Optimizing and Simplifying
Complex SQL with Advanced
Grouping

Presented by: Jared Still

Pythian

love your data

A

bout Me

Worked with Oracle since version 7.0
Have an affinity for things Perlish, such as DBD::Oracle
Working as a DBA at Pythian since Jan 2011

Hobbies and extracurricular activities usually do not involve
computers or databases.

Contact: jkstill@gmail.com
Oak Table
Oracle ACE

About this presentation

We will explore advanced grouping functionality

This presentation just skims the surface

Truly understanding how to make use of advanced .%rouping you
mll neeclitto invest some time experimenting with it and examining
e results.

© 2009/2010 Pythian

mailto:jkstill@gmail.com

THE EXPERT’S VOICE®IN ORACLE

Fa)racle SQL

Expiloit the full power of SQL and
supporting features in Oracle Database

W

Karen Morton, Kerry Osborne, Robyn Sands
Riyaj Shamsudeen, and Jared Still

APIess®

© 2009/2010 Pythian

Pythian

love your data

Why talk about GROUP BY?

« Somewhat intimidating at first
It seems to be underutilized
« The performance implications of GROUP BY are not often discussed

© 2009/2010 Pythian

GROUP BY Basics

 GROUP BY does not guarantee a SORT
@gb_1.sql

21:00:47 sSQL> select /*+ gather_plan_statistics */ deptno, count(*)
21:00:48 2 from scott.emp
21:00:48 2 7roup by deptno

21:00:48
DEPTNO COUNT (*)
30 6
20 5
10 3

3 rows selected.

* Notice the execution plan step is HASH GROUP BY

 Inline views and/or Subfactored Queries may change results - best not
to rely on that behavior.

 GROUP BY can be HASH or SORT - neither guarantees sorted output

© 2009/2010 Pythian

Introduction of GROUP BY functions

¢ 8i
CUBE()
Generate rows for cross tab and summary reports

ROLLUP()
Generate rows for summary reports - returns fewer null rows than CUBE()

GROUPING()
Discern Superaggregate NULLs from Data NULLs

* 9i

GROUP_ID()
Identify duplicate rows created by GROUP BY

GROUPING_ID()
Returns a number corresponding to GROUPING bit vector for a row

GROUPING SETS
Specify multiple groupings of data

© 2009/2010 Pythian Pyt h i an

love your data

GROUP BY Basics

« GROUP BY is a SQL optimization

. Followmg does 4 full table scans of EMP
@gb_2.sql

select /*+ g athedfplan statistics */
distinct dname, odeT

d.deptno,
10) 10, (select count(*) from scott.emp where deptno=

20),

30),
(select count(*) from scott.emp where deptno not in
(10,20,30))
dept count
from (Select distinct deptno from scott.emp) d
join scott.dept d2 on d2.deptno = d.deptno;

20, (select count(*) from scott.emp where deptno=

30, (select count(*) from scott.emp where deptno=

DNAME DEPT COUNT
SALES 6
ACCOUNTING 3
RESEARCH 5

3 rows selected.

© 2009/2010 Pythian Pyt h l an

love your data

GROUP BY Basics

 Use GROUP BY to reduce 10

1 full table scan of EMP
@gb_3.sql

select /*+ gather plan statistics */
d.dname o
, count (empno) empcount
from scott.emp e
join scott.dept d on d.deptno = e.deptno
group by d.dname
order by d.dname;

DNAME EMPCOUNT
ACCOUNTING 3
RESEARCH 5
SALES 6

3 rows selected.

© 2009/2010 Pythian

Pythian

love your data

GROUP BY Basics — HAVING

* Not used as much as it once was - here’s why

« It is easily replaced by Subfactored Queries
(ANSI CTE: Common Table Expressions)

select deptno,count(*)

from scott.emp

ﬁroup by de;t)tno
aving count(*) > 5;

can be rewritten as:

with gcount as (
select deptno,count(*) as dept_count
from scott.emp
group by deptno

select *
from gcount
where dept_count > 5;

© 2009/2010 Pythian

Advanced GB — CUBE()

® Used to generate cross tab type reports

® Generates all combinations of columns in cube()
@gb 4

with emps as (
select /*+ gather plan statistics */
ename
, deptno
from scott.emp
group by cube (ename, deptno)
)
select rownum
, ename
, deptno
from emps

© 2009/2010 Pythian Pyt h i an

love your data

Advanced GB — CUBE()

Notice the number of rows returned? 32

Notice the #rows the raw query actually returned. 56
In GENERATE CUBE in execution plan.

Superaggregate rows generated by Oracle with
NULL for GROUP BY columns— these NULLS
represent the set of all values (see GROUPING()
docs).

Re-examine output for rows with NULL.

For each row, Oracle generates a row with NULL for
all columns in CUBE()

All but one of these rows is filtered from output with
the SORT GROUP BY step.

Number of rows is predictable - @gb_5.sq|

© 2009/2010 Pythian

Advanced GB — CUBE()

® Is CUBE() saving any work in the database?

® Without CUBE(), how would you do this?

® gb 6.sgql — UNION ALL

® Notice the multiple TABLE ACCESS FULL steps

® CUBE() returned the same results with one TABLE
scan

© 2009/2010 Pythian

Advanced GB — CUBE()

® OK -so what good is it?
® Simple scripts for understanding
® sbase.sql

® Sqlplus trick

® s0.sgl — show all test data

® sl.sql

© 2009/2010 Pythian

Advanced GB — CUBE()

® Create a practical example

® Using the SALES example schema - Criteria:

all sales data for the year 2001.
sales summarized by product category,

aggregates based on 10-year customer age
ranges, income levels,

summaries income level regardless of age group

summaries by age group regardless of income

® Here’s one way to do it.

® @gb 7.sql

© 2009/2010 Pythian

Advanced GB — CUBE()

® Use CUBE() to generate the same output
® @gb_8.sdl
® UNION ALL
® 8seconds
® 9table scans
® CUBE()
® 4 seconds
® 4 table scans

® 2index scans

© 2009/2010 Pythian

Advanced GB-Discern SA NULL

Look at output from previous SQL — See all those
NULLS on CUST_INCOME_LEVEL and
AGE_RANGE

How should you handle them?
Can you use NVL() ?

How will you discern between NULL data and
Superaggregate NULLSs?

@gb 9.sql

Are all those NULL values generated as
Superaggregate rows?

© 2009/2010 Pythian

Advanced GB—GROUPING()

Use GROUPING to discern Superaggregates
@gb 10a.sql - 0 = data null, 1 = SA null

Use with DECODE() or CASE to determine output
@gb_10b.sgl — examine the use of GROUPING()

Now we can see which is NULL data and which is SA
NULL, and assign appropriate text for SA NULL
columns.

@gb_11.sql - Put it to work in our Sales Report

“ALL INCOME" and “ALL AGE” where sales are
Aggregated on the income regardless of age, and age
regardless of income.

© 2009/2010 Pythian

Advanced GB—-GROUPING ID()

GROUPING _ID() takes the idea behind GROUPING()
up a notch

GROUPING() returns O or 1

GROUPING_ID() evaluates expressions and returns a
bit vector — arguments correspond to bit position

@gb _12a.sql

GROUPING _ID() generates the GID values
GROUPING() illustrates binary bit vector
@gb _12b.sql

OK — we made a truth table.
What can we do with it?

© 2009/2010 Pythian

Advanced GB—-GROUPING ID()

® Use GROUPING_ID() to customize sales report
® Useful for customizing report without any code change
® Summaries only
® Age Range only
® Income level + summaries
etc...
Options chosen by user are assigned values that
correspond to bit vector used in GROUPING_ID()
@gb_13.sgl — examine PL/SQL block
Experiment with different values and check output
What do you think will happen when all options=0?
How would you create this report without advanced
grouping?
No, | did not write an example — too much work. ©

© 2009/2010 Pythian

Advanced GB—ROLLUP()

® Similar to CUBE()
® for 1 argument ROLLUP() identical to CUBE()
® @gb l4a.sdl

for 1+N arguments ROLLUP produces fewer
redundant rows

® @gb 14b.sql

© 2009/2010 Pythian

Advanced GB—ROLLUP()

® ROLLUP() — running subtotals without UNION ALL

® Much like CUBE(), ROLLUP() reduces the database
workload

® Sales Report:

® All customers that begin with ‘Sul’

® subtotal by year per customer
® subtotal by product category per customer
® grand total

® @gb 1l4c.sql

© 2009/2010 Pythian

Advanced GB—-GROUPING SETS

® Use with ROLLUP()

® GROUPING SETS allows aggregations not easily
done with CUBE()

® GROUP BY with columns or expressions
® s4.sql

® Easily aggregate on country, region, and group of
both columns

® s5.sql
® Add rollup() to get grand total

® May require ‘distinct’

© 2009/2010 Pythian

Advanced GB—-GROUPING SETS

® Use with ROLLUP()

® @gb 15a.sql

® This looks just like the CUBE() output from gb_14b.sql
® Add “Country” to generated data

® Total by Country and ROLLUP(Region, Group)

® @gb 15b.sql

© 2009/2010 Pythian

Advanced GB—-GROUPING SETS

® Combine what has been covered into the sales report

® @gb 16.sql

® Sometimes GROUPING SETS produces duplicate
rows

Last 2 lines of reports are duplicates
® In this case due to ROLLUP(PROD_CATEGORY)

® Use GROUP_ID() —its purpose is to distinguish
duplicate rows caused by GROUP BY

uncomment HAVING clause and rerun to see effect
Performance Note:

® GROUPING SETS is better at reducing workload
® GROUPING ID more flexible — no code changes

© 2009/2010 Pythian

Advanced GROUP BY - Summary

® Greatly reduce database workload with Advance
GROUP BY functionality

® Greatly reduce the amount of SQL to produce the
same results

® There is a learning curve

® Start using it!

© 2009/2010 Pythian

References
® URL: http://tinyurl.com/advanced-grouping

® Oracle 11g Documentation on advanced
GROUP BY is gquite good

® Pro Oracle SQL — Apress
Nttp://www.apress.com/97/81430232285

® Pro Oracle SQL 2" Edition — Apress
nttp://www.apress.com/9/7/81430262206

® Advanced SQL Functions in Oracle 10g
http://www.amazon.com/Advanced-SQL-
Functions-Oracle-10G/dp/818333184X

© 2009/2010 Pythian

http://tinyurl.com/advanced-grouping
http://tinyurl.com/advanced-grouping
http://tinyurl.com/advanced-grouping
http://tinyurl.com/advanced-grouping
http://tinyurl.com/advanced-grouping
http://www.apress.com/9781430232285
http://www.apress.com/9781430232285
http://www.apress.com/9781430232285
http://www.apress.com/9781430262206
http://www.apress.com/9781430262206
http://www.amazon.com/Advanced-SQL-Functions-Oracle-10G/dp/818333184X
http://www.amazon.com/Advanced-SQL-Functions-Oracle-10G/dp/818333184X
http://www.amazon.com/Advanced-SQL-Functions-Oracle-10G/dp/818333184X
http://www.amazon.com/Advanced-SQL-Functions-Oracle-10G/dp/818333184X
http://www.amazon.com/Advanced-SQL-Functions-Oracle-10G/dp/818333184X
http://www.amazon.com/Advanced-SQL-Functions-Oracle-10G/dp/818333184X
http://www.amazon.com/Advanced-SQL-Functions-Oracle-10G/dp/818333184X
http://www.amazon.com/Advanced-SQL-Functions-Oracle-10G/dp/818333184X
http://www.amazon.com/Advanced-SQL-Functions-Oracle-10G/dp/818333184X
http://www.amazon.com/Advanced-SQL-Functions-Oracle-10G/dp/818333184X

Grouping Glossary

CUBE()
> 1D()

G
G
G
G

ROU
ROU
ROU

ROU

D
D
D

NG()
NG ID()
NG SETS()

ROLLUP()

© 2009/2010 Pythian

Glossary—-SUPERAGGRETE ROW

GROUP BY extension will generate rows that
have a NULL value in place of the value of the
column being operated on.

The NULL represents the set of all values for that
column.

The GROUPING() and GROUPING_ID()
functions can be used to distinguish these.

© 2009/2010 Pythian

Glossary — CUBE()

GROUP BY extension CUBE(expr1,expr2,...)

returns all possible combination of columns
passed

Demo: gl cube.sql

© 2009/2010 Pythian

Glossary — GROUP_ID()

~unction GROUP_ID()

Returns > 0O for duplicate rows

Demo: gl_group _id.sql

© 2009/2010 Pythian Pyt h i an

love your data

Glossary — ROLLUP()

GROUP BY extension ROLLUP(expr”

Creates summaries of GROUP BY ex

, expr2,...)

nressions

Demo: gl _rollup.sql

© 2009/2010 Pythian

Glossary — GROUPING()

Function GROUPING(expr)

returns 1 for superaggregate rows
returns O for non-superaggregate rows
Demo: gl _rollup.sql

Used in demo to order the rows

© 2009/2010 Pythian

Glossary — GROUPING |ID()

Function GROUPING _ID(expr)

returns a number representing the GROUP BY
level of a row

Demo: gl_grouping_id.sql

© 2009/2010 Pythian

Glossary — GROUPING SETS

GROUP BY Extension GROUPING SETS(
expri1, expr2,...)

Used to create subtotals based on the
expressions page

Demo: gl _grouping_sets.sql

© 2009/2010 Pythian

GROUP BY Bug

® Malformed GROUP BY statements that

worked < 11.2.0.2 may now get ORA-979 not
a GROUP BY expression

® Due to bug #9477688 being fixed in 11.2.0.2

Patch 10624168 can be used to re-institute
orevious behavior (must be patched offline —
online mode patch is broken)

® @group by malformed.sql

© 2009/2010 Pythian

