B between 1 and 10000;

tabdemo1

Index Usecase #1

©2017 PayPal Inc. Confidential and proprietary. 4

Solve#2: Re-create index as global hash

partitioned

Issues:

 Partition management issues

 Issue with adding more partitions

row#0[8021]

col 0; len 2; (2): c2 02

Block# 28883

HEADER_FILE HEADER_BLOCK EXTENTS

171 28882 1

171 28906 1

171 28898 1

171 28890 1

row#1[8016]

col 0; len 2; (2): c2 04

Block# 28907

row#2[8025]

col 0; len 2; (2): c2 02

Block# 28899

row#3[8022]

col 0; len 2; (2): c2 04

Block# 28891

A B

100 100

200 101

300 102

400 103

tabdemo1

Index usecase #1

©2017 PayPal Inc. Confidential and proprietary. 5

Solve#3 [FINAL]: Re-structure table as index and

keep it local

Issues:

 One time table restructure effort

HEADER_FILE PARTITION_N

AME

HEADER_BLOC

K

14 PSUB1 2816

14 PSUB2 2944

14 PSUB3 3072

14 PSUB4 3200create table demo1 (a number, mod_a number, b

number)

partition by range (a)

subpartition by range(mod_a)

(partition p1 values less than (1000)

(subpartition psub1 values less than (1),

subpartition psub2 values less than (2)),

partition p2 values less than (2000)

(subpartition psub3 values less than (1),

subpartition psub4 values less than (2)));

create unique index demo1_pk on demo1 (mod_a, a)

local;

insert into demo1 values

(543,mod(543,2),1);

insert into demo1 values

(544,mod(544,2),1);

select * from demo1;
A MOD_A B SUBP

543 1 1 PSUB2

544 0 1 PSUB1

Index Usecase #2

©2017 PayPal Inc. Confidential and proprietary. 6

Problem Statement: Slow query for finding pending transactions (ordered with latest first) for an account for
given time window

Artifacts:

 Query uses existing index on account number and time

 Each record belongs to unique transaction for a given account

 Only less than 5% of transactions are in pending status

 Transaction “status” is frequently updated

 Non-Issue in slow/non-mutating key and small tables

Solve#1: Create index on account, time, status

Issues:

 Still need to scan lot of blocks because of

skewed data

 Large index size with non-selective data

 Very high key mutations

Account_No Time_Created Status

100 1000 2

200 1000 10

105 1005 2

300 1010 0

Only ½ needed to

be indexed

But all status

keys gets

indexed

Index Usecase #2

©2017 PayPal Inc. Confidential and proprietary. 7

Solve#2: Create functional index on account,

time, case when (status=2) then status else null

end

Issues:

 Still large index size as it indexes status<>2

as well with NULL entries

 Still need to scan lot of blocks because of leaf

blocks with NOT NULL account no and time

keys and NULL status

row#2 update:

update testacc

set status=8

where account_no=105 and time_created=1005

and status=2;

Account_No Time_Created Status

100 1000 2

200 1000 10

105 1005 2

300 1010 0

row#0[8015]

col 0; len 2; (2): c2 02

col 1; len 2; (2): c2 02

col 2; len 2; (2): c1 03

row#1[8000]

col 0; len 2; (2): c2 02

col 1; len 2; (2): c2 02

col 2; NULL

row#2[7983]

col 0; len 2; (2): c2 02

col 1; len 2; (2): c2 03

col 2; len 2; (2): c1 03

row#3[7968]

col 0; len 2; (2): c2 02

col 1; len 2; (2): c2 04

col 2; NULL

row#2[7983] -- D --

col 0; len 2; (2): c2 02

col 1; len 2; (2): c2 03

col 2; len 2; (2): c1 03

row#3[7953]

col 0; len 2; (2): c2 02

col 1; len 2; (2): c2 03

col 2; NULL

post-update

4 +1 rows in leaf block

pre-update

4 rows in leaf block

Index Usecase #2

©2017 PayPal Inc. Confidential and proprietary. 8

Solve#3 [FINAL]: Create functional index on

case when (status=2) then account else null end,

case when (status=2) then status else null end,

case when (status=2) then time else null end

row#0 update:

update testacc set status=80 where

account_no=100 and time_created=1000 and

status=2;

Account_No Time_Created Status

100 1000 2

200 1000 10

105 1005 8

300 1010 0

row#0[8015]

col 0; len 2; (2): c2 02

col 1; len 2; (2): c2 02

col 2; len 2; (2): c1 03

row#0[8015] flag: ---D--

col 0; len 2; (2): c2 02

col 1; len 2; (2): c2 02

col 2; len 2; (2): c1 03

post-update

0+1 row in leaf block

to-be-deleted

pre-update

1 row in leaf block

Trigger Usecase #1

©2017 PayPal Inc. Confidential and proprietary. 9

Problem Statement: Zero downtime table-restructure online

Artifacts:

 Critical heavy duty table needs major restructure

 Driven by application feature or data model design change

 Non-Issue in low writes usecases or insert-only usecases

Old table

(Active)

Step#1 (t0)

GG delta

changes

Passive

New table

(snapshot

)

Step#2 (t1)

Old table @t1

Step#3 (t2)

Passive

table (with

GG

feed)

Old table – lag(s)

Step#4 (t3)

Passive

table (with

GG

+ Trigger

feed)

= Old table

Step#5 (t4)

Switch synonym

Bi-directional Trigger

New Active

table

(Trigger

feed)

=

Old Passive

table

(Trigger

feed)

Trigger Usecase #1

©2017 PayPal Inc. Confidential and proprietary. 10

create trigger tabtrigdemo1 after update or insert on tabdemo1 for each row disable

begin

if ((sys_context('USERENV','SESSION_USER') = ‘DEMOAPP') and

sys_context('USERENV','SERVER_HOST') <> sys_context('USERENV','HOST') and

nvl(sys_context('USERENV','CLIENT_INFO'),'a')='a')

then

dbms_application_info.SET_CLIENT_INFO('USED');

merge into tabdemo2

using dual on (COL1 = :new.COL1)

when matched then update set COL2 = :new.COL2,..;

when not matched then insert (COL1,COL2,..) values (:NEW.COL1,:NEW.COL2,..);

dbms_application_info.SET_CLIENT_INFO(NULL);

end if;

end;

/

Bi-directional Trigger

Prevents loop by excluding “old” write

from “new” writes

Label write as “not-to-be-replicated-back/old”

before replication

Resets Label for “new” incoming writes in

same session

Trigger Usecase #2

©2017 PayPal Inc. Confidential and proprietary. 11

Problem Statement: Throttle traffic for database or table(s)

Artifacts:

 SFU (Select For Update) is database issue first before it is application issue

 Login storm commonly known issue due to bad app box or conns config

 Issue exposed in highly concurrent updateable table using SFU

DB_UNIQUE_NAME DB1

USERNAME USERAPP

SERVICE_NAME USER_SERVICE

READ_ONLY N

ACTIVE Y

CONNS Y

ALLOWED_CLIENTS machine1*,machine2*

CONNS_PER_CLIENT 100

Logon

Trigger

Table

Trigger

TABLE

Trigger Usecase #2

©2017 PayPal Inc. Confidential and proprietary. 12

CREATE trigger sys.tabtrigdemo1 before INSERT OR UPDATE OR DELETE ON demo1 FOR

EACH ROW DISABLE

Declare

connFlag char(1);

Begin

select conns into connFlag from conns_map

where username=sys_context(‘userenv’,’session_user’) and

Service_name=sys_Context(‘userenv’,’service_name’) and

Db_unique_name=sys_context(‘userenv’,’db_unique_name’);

if (connFlag='N’) then

raise_application_error(….);

end if;

Logon Trigger

Trigger Usecase #3

©2017 PayPal Inc. Confidential and proprietary. 13

Problem Statement: Reduce database downtime for maintenance

Artifacts:

 Maintenance around specific table or few tables have adverse collateral damage

 Table not in critical application flow

 Application does retry <n> times upon failure

 Issue in usecases with highly busy/concurrent table

Table Name

USERNAME DEMOAPP

SERVICE_NAME DEMO_SERVICE

READ_ONLY Y

Table

Trigger

TABLE

Trigger Usecase #4

©2017 PayPal Inc. Confidential and proprietary. 14

Problem Statement: Ordered sequence dependency of application in RAC database

Artifacts:

 Sequence if NOORDER across active/active RAC nodes will break application

 Sequence if ORDER across active/active RAC nodes will have contention/slowness

Solve:

 Database Logon Trigger to monitor services (being used for sequence) active/active status

 Table Trigger to monitor and reject writes if concerned services being active/active

 Sequence in steady state is always NOORDER

 During service failover (instance/node crash), there is a window where writes will start using new

instance sequence cache which is smaller value than current

 Logon Trigger detects service failover, blocks login till it converts sequence to ORDER

 Once Sequence converted to ORDER, it allows new logins

 Once incident is over, after nth login its converted back to NOORDER

Writes Usecase #1

©2017 PayPal Inc. Confidential and proprietary. 15

Problem Statement: Right-hand Index contention with writes in active/active RAC nodes

Artifacts:

 Writes in multiple nodes to scale

 High concurrent writes with indexes on time

 Issue exposed in highly busy systems with high write concurrency

Solve#1:

 “same” Reads are horizontal-scale friendlier than “same” writes

 Logical Partitioning of services with respective applications

 Logical Partitioning of “same” writes in few nodes (<=2)

 Have 2 active “same” write nodes for write availability

Issues:

 Scale issue if ”same” reads/writes are restricted to 2 nodes

Writes Usecase #1

©2017 PayPal Inc. Confidential and proprietary. 16

Solve#2 [FINAL]:

 Decouple reads from writes by using simple sqltext parsing in application/connection pool

 Use separate read and write app pool to take advantage of read/write split

 Use OCIAttrGet to check connection is in transaction or not

 Have separate database service for reads and write

 Scale reads in N nodes by running read database service in N nodes

 Writes remain in 2 nodes

OCIAttrGet(

authp,

OCI_HTYPE_SESSION,

&txnInProgress,

(ub4 *)0,

OCI_ATTR_TRANSACTION_IN_PROGRESS,

errhp);

https://docs.oracle.com/cd/E11882_01/appdev.112/e10646/ociaahan.htm#LNOCI17835

Summary

©2017 PayPal Inc. Confidential and proprietary. 17

 Knowing speed and payload for each table and application helps a long way to scale systems

 Common DBA activities in high-speed environment needs more planning and testing

 Application partnership with data architects along with DBAs critical

 Test the solve, iterate and evolve your solve as 1st solve more often is NOT the last solve!

Q & A

18

Fast Data Copy

©2017 PayPal Inc. Confidential and proprietary. 19

src_owner

tgt_owner

src_table_name

tgt_table_name

extent_id

block_id

Blocks

mbytes

start_rowid

end_rowid

partition_name

filter_expr

lob_present

..

..

extent_map

Reads

dba_extents of source

Generates extent_map

metadata about source in

target

1

#extents

copy/thread

Multiple threads =

Parallel extents

copy

2
“direct copy” in

separate tablespace

in “temp” tables

Merges data from

“temp” tables to

app table

Uses “parallel dml”

3

