
Optimizing and Simplifying

Complex SQL with Advanced

Grouping
Presented by: Jared Still

© 2009/2010 Pythian

About Me
• Worked with Oracle since version 7.0

• Have an affinity for things Perlish, such as DBD::Oracle

• Working as a DBA at Pythian since Jan 2011

• Hobbies and extracurricular activities usually do not involve
computers or databases.

• Contact: jkstill@gmail.com

• Oak Table

• Oracle ACE

• About this presentation
• We will explore advanced grouping functionality

• This presentation just skims the surface

• Truly understanding how to make use of advanced grouping you
will need to invest some time experimenting with it and examining
the results.

2

mailto:jkstill@gmail.com

© 2009/2010 Pythian 3

© 2009/2010 Pythian

Why talk about GROUP BY?
• Somewhat intimidating at first

• It seems to be underutilized

• The performance implications of GROUP BY are not often discussed

4

© 2009/2010 Pythian 5

GROUP BY Basics
• GROUP BY does not guarantee a SORT

@gb_1.sql

21:00:47 SQL> select /*+ gather_plan_statistics */ deptno, count(*)
21:00:48 2 from scott.emp
21:00:48 3 group by deptno
21:00:48 4 /

 DEPTNO COUNT(*)
---------- ----------
 30 6
 20 5
 10 3

3 rows selected.

• Notice the execution plan step is HASH GROUP BY

• Inline views and/or Subfactored Queries may change results – best not
to rely on that behavior.

• GROUP BY can be HASH or SORT – neither guarantees sorted output

© 2009/2010 Pythian

Introduction of GROUP BY functions
• 8i

• CUBE()
Generate rows for cross tab and summary reports

•
ROLLUP()
Generate rows for summary reports – returns fewer null rows than CUBE()

•
GROUPING()
Discern Superaggregate NULLs from Data NULLs

• 9i

• GROUP_ID()
Identify duplicate rows created by GROUP BY

• GROUPING_ID()
Returns a number corresponding to GROUPING bit vector for a row

• GROUPING SETS
Specify multiple groupings of data

6

© 2009/2010 Pythian 7

GROUP BY Basics
• GROUP BY is a SQL optimization

• Following does 4 full table scans of EMP
@gb_2.sql

select /*+ gather_plan_statistics */
distinct dname, decode(
 d.deptno,
 10, (select count(*) from scott.emp where deptno=
10),
 20, (select count(*) from scott.emp where deptno=
20),
 30, (select count(*) from scott.emp where deptno=
30),
 (select count(*) from scott.emp where deptno not in
(10,20,30))
) dept_count
from (select distinct deptno from scott.emp) d
join scott.dept d2 on d2.deptno = d.deptno;

DNAME DEPT_COUNT
-------------- ----------
SALES 6
ACCOUNTING 3
RESEARCH 5

3 rows selected.

© 2009/2010 Pythian

GROUP BY Basics
• Use GROUP BY to reduce IO

• 1 full table scan of EMP
@gb_3.sql

select /*+ gather_plan_statistics */
 d.dname
 , count(empno) empcount
from scott.emp e
join scott.dept d on d.deptno = e.deptno
group by d.dname
order by d.dname;

DNAME EMPCOUNT
-------------- ----------
ACCOUNTING 3
RESEARCH 5
SALES 6

3 rows selected.

8

© 2009/2010 Pythian

GROUP BY Basics – HAVING
• Not used as much as it once was – here’s why

• It is easily replaced by Subfactored Queries
(ANSI CTE: Common Table Expressions)

select deptno,count(*)
from scott.emp
group by deptno
having count(*) > 5;

can be rewritten as:

with gcount as (
 select deptno,count(*) as dept_count
 from scott.emp
 group by deptno
)
select *
from gcount
where dept_count > 5;

9

© 2009/2010 Pythian

Advanced GB – CUBE()
• Used to generate cross tab type reports

• Generates all combinations of columns in cube()

@gb_4

with emps as (

 select /*+ gather_plan_statistics */

 ename

 , deptno

 from scott.emp

 group by cube(ename,deptno)

)

select rownum

 , ename

 , deptno

from emps

10

© 2009/2010 Pythian

Advanced GB – CUBE()
• Notice the number of rows returned? 32

• Notice the #rows the raw query actually returned. 56

in GENERATE CUBE in execution plan.

• Superaggregate rows generated by Oracle with

NULL for GROUP BY columns– these NULLS

represent the set of all values (see GROUPING()

docs).

• Re-examine output for rows with NULL.

• For each row, Oracle generates a row with NULL for

all columns in CUBE()

• All but one of these rows is filtered from output with

the SORT GROUP BY step.

• Number of rows is predictable - @gb_5.sql

11

© 2009/2010 Pythian

Advanced GB – CUBE()
• Is CUBE() saving any work in the database?

• Without CUBE(), how would you do this?

• gb_6.sql – UNION ALL

• Notice the multiple TABLE ACCESS FULL steps

• CUBE() returned the same results with one TABLE

scan

12

© 2009/2010 Pythian

Advanced GB – CUBE()
• OK – so what good is it?

• Simple scripts for understanding

• sbase.sql

• Sqlplus trick

• s0.sql – show all test data

• s1.sql

13

© 2009/2010 Pythian

Advanced GB – CUBE()
• Create a practical example

• Using the SALES example schema - Criteria:

• all sales data for the year 2001.

• sales summarized by product category,

• aggregates based on 10-year customer age

ranges, income levels,

• summaries income level regardless of age group

• summaries by age group regardless of income

• Here’s one way to do it.

• @gb_7.sql

14

© 2009/2010 Pythian

Advanced GB – CUBE()
• Use CUBE() to generate the same output

• @gb_8.sql

• UNION ALL

• 8 seconds

• 9 table scans

• CUBE()

• 4 seconds

• 4 table scans

• 2 index scans

15

© 2009/2010 Pythian

Advanced GB–Discern SA NULL
• Look at output from previous SQL – See all those

NULLS on CUST_INCOME_LEVEL and

AGE_RANGE

• How should you handle them?

• Can you use NVL() ?

• How will you discern between NULL data and

Superaggregate NULLs?

• @gb_9.sql

• Are all those NULL values generated as

Superaggregate rows?

16

© 2009/2010 Pythian

Advanced GB–GROUPING()
• Use GROUPING to discern Superaggregates

• @gb_10a.sql - 0 = data null, 1 = SA null

• Use with DECODE() or CASE to determine output

• @gb_10b.sql – examine the use of GROUPING()

• Now we can see which is NULL data and which is SA

NULL, and assign appropriate text for SA NULL

columns.

• @gb_11.sql - Put it to work in our Sales Report

• “ALL INCOME” and “ALL AGE” where sales are

Aggregated on the income regardless of age, and age

regardless of income.

 17

© 2009/2010 Pythian

Advanced GB–GROUPING_ID()
• GROUPING_ID() takes the idea behind GROUPING()

up a notch

• GROUPING() returns 0 or 1

• GROUPING_ID() evaluates expressions and returns a

bit vector – arguments correspond to bit position

• @gb_12a.sql

• GROUPING_ID() generates the GID values

• GROUPING() illustrates binary bit vector

• @gb_12b.sql

• OK – we made a truth table.

What can we do with it?

18

© 2009/2010 Pythian

Advanced GB–GROUPING_ID()
• Use GROUPING_ID() to customize sales report

• Useful for customizing report without any code change

• Summaries only

• Age Range only

• Income level + summaries

• etc…

• Options chosen by user are assigned values that

correspond to bit vector used in GROUPING_ID()

• @gb_13.sql – examine PL/SQL block

• Experiment with different values and check output

• What do you think will happen when all options=0?

• How would you create this report without advanced

grouping?

• No, I did not write an example – too much work.

19

© 2009/2010 Pythian

Advanced GB–ROLLUP()
• Similar to CUBE()

• for 1 argument ROLLUP() identical to CUBE()

• @gb_14a.sql

• for 1+N arguments ROLLUP produces fewer

redundant rows

• @gb_14b.sql

20

© 2009/2010 Pythian

Advanced GB–ROLLUP()
• ROLLUP() – running subtotals without UNION ALL

• Much like CUBE(), ROLLUP() reduces the database

workload

• Sales Report:

• All customers that begin with ‘Sul’

• subtotal by year per customer

• subtotal by product category per customer

• grand total

• @gb_14c.sql

21

© 2009/2010 Pythian

Advanced GB–GROUPING SETS
• Use with ROLLUP()

• GROUPING SETS allows aggregations not easily

done with CUBE()

• GROUP BY with columns or expressions

• s4.sql

• Easily aggregate on country, region, and group of

both columns

• s5.sql

• Add rollup() to get grand total

• May require ‘distinct’

22

© 2009/2010 Pythian

Advanced GB–GROUPING SETS
• Use with ROLLUP()

• @gb_15a.sql

• This looks just like the CUBE() output from gb_14b.sql

• Add “Country” to generated data

• Total by Country and ROLLUP(Region, Group)

• @gb_15b.sql

23

© 2009/2010 Pythian

Advanced GB–GROUPING SETS
• Combine what has been covered into the sales report

• @gb_16.sql

• Sometimes GROUPING SETS produces duplicate

rows

• Last 2 lines of reports are duplicates

• In this case due to ROLLUP(PROD_CATEGORY)

• Use GROUP_ID() – its purpose is to distinguish

duplicate rows caused by GROUP BY

• uncomment HAVING clause and rerun to see effect

• Performance Note:

• GROUPING SETS is better at reducing workload

• GROUPING_ID more flexible – no code changes

24

© 2009/2010 Pythian

Advanced GROUP BY - Summary
• Greatly reduce database workload with Advance

GROUP BY functionality

• Greatly reduce the amount of SQL to produce the

same results

• There is a learning curve

• Start using it!

25

© 2009/2010 Pythian

References

• URL: http://tinyurl.com/advanced-grouping

• Oracle 11g Documentation on advanced

GROUP BY is quite good

• Pro Oracle SQL – Apress

http://www.apress.com/9781430232285

• Pro Oracle SQL 2nd Edition – Apress

http://www.apress.com/9781430262206

• Advanced SQL Functions in Oracle 10g

http://www.amazon.com/Advanced-SQL-

Functions-Oracle-10G/dp/818333184X

26

http://tinyurl.com/advanced-grouping
http://tinyurl.com/advanced-grouping
http://tinyurl.com/advanced-grouping
http://tinyurl.com/advanced-grouping
http://tinyurl.com/advanced-grouping
http://www.apress.com/9781430232285
http://www.apress.com/9781430232285
http://www.apress.com/9781430232285
http://www.apress.com/9781430262206
http://www.apress.com/9781430262206
http://www.amazon.com/Advanced-SQL-Functions-Oracle-10G/dp/818333184X
http://www.amazon.com/Advanced-SQL-Functions-Oracle-10G/dp/818333184X
http://www.amazon.com/Advanced-SQL-Functions-Oracle-10G/dp/818333184X
http://www.amazon.com/Advanced-SQL-Functions-Oracle-10G/dp/818333184X
http://www.amazon.com/Advanced-SQL-Functions-Oracle-10G/dp/818333184X
http://www.amazon.com/Advanced-SQL-Functions-Oracle-10G/dp/818333184X
http://www.amazon.com/Advanced-SQL-Functions-Oracle-10G/dp/818333184X
http://www.amazon.com/Advanced-SQL-Functions-Oracle-10G/dp/818333184X
http://www.amazon.com/Advanced-SQL-Functions-Oracle-10G/dp/818333184X
http://www.amazon.com/Advanced-SQL-Functions-Oracle-10G/dp/818333184X

© 2009/2010 Pythian 27

Grouping Glossary

CUBE()

GROUP_ID()

GROUPING()

GROUPING_ID()

GROUPING_SETS()

ROLLUP()

© 2009/2010 Pythian

Glossary–SUPERAGGRETE ROW

GROUP BY extension will generate rows that

have a NULL value in place of the value of the

column being operated on.

The NULL represents the set of all values for that

column.

The GROUPING() and GROUPING_ID()

functions can be used to distinguish these.

28

© 2009/2010 Pythian

Glossary – CUBE()

GROUP BY extension CUBE(expr1,expr2,…)

returns all possible combination of columns

passed

Demo: gl_cube.sql

29

© 2009/2010 Pythian

Glossary – GROUP_ID()

Function GROUP_ID()

Returns > 0 for duplicate rows

Demo: gl_group_id.sql

30

© 2009/2010 Pythian

Glossary – ROLLUP()

GROUP BY extension ROLLUP(expr1, expr2,…)

Creates summaries of GROUP BY expressions

Demo: gl_rollup.sql

31

© 2009/2010 Pythian

Glossary – GROUPING()

Function GROUPING(expr)

returns 1 for superaggregate rows

returns 0 for non-superaggregate rows

Demo: gl_rollup.sql

Used in demo to order the rows

32

© 2009/2010 Pythian

Glossary – GROUPING_ID()

Function GROUPING_ID(expr)

returns a number representing the GROUP BY

level of a row

Demo: gl_grouping_id.sql

33

© 2009/2010 Pythian

Glossary – GROUPING SETS

GROUP BY Extension GROUPING SETS(

expr1, expr2,…)

Used to create subtotals based on the

expressions page

Demo: gl_grouping_sets.sql

34

© 2009/2010 Pythian

GROUP BY Bug

• Malformed GROUP BY statements that

worked < 11.2.0.2 may now get ORA-979 not

a GROUP BY expression

• Due to bug #9477688 being fixed in 11.2.0.2

• Patch 10624168 can be used to re-institute

previous behavior (must be patched offline –

online mode patch is broken)

• @group_by_malformed.sql

35

