
Power Up Your Apps

with

Recursive Subquery Factoring

Jared Still

2014

About Me
• Prefer cmdline to GUI

• Like to know how things work

• Perl aficionado

• Oak Table Member

• Oracle ACE

• Started Oracle-L

• Twitter: @PerlDBA

• jkstill@gmail.com

• Hobby: Performance Driving

• They pay me to do this?

© 2013 Pythian Confidential 2

About Pythian
• Recognized Leader:

– Global industry-leader in remote database administration services and consulting
for Oracle, Oracle Applications, MySQL and Microsoft SQL Server

– Work with over 250 multinational companies such as Forbes.com, Fox Sports and
Nordion to help manage their complex IT deployments

• Expertise:

– Pythian’s data experts are the elite in their field. We have the highest concentration
of Oracle ACEs on staff—9 including 2 ACE Directors—and 2 Microsoft MVPs.

– Pythian holds 7 Specializations under Oracle Platinum Partner program, including
Oracle Exadata, Oracle GoldenGate & Oracle RAC

• Global Reach & Scalability:

– Around the clock global remote support for DBA and consulting, systems
administration, special projects or emergency response

© 2013 Pythian 3

What Will You Learn?
• Some performance benefits of RSF vs

CONNECT BY

• How to duplicate CONNECT BY

functionality with RSF

CONNECT BY Refresher
• l_10_0a.sql – connect by

• START WITH: ‘King’ as MGR_ID is null

• ‘level’ is depth of iteration

– Used to provide indentation via lpad()

• Simple to do

– Becomes difficult for more complex data

What is Recursive Subquery Factoring?

• Anchor member

• Recursive member

• Joined by UNION ALL

• Search by

– Depth First

– Breadth First

• l_10_0b.sql

© 2013 Pythian 6

Why Use Recursive Subquery Factoring?

• ANSI: Recursive Common Table Expression

• ANSI Compatible

– Identical in SQL Server

• Will CONNECT BY be enhanced in later

releases?

© 2013 Pythian 7

RSF: differences from CONNECT BY
l_10_0b.sql – includes ordering siblings ♦

with emp_recurse (ename,empno,mgr,deptno,lvl) as (-- recursive query

 select e.ename, e.empno, e.mgr, e.deptno, 1 as lvl

 from scott.emp e where e.mgr is null

 -- anchor member

 union all

 -- recursive member

 select e.ename, e.empno, e.mgr, e.deptno , empr.lvl + 1 as lvl

 from scott.emp e

 join emp_recurse empr on empr.empno = e.mgr

)

 search depth first by ename set order1 -- display in std heirarchical order

 --search breadth first by ename set order1 -- display in order of levels

select lpad(' ', lvl*2-1,' ') || er.ename ename

 , er.empno

 , er.mgr

 , er.deptno

from emp_recurse er

© 2013 Pythian 8

(ename,empno,mgr,deptno,lvl)

, empr.lvl + 1 as lvl

search depth first by ename set order1 -- display in std heirarchical order
--search breadth first by ename set order1 -- display in order of levels

search depth first by ename desc set order1 -- sibling order reversed
--search breadth first by ename set order1 -- display in order of levels

What Can RSF do

• … that CONNECT BY cannot?

• Generate test data
20:37:08 ora11203fs.jks.com - jkstill@js01 SQL> select max(level) from dual connect by level <=

5000000;

select max(level) from dual connect by level <= 5000000

 *

ERROR at line 1:

ORA-30009: Not enough memory for CONNECT BY operation

• 65M of memory allocated

© 2013 Pythian 9

What Can RSF do cont…
• Try again with RSF

• Used same amount memory, but does not fail
 1 with gen (id) as (

 2 select 0 id from dual

 3 union all

 4 select gen.id + 1 as id

 5 from gen

 6 where id < 5000000

 7)

 8* select max(id) from gen;

MAX(ID)

 5000000

© 2013 Pythian 10

RSF is environment friendly
• Use CONNECT BY to generate test data

– gen_test_CB.sql fails with ORA-30009

• gen_test_RSF.sql succeeds

• Monitor Mem and TEMP

– get_spid.sql in SQL session

– show_temp.sh

– Also can use: watch –n 1 ps –p $PID –o pid,rss

– Bug 17834663 - Include SQL ID for statement that created a

temporary segment in GV$SORT_USAGE (Doc ID 17834663.8)

• RSF uses TEMP – CONNECT BY does not

• This is extreme usage, but useful to know for large hierarchies

© 2013 Pythian 11

oradebug dump heapdump 5
[ora11203fs]$./ha.pl

js01_ora_24891_BEFORE.trc

 free: 170,992

 freeable: 445,032

 perm: 380,576

 recreate: 98,336

 Total: 1,094,936

[trace]$./ha.pl

js01_ora_24967_AFTER-RSF.trc

 free: 195,952

 freeable: 498,064

 perm: 380,576

 recreate: 98,336

 Total: 1,172,928

[trace]$./ha.pl

js01_ora_24959_AFTER-CB.trc

 free: 195,952

 freeable: 65,420,456

 perm: 380,576

 recreate: 98,336

 Total: 66,095,320

© 2013 Pythian 12

What Else Can RSF Do?
• Fibonacci anyone?
with fibonacci (idx, fibvalue, prev_fibvalue) as (

 select

 0 as idx , 0 as fibvalue , 0 as prev_fibvalue

 from dual

 union all

 select

 f.idx + 1 as idx

 , f.fibvalue + decode(f.prev_fibvalue,0,1,f.prev_fibvalue) fibvalue

 , f.fibvalue prev_fibvalue

 from fibonacci f

 where f.idx < 42

)

select fibvalue

from fibonacci

order by idx

© 2013 Pythian 13

What Else Can RSF Do?
• Factorial

– factorial.sql - Google for (ugly) CONNECT BY
with factorial (idx,fctr) as (

 select

 0 as idx , 1 as fctr

 from dual

 union all

 select

 f.idx + 1 as idx

 , (f.idx + 1) * f.fctr fctr

 from factorial f

 where f.idx <= 7

)

select idx, fctr

from factorial

order by idx

© 2013 Pythian 14

RSF Restrictions – from the Docs

• Restrictions on Recursive Member

– The DISTINCT keyword or a GROUP BY clause

– The MODEL_CLAUSE

– An aggregate function. However, analytic functions

are permitted in the select list.

– Subqueries that refer to recursive query_name.

– Outer joins that refer to recursive query_name as the

right table

© 2013 Pythian 15

RSF Differences cont.
Breadth first (default)
ENAME EMPNO MGR DEPTNO

------------------------- ---------- ---------- ----------

 KING 7839 10

 BLAKE 7698 7839 30

 CLARK 7782 7839 10

 JONES 7566 7839 20

 ALLEN 7499 7698 30

 FORD 7902 7566 20

 JAMES 7900 7698 30

 MARTIN 7654 7698 30

 MILLER 7934 7782 10

 SCOTT 7788 7566 20

 TURNER 7844 7698 30

 WARD 7521 7698 30

 ADAMS 7876 7788 20

© 2013 Pythian 16

RSF Differences cont.
Depth first (looks like std connect by)
ENAME EMPNO MGR DEPTNO

------------------------- ---------- ---------- ----------

 KING 7839 10

 BLAKE 7698 7839 30

 ALLEN 7499 7698 30

 JAMES 7900 7698 30

 MARTIN 7654 7698 30

 TURNER 7844 7698 30

 WARD 7521 7698 30

 CLARK 7782 7839 10

 MILLER 7934 7782 10

 JONES 7566 7839 20

 FORD 7902 7566 20

 SMITH 7369 7902 20

© 2013 Pythian 17

RSF: Replace the LEVEL function

• Anchor Member

– 1 as LVL

• Recursive Member

– LVL + 1 as LVL

• Select

– lpad(' ', r.lvl*2-1,' ') || r.last_name

© 2013 Pythian 18

RSF: SYS_CONNECT_BY_PATH
l_10_18.sql - ♦

with emp_recurse(employee_id,manager_id,last_name,lvl,path) as (

 select e.employee_id, null, e.last_name, 1 as lvl

 ,':' || to_char(e.last_name) as path

 from hr.employees e

 where e.manager_id is null

 union all

 select e1.employee_id, e1.manager_id, e1.last_name

 ,e2.lvl + 1 as lvl

 ,e2.path || ':' || e1.last_name as path

 from hr.employees e1

 join emp_recurse e2 on e2.employee_id= e1.manager_id

)

search depth first by last_name set last_name_order

select lpad(' ', r.lvl*2-1,' ') || r.last_name last_name, r.path

from emp_recurse r

order by last_name_order

© 2013 Pythian 19

,':' || to_char(e.last_name) as path

,e2.path || ':' || e1.last_name as path

RSF: CONNECT_BY_ROOT

• Show the ‘root’ of the connect path - ♦

– l_10_20.sql demo

– root is available at any level in the path

– Easily duplicated with sys_connect_by_path

© 2013 Pythian 20

case instr(sys_connect_by_path(last_name,':'),':',-1,1)
 when 1 then last_name
 else substr(
 sys_connect_by_path(last_name,':'), 2,
 instr(sys_connect_by_path(last_name,':'),':',2)-2
end root

RSF: CONNECT_BY_ROOT cont.
• Anchor member

– ':' || e.last_name || ':' as path

• Recursive member

– er.path || e.last_name || ':' as path

• SELECT

– substr(path,2,instr(path,':',2)-2) root

• Demo

– l_10_21.sql

– l_10_20-fix.sql

 © 2013 Pythian 21

RSF: Cycles – deal with cycle errors

• ORA-01436: CONNECT BY loop in user data

• connect_by_iscycle – detect cycle error

• nocyle – ignore cyle error

• Demo with connect by
– l_10_22.sql

– l_10_23.sql

© 2013 Pythian 22

RSF: Cycles – deal with cycle errors cont.

• RSF has the CYCLE clause

– nocycle not needed (legitimate double negative?)

– CYCLE employee_id SET is_cycle TO '1' DEFAULT '0‘

– IS_CYCLE column created to show error row

– Better than CONNECT BY

• Shows the row that is the source of the error

• Demo with RSF
– l_10_24.sql

– l_10_22-fix.sql

© 2013 Pythian 23

RSF: CONNECT_BY_ISLEAF - end of the hierarchy
• Returns 1 when at a leaf node in hierarchy - ♦

select lpad(' ',2*(level-1)) || e.last_name last_name, connect_by_isleaf

from hr.employees e

start with e.last_name = 'Kochhar'

connect by prior e.employee_id = e.manager_id

order siblings by e.last_name

LAST_NAME CONNECT_BY_ISLEAF

------------------------- -----------------

Kochhar 0

 Baer 1

 Greenberg 0

 Chen 1

 Faviet 1

 Popp 1

…

© 2013 Pythian 24

connect_by_isleaf

RSF: CONNECT_BY_ISLEAF cont.
• What good is connect_by_isleaf?

– How about walking UP the hierarchy?

select lpad(' ',2*(level-1)) || e.last_name last_name, connect_by_isleaf

from hr.employees e

start with e.last_name = 'Urman'

connect by prior e.manager_id = e.employee_id

order siblings by e.last_name

LAST_NAME CONNECT_BY_ISLEAF

------------------------- -----------------

Urman 0

 Greenberg 0

 Kochhar 0

 King 1

© 2013 Pythian 25

RSF: CONNECT_BY_ISLEAF cont.
• Find all leaf nodes
select e.last_name last_name, connect_by_isleaf
from hr.employees e
where connect_by_isleaf = 1
start with e.manager_id is null
connect by prior e.employee_id = e.manager_id
order by e.last_name

LAST_NAME CONNECT_BY_ISLEAF
------------------------- -----------------
Abel 1
Ande 1
Atkinson 1

…

Vishney 1

Walsh 1

Whalen 1

© 2013 Pythian 26

RSF: CONNECT_BY_ISLEAF cont.
• Walk hierarchy backwards for all leaf nodes - ♦

with leaves as (
 select last_name last_name
 from hr.employees e
 where connect_by_isleaf = 1
 start with e.manager_id is null
 connect by prior e.employee_id = e.manager_id
 order siblings by e.last_name
)
select lpad(' ',2*(level-1)) || e.last_name last_name, connect_by_isleaf
from hr.employees e
start with e.last_name in (select last_name from leaves)
connect by prior e.manager_id = e.employee_id -- reversed the relationship
order siblings by e.last_name

• Demo – l_10_25a.sql

© 2013 Pythian 27

connect_by_isleaf = 1

start with e.last_name in (select last_name from leaves)

connect by prior e.manager_id = e.employee_id

RSF: CONNECT_BY_ISLEAF cont.

• No native functionality in RSF for isleaf

– gotta DIY

– The RSF SQL is a little more complex

– See l_10_26.sql for code – won’t fit on page here

– The RSF SQL is a little more complex, but robust

• Walk UP through the hierarchy

– l_10_26a.sql

– Code changes (3) on next slide

© 2013 Pythian 28

with leaves as (-- ♦
 select employee_id
 from hr.employees
 where employee_id not in (
 select manager_id
 from hr.employees
 where manager_id is not null
)
),
emp(manager_id,employee_id,last_name,lvl,isleaf) as (
 select e.manager_id, e.employee_id, e.last_name, 1 as lvl, 0 as isleaf
 from hr.employees e
 where e.last_name = 'Kochhar'
 union all
 select e.manager_id, nvl(e.employee_id,null) employee_id, e.last_name, emp.lvl + 1 as lvl
 , decode(l.employee_id,null,0,1) isleaf
 from hr.employees e
 join emp on emp.employee_id = e.manager_id
 left outer join leaves l on l.employee_id = e.employee_id
)
search depth first by last_name set order1
select lpad(' ',2*(lvl-1)) || last_name last_name, isleaf
from emp

© 2013 Pythian
29

‘Urman'

join emp on emp.manager_id = e.employee_id

decode(e.manager_id,null,1,0)

RSF: Find Leaf Node with LEAD() ?

• Works only with Depth First

– l_10_27.sql – depth first works

– l_10_28.sql only change is to BREADTH FIRST

• Most nodes now show as leaves

– (code on next slide)

© 2013 Pythian 30

RSF: Find Leaf Nodes with LEAD() ? Cont.
with emp(manager_id,employee_id,last_name,lvl) as (
 select e.manager_id, e.employee_id, e.last_name, 1 as lvl
 from hr.employees e
 where e.manager_id is null
 union all
 select e.manager_id, nvl(e.employee_id,null) employee_id
 , e.last_name, emp.lvl + 1 as lvl
 from hr.employees e
 join emp on emp.employee_id = e.manager_id
)
search depth first by last_name set last_name_order
select lpad(' ',2*(lvl-1)) || last_name last_name,
 lvl,
 lead(lvl) over (order by last_name_order) leadlvlorder,
 case
 when (lvl - lead(lvl) over (order by last_name_order)) < 0
 then 0
 else 1
 end isleaf
from emp

© 2013 Pythian 31

Download Presentation

• http://bit.ly/recursive-subquery-factoring

© 2013 Pythian 32

http://bit.ly/recursive-subquery-factoring
http://bit.ly/recursive-subquery-factoring
http://bit.ly/recursive-subquery-factoring
http://bit.ly/recursive-subquery-factoring
http://bit.ly/recursive-subquery-factoring
http://bit.ly/recursive-subquery-factoring

Thank you – Q&A
To contact us

 sales@pythian.com

 1-877-PYTHIAN

To follow us

 http://www.pythian.com/blog

 http://www.facebook.com/pages/The-Pythian-Group/163902527671

 @pythian

 http://www.linkedin.com/company/pythian

© 2013 Pythian 33

http://www.pythian.com/blog

