Getting Started with Amazon Redshift

Maor Kleider, Sr. Product Manager, Amazon Redshift

Agenda

- Introduction
- Benefits
- Use cases
- Getting started
- Q&A

What is Big Data?

When your data sets become so large and diverse that you have to start *innovating* around how to collect, store, process, analyze and share them

It's never been easier to generate vast amounts of data

Amazon S3 lets you collect and store all this data

But how do you analyze it?

The Dark Data Problem Most generated data is unavailable for analysis

Sources:

Gartner: User Survey Analysis: Key Trends Shaping the Future of Data Center Infrastructure Through 2011 IDC: Worldwide Business Analytics Software 2012–2016 Forecast and 2011 Vendor Shares

AWS Big Data Portfolio

Amazon Redshift

Fast, simple, petabyte-scale data warehousing for \$1,000/TB/Year

150+ features

a lot faster a lot simpler a lot cheaper

Relational data warehouse

Massively parallel; petabyte scale

Fully managed

HDD and SSD platforms

\$1,000/TB/year; starts at \$0.25/hour

Selected Amazon Redshift customers

Use Case: Traditional Data Warehousing

Business Reporting

Advanced pipelines and queries

Secure and Compliant

Bulk Loads and Updates

Easy Migration – Point & Click using AWS Database Migration Service Secure & Compliant – End-to-End Encryption. SOC 1/2/3, PCI-DSS, HIPAA and FedRAMP compliant Large Ecosystem – Variety of cloud and on-premises BI and ETL tools

Japanese Mobile Phone Provider

MSCHOLASTIC

World's Largest Children's Book Publisher

Powering 100 marketplaces in 50 countries

Use Case: Log Analysis

Clickstream Events Data

Time-Series Data

Cheap – Analyze large volumes of data cost-effectively

Fast – Massively Parallel Processing (MPP) and columnar architecture for fast queries and parallel loads

Near real-time – Micro-batch loading and Amazon Kinesis Firehose for near-real time analytics

Interactive data analysis and recommendation engine

Ad prediction and on-demand analytics

Use Case: Business Applications

Fully Managed – Provisioning, backups, upgrades, security, compression all come built-in so you can focus on your business applications

Ease of Chargeback – Pay as you go, add clusters as needed. A few big common clusters, several data marts

Service Oriented Architecture – Integrated with other AWS services. Easy to plug into your pipeline

Infosys Information Platform (IIP)

Analytics-as-a-Service

Product and Consumer Analytics

Amazon Redshift architecture

Leader node

Simple SQL endpoint Stores metadata Optimizes query plan Coordinates query execution

Compute nodes

Local columnar storage Parallel/distributed execution of all queries, loads, backups, restores, resizes

Start at just \$0.25/hour, grow to 2 PB (compressed)

DC1: SSD; scale from 160 GB to 326 TB DS2: HDD; scale from 2 TB to 2 PB

Dramatically less I/O

Column storage

Data compression

Zone maps

Direct-attached storage

Large data block sizes

analyze compression listing;				
Table	Column	Encoding +		
listing listing listing listing listing listing listing listing	<pre> listid sellerid eventid dateid numtickets priceperticket totalprice listtime</pre>	<pre>delta delta32k delta32k delta32k bytedict bytedict delta32k mostly32 raw</pre>		

10	10 13 14 26
324	100 245 324
375	375 393 417
623	512 549 623
637	637 712 809
959	834 921 959

Parallel and distributed

Query

Load

Export

Backup

Restore

Resize

Hardware optimized for I/O intensive workloads, 4 GB/sec/node

Enhanced networking, over 1 million packets/sec/node

Choice of storage type, instance size

Regular cadence of auto-patched improvements

REDFIN.

"Did I mention that it's **ridiculously fast**? We're using it to provide our analysts with an alternative to Hadoop"

"After investigating Redshift, Snowflake, and BigQuery, we found that Redshift offers **top-of-theline performance at best-in-market price points**"

"On our previous big data warehouse system, it took around 45 minutes to run a query against a year of data, but that number went down to **just 25 seconds** using Amazon Redshift"

"...[Redshift] performance has blown away everyone here. We generally see **50-100X speedup over Hive**"

"We saw a **2X performance improvement** on a wide variety of workloads. The **more complex the queries**, **the higher the performance improvement**"

"We regularly process multibillion row datasets and we do that in a matter of hours. We are heading to up to 10 times more data volumes in the next couple of years, easily

And has gotten faster...

5X Query throughput improvement over the past year

- Memory allocation (launched)
- Improved commit and I/O logic (launched)
- Queue hopping (launched)
- Query monitoring rules (launched)

10X Vacuuming performance improvement

- Ensures data is sorted for efficient and fast I/O
- Reclaims space from deleted rows
- Enhanced vacuum performance leads to better system throughput

Efficient

The life of a query

Query monitoring rules

- Allows automatic handling of runaway (poorly written) queries
- Metrics with operators and values (e.g. query_cpu_time > 1000) create a *predicate*
- Multiple predicates can be AND-ed together to create a *rule*
- Multiple rules can be defined for a queue in WLM. These rules are OR-ed together

If { rule } then [action]

{ rule : metric operator value } eg: rows_scanned > 100000

- Metric : cpu_time, query_blocks_read, rows scanned, query execution time, cpu & io skew per slice, join_row_count, etc.
- Operator : <, >, ==
- Value : integer

[action] : hop, log, abort

Query monitoring rules

脊 🛛 AWS 🗸 Services 🗸	Edit 🗸					de	esign@awsdesign	✔ Oregon ✔ Supp
Redshift dashboard	Parameters WLM							
Cluster V	Vorkload Manag	ement Configura	tion					
	-	LM) is an ordered set of qu		s that define h	ow resources a	re allocate	d and how queries are	e routed for processing.
	xpand all queues							
	Queue 1							×
Parameter groups	Concurrency (1)	User groups 🚯	Query	groups 🚯	Match wild	cards 🚯	Timeout (ms) 🚯	Memory (%) 🚯
Reserved nodes	5	Enter name 🕒	Enter	name 🔂			0	
Events		data_scientist	fast_q	ueries 😢				
Connect client								
	Rules for Default que	ue						Add rule -
	Rule name 🚯	Predicate 1					Action 1	Delete
	MaxRowCount	Metric name	-	Operator -	Value	0	Log 🔻	x
		Return row counts (r	ows) 🔻	> •	1000000	8		
		Query execution time	e (sec) 🔻	> •	120	8		
	MemoryToDisk	Metric name	•	Operator 🔻	Value	0	Hop 🔻	×
		Memory to disk(1MB	blocks)-	> •	1000000	8		
					120	8		

Monitor and control cluster resources consumed by a query

Get notified, abort and reprioritize longrunning / bad queries

Pre-defined templates for common use cases

Query monitoring rules

Common use cases:

• Protect interactive queues

INTERACTIVE = { "query_execution_time > 15 sec" or "query_cpu_time > 1500 uSec" or "query_blocks_read > 18000 blocks" } [HOP]

Monitor ad-hoc queues for heavy queries

```
AD-HOC = { "query_execution_time > 120" or
    "query_cpu_time > 3000" or
    "query_blocks_read > 180000" or
    "memory_to_disk > 40000000000"} [LOG]
```

• Limit the number of rows returned to a client MAXLINES = { "RETURN_ROWS > 50000" } [ABORT]

Benefit #2: Amazon Redshift is inexpensive

DS2 (HDD)	Price per hour for DS2.XL single node	Effective annual price per TB compressed
On-demand	\$ 0.850	\$ 3,725
1 year reservation	\$ 0.500	\$ 2,190
3 year reservation	\$ 0.228	\$ 999

DC1 (SSD)	Price per hour for DC1.L single node	Effective annual price per TB compressed
On-demand	\$ 0.250	\$ 13,690
1 year reservation	\$ 0.161	\$ 8,795
3 year reservation	\$ 0.100	\$ 5,500

Pricing is simple

Number of nodes x price/hour No charge for leader node No upfront costs Pay as you go

Benefit #3: Amazon Redshift is fully managed

Continuous/incremental backups

Multiple copies within cluster

Continuous and incremental backups to Amazon S3

Continuous and incremental backups across regions

Streaming restore

Benefit #3: Amazon Redshift is fully managed

Fault tolerance

Disk failures

Node failures

Network failures

Availability Zone/region level disasters

Node level monitoring can detect SW/HW issues and take action

Failure is detected at one of the compute nodes

Redshift parks the connections

Next, the node is replaced

Queries are re-submitted

- Data-path monitoring agents
- Q Cluster-level monitoring agents

Client

Additional monitoring layer for the leader node and network

Benefit #4: Security is built-in

- Load encrypted from S3
- SSL to secure data in transit
 - ECDHE perfect forward secrecy
- Amazon VPC for network isolation
- Encryption to secure data at rest
 - All blocks on disks and in S3 encrypted
 - Block key, cluster key, master key (AES-256)
 - On-premises HSM & AWS CloudHSM support
- Audit logging and AWS CloudTrail integration
- SOC 1/2/3, PCI-DSS, FedRAMP, BAA

Benefit #5: Amazon Redshift is powerful

• Approximate functions

• User defined functions

• Machine learning

Data science

Benefit #6: Amazon Redshift has a large ecosystem

Benefit #7: Service oriented architecture

Amazon Redshift Spectrum

Amazon Redshift Spectrum

Run SQL queries directly against data in S3 using thousands of nodes

Fast @ exabyte scale

High concurrency: Multiple clusters access same data

Elastic & highly available

On-demand, pay-per-query

No ETL: Query data in-place using open file formats

Full Amazon Redshift SQL support

Amazon Redshift Spectrum – Current support

File formats

• Parquet

- CSV
- Sequence
- RCFile
- ORC (coming soon)
- RegExSerDe (coming soon)

Compression

• Gzip

Snappy

- Lzo (coming soon)
- Bz2

Encryption

- SSE with AES256
- SSE KMS with default key

Column types

- Numeric: bigint, int, smallint, float, double and decimal
- Char/varchar/string
- Timestamp
- Boolean
- DATE type can be used only as a partitioning key

Table type

- Non-partitioned table (s3://mybucket/orders/..)
- Partitioned table (s3://mybucket/orders/date=YYYY-MM-DD/..)

The Emerging Analytics Architecture

Over 20 customers helped preview Amazon Redshift Spectrum

docomo

Use cases

NTT Docomo: Japan's largest mobile service provider

68 million customers

Tens of TBs per day of data across a mobile network

6 PB of total data (uncompressed)

Data science for marketing operations, logistics, and so on

Greenplum on-premises

Scaling challenges Performance issues

Need same level of security Need for a hybrid environment

NTT Docomo: Japan's largest mobile service provider

125 node DS2.8XL cluster4,500 vCPUs, 30 TB RAM2 PB compressed

10x faster analytic queries 50% reduction in time for new BI application deployment Significantly less operations overhead

Nasdaq: powering 100 marketplaces in 50 countries

Orders, quotes, trade executions, market "tick" data from 7 exchanges 7 billion rows/day

Analyze market share, client activity, surveillance, billing, and so on

Microsoft SQL Server on-premises

Expensive legacy DW (\$1.16 M/yr.) Limited capacity (1 yr. of data online)

Needed lower TCO

Must satisfy multiple security and regulatory requirements Similar performance

Nasdaq

Nasdaq: powering 100 marketplaces in 50 countries

23 node DS2.8XL cluster 828 vCPUs, 5 TB RAM 368 TB compressed 2.7 T rows, 900 B derived 8 tables with 100 B rows 7 man-month migration 1/4 the cost, 2x storage, room to grow Faster performance, very secure

Amazon.com clickstream analytics

Web log analysis for Amazon.com

- PBs workload, 2TB/day@67% YoY
- Largest table: 400 TB

Understand customer behavior

Previous solution

- Legacy DW (Oracle)—query across 1 week/hr
- Hadoop—query across 1 month/hr

Results with Amazon Redshift

- Query 15 months in 14 min
- Load 5B rows in <u>10 min</u>
- 21B w/ 10B rows: <u>3 days to 2 hrs</u> (Hive → Redshift)
- Load pipeline: <u>90 hrs to 8 hrs</u> (Oracle → Redshift)

- 100 node DS2.8XL clusters
- Easy resizing
- Managed backups and restore
- Failure tolerance and recovery

- 20% time of one DBA
- Increased productivity

Resources

Detail Pages

- <u>http://aws.amazon.com/redshift</u>
- <u>https://aws.amazon.com/marketplace/redshift/</u>
- <u>https://aws.amazon.com/redshift/developer-resources/</u>
- <u>Amazon Redshift Utilities GitHub</u>

Best Practices

- <u>http://docs.aws.amazon.com/redshift/latest/dg/c_loading-data-best-practices.html</u>
- <u>http://docs.aws.amazon.com/redshift/latest/dg/c_designing-tables-best-practices.html</u>
- <u>http://docs.aws.amazon.com/redshift/latest/dg/c-optimizing-query-performance.html</u>

Thank you!