
© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Kevin Jernigan, Sr. Product Manager

Amazon Aurora PostgreSQL

Amazon RDS for PostgreSQL

May 18, 2017

Amazon Aurora Deep Dive

Agenda

ÁWhy did we build Amazon Aurora?

Á Why add PostgreSQL compatibility?

Á Durability and Availability Architecture

Á Performance Results

Á Performance Architecture

Á Announcing Performance Insights

ÁGetting Data In

Á Feature Roadmap

Á Preview Information & Questions

+

Traditional relational databases are hard to scale

Multiple layers of

functionality all in a

monolithic stack

SQL

Transactions

Caching

Logging

Storage

Traditional approaches to scale databases

Each architecture is limited by the monolithic mindset

SQL

Transactions

Caching

Logging

SQL

Transactions

Caching

Logging

Application Application

SQL

Transactions

Caching

Logging

SQL

Transactions

Caching

Logging

Storage

Application

Storage Storage

SQL

Transactions

Caching

Logging

Storage

SQL

Transactions

Caching

Logging

Storage

Reimagining the relational database

What if you were inventing the database today?

You would break apart the stack

You would build something that:

V Can scale outé

V Is self-healingé

V Leverages distributed servicesé

A service-oriented architecture applied to the database

Move the logging and storage layer into a

multitenant, scale-out, database-optimized

storage service

Integrate with other AWS services like

Amazon EC2, Amazon VPC, Amazon

DynamoDB, Amazon SWF, and Amazon

Route 53 for control & monitoring

Make it a managed service ïusing Amazon

RDS. Takes care of management and

administrative functions.

Amazon

DynamoDB

Amazon SWF

Amazon Route 53

Logging + Storage

SQL

Transactions

Caching

Amazon S3

1

2

3

Amazon RDS

Cloud-optimized relational database

Performance and availability of

commercial databases

Simplicity and cost-effectiveness of

open source databases,

with MySQL compatibility

What is Amazon Aurora?

So whatôs next?

In 2014, we launched Amazon Aurora with MySQL compatibility.

Now, we are adding PostgreSQL compatibility.

Customers can now choose how to use Amazonôs

cloud-optimized relational database, with the performance and

availability of commercial databases and the simplicity and cost-

effectiveness of open source databases.

Making Amazon Aurora Better

Start With the Customer ïWhy Add PostgreSQL?

Start With the Customer ïWhy Add PostgreSQL?

Á Open source database

Á In active development for 20 years

Á Owned by a foundation, not a single company

Á Permissive innovation-friendly open source license

Á High performance out of the box

Á Object-oriented and ANSI-SQL:2008 compatible

Á Most geospatial features of any open-source database

Á Supports stored procedures in 12 languages (Java, Perl, Python,

Ruby, Tcl, C/C++, its own Oracle-like PL/pgSQL, etc.)

Á Most Oracle-compatible open-source database

Á Highest AWS Schema Conversion Tool automatic conversion rates

are from Oracle to PostgreSQL

PostgreSQL Fast Facts

Open Source Initiative

What does PostgreSQL compatibility mean?

PostgreSQL 9.6 + Amazon Aurora cloud-optimized storage

Performance: Up to 2x+ better performance than PostgreSQL alone

Availability: failover time of < 30 seconds

Durability: 6 copies across 3 Availability Zones

Read Replicas: single-digit millisecond lag times on up to 15 replicas

Amazon Aurora Storage

What does PostgreSQL compatibility mean?

Cloud-native security and encryption

AWS Key Management Service (KMS) and AWS

Identity and Access Management (IAM)

Easy to manage with Amazon RDS

Easy to load and unload

AWS Database Migration Service and AWS Schema

Conversion Tool

Fully compatible with PostgreSQL, now and for the

foreseeable future

Not a compatibility layer ïnative PostgreSQL

implementation

AWS DMS

Amazon RDS

PostgreSQL

Amazon Aurora

Durability & Availability

Scale-out, distributed, log structured storage

Master Replica Replica Replica

Availability Zone 1

Shared Storage Volume ïTransaction Aware

Primary

Database

Node

Read

Replica /

Secondary

Node

Read

Replica /

Secondary

Node

Read

Replica /

Secondary

Node

Availability Zone 2 Availability Zone 3

AWS Region

Storage

Monitoring

Database and

Instance

Monitoring

Amazon Aurora Storage Engine Overview

Data is replicated 6 times across 3 Availability
Zones

Continuous backup to Amazon S3

(built for 11 9s durability)

Continuous monitoring of nodes and disks for
repair

10GB segments as unit of repair or hotspot
rebalance

Quorum system for read/write; latency tolerant

Quorum membership changes do not stall writes

Storage volume automatically grows up to 64 TB

AZ 1 AZ 2 AZ 3

Amazon S3

Database

Node

Storage

Node

Storage

Node

Storage

Node

Storage

Node

Storage

Node

Storage

Node

Storage

Monitoring

What can fail?

Segment failures (disks)

Node failures (machines)

AZ failures (network or datacenter)

Optimizations

4 out of 6 write quorum

3 out of 6 read quorum

Peer-to-peer replication for repairs

SQL

Transaction

AZ 1 AZ 2 AZ 3

Caching

SQL

Transaction

AZ 1 AZ 2 AZ 3

Caching

Amazon Aurora Storage Engine Fault-tolerance

Amazon Aurora Replicas

Availability
Failing database nodes are automatically

detected and replaced

Failing database processes are

automatically detected and recycled

Replicas are automatically promoted to

primary if needed (failover)

Customer specifiable fail-over order

AZ 1 AZ 3AZ 2

Primary

Node
Primary

Node

Primary

Database

Node

Primary

Node
Primary

Node
Read

Replica

Primary

Node
Primary

Node
Read

Replica

Database

and

Instance

Monitoring

Performance
Customer applications can scale out read traffic

across read replicas

Read balancing across read replicas

Amazon Aurora Continuous Backup

Segment snapshot Log records

Recovery point

Segment 1

Segment 2

Segment 3

Time

Å Take periodic snapshot of each segment in parallel; stream the logs to Amazon S3

Å Backup happens continuously without performance or availability impact

Å At restore, retrieve the appropriate segment snapshots and log streams to storage nodes

Å Apply log streams to segment snapshots in parallel and asynchronously

Traditional databases

Have to replay logs since the last

checkpoint

Typically 5 minutes between checkpoints

Single-threaded in MySQL and

PostgreSQL; requires a large number of

disk accesses

Amazon Aurora

No replay at startup because storage system

is transaction-aware

Underlying storage replays log records

continuously, whether in recovery or not

Coalescing is parallel, distributed, and

asynchronous

Checkpointed Data Log

Crash at T0 requires

a re-application of the

SQL in the log since

last checkpoint

T0 T0

Crash at T0 will result in logs being applied to

each segment on demand, in parallel,

asynchronously

Amazon Aurora Instant Crash Recovery

Faster, more predictable failover with Amazon Aurora

App
RunningFailure Detection DNS Propagation

Recovery

Database
Failure

Amazon RDS for PostgreSQL is good: failover times of ~60 seconds

Replica-Aware App Running

Failure Detection DNS Propagation

Recovery

Database

Failure

Amazon Aurora is better: failover times < 30 seconds

1 5 - 2 0 s e c 3 - 1 0 s e c

App

Running

Amazon Aurora

Performance vs. PostgreSQL

PostgreSQL

Benchmark System Configurations

Amazon Aurora

AZ 1

EBS EBS EBS

45,000 total IOPS

AZ 1 AZ 2 AZ 3

Amazon S3

m4.16xlarge

database

instance

Storage

Node

Storage

Node

Storage

Node

Storage

Node

Storage

Node

Storage

Node

c4.8xlarge

client driver

m4.16xlarge

database

instance

c4.8xlarge

client driver

ext4 filesystem

m4.16xlarge (64 VCPU, 256GiB), c4.8xlarge (36 VCPU, 60GiB)

Amazon Aurora is >=2x Faster on PgBench

pgbench ñtpcb-likeò workload, scale 2000 (30GiB). All configurations run for 60 minutes

Amazon Aurora is 2x-3x Faster on SysBench

Amazon Aurora delivers 2x the absolute peak of PostgreSQL and 3x

PostgreSQL performance at high client counts

SysBench oltp(write-only) workload with 30 GB database with 250 tables and 400,000 initial rows per table

Amazon Aurora: Over 120,000 Writes/Sec

OLTP test statistics :

queries performed :

read : 0

write : 432772903

other :(begin + commit) 216366749

total : 649139652

transactions : 108163671 (30044.73 per sec.)

read / write requests : 432772903 (120211.75 per sec.)

other operations : 216366749 (60100.40 per sec.)

ignored errors : 39407 (10.95 per sec.)

reconnects : 0 (0.00 per sec.)

sysbench write-only 10GB workload with 250 tables and 25,000 initial rows per table. 10-minute warmup, 3,076 clients

Ignored errors are key constraint errors, designed into sysbench

Sustained sysbench throughput over 120K writes/sec

Amazon Aurora Loads Data 3x Faster

Database initialization is three times faster than PostgreSQL using the

standard PgBench benchmark

Command: pgbench - i - s 2000 ïF 90

Amazon Aurora Gives >2x Faster Response Times

Response time under heavy write load >2x faster than PostgreSQL

(and >10x more consistent)

SysBench oltp(write-only) 23GiB workload with 250 tables and 300,000 initial rows per table. 10-minute warmup.

Amazon Aurora Has More Consistent Throughput

While running at load, performance is more than three times

more consistent than PostgreSQL

PgBenchñtpcb-likeò workload at scale 2000. Amazon Aurora was run with 1280 clients. PostgreSQL was run with

512 clients (the concurrency at which it delivered the best overall throughput)

Amazon Aurora is 3x Faster at Large Scale

Scales from 1.5x to 3x faster as database grows from 10 GiB to 100 GiB

SysBench oltp(write-only) ï10GiB with 250 tables & 150,000 rows and 100GiB with 250 tables & 1,500,000 rows

75,666

27,491

112,390

82,714

0

20,000

40,000

60,000

80,000

100,000

120,000

10GB 100GB

w
ri
te

s
 /

 s
e
c

SysBench Test Size

SysBench write-only

PostgreSQL Amazon Aurora

Amazon Aurora Delivers up to 85x Faster Recovery

SysBench oltp(write-only) 10GiB workload with 250 tables & 150,000 rows

Writes per Second 69,620

Writes per Second 32,765

Writes per Second 16,075

Writes per Second 92,415

Recovery Time (seconds) 102.0

Recovery Time (seconds) 52.0

Recovery Time (seconds) 13.0

Recovery Time (seconds) 1.2

0 20 40 60 80 100 120 140

0 20,000 40,000 60,000 80,000

PostgreSQL
12.5GB

Checkpoint

PostgreSQL
8.3GB

Checkpoint

PostgreSQL
2.1GB

Checkpoint

Amazon Aurora
No Checkpoints

Recovery Time in Seconds

Writes Per Second

Crash Recovery Time - SysBench 10GB Write Workload

Transaction-aware storage system recovers almost instantly

Amazon Aurora with PostgreSQL Compatibility

Performance By The Numbers

Measurement Result

PgBench >= 2x faster

SysBench 2x-3x faster

Data Loading 3x faster

Response Time >2x faster

Throughput Jitter >3x more consistent

Throughput at Scale 3x faster

Recovery Speed Up to 85x faster

Amazon Aurora

Performance Architecture

Do fewer IOs

Minimize network packets

Offload the database engine

DO LESS WORK

Process asynchronously

Reduce latency path

Use lock-free data structures

Batch operations together

BE MORE EFFICIENT

How Does Amazon Aurora Achieve High Performance?

DATABASES ARE ALL ABOUT I/O

NETWORK-ATTACHED STORAGE IS ALL ABOUT PACKETS/SECOND

HIGH-THROUGHPUT PROCESSING NEEDS CPU AND MEMORY OPTIMIZATIONS

Write IO Traffic in Amazon RDS for PostgreSQL

WAL DATA COMMIT LOG & FILES

RDS FOR POSTGRESQL WITH MULTI-AZ

EBS mirrorEBS mirror

AZ 1 AZ 2

Amazon S3

EBS
Amazon Elastic

Block Store (EBS)

Primary

Database

Node

Standby

Database

Node

1

2

3

4

5

Issue write to Amazon EBS, EBS issues to mirror,

acknowledge when both done

Stage write to standby instance

Issue write to EBS on standby instance

IO FLOW

Steps 1, 3, 5 are sequential and synchronous

This amplifies both latency and jitter

Many types of writes for each user operation

OBSERVATIONS

T Y P E O F W R I T E

Write IO Traffic in Amazon RDS for PostgreSQL

Write IO Traffic in an Amazon Aurora Database Node

AZ 1 AZ 3

Primary

Database

Node

Amazon S3

AZ 2

Read

Replica /

Secondary

Node

AMAZON AURORA

ASYNC

4/6 QUORUM

DISTRIBUTED

WRITES

DATAAMAZON AURORA + WAL LOG COMMIT LOG & FILES

IO FLOW

Only write WAL records; all steps asynchronous

No data block writes (checkpoint, cache replacement)

6X more log writes, but 9X less network traffic

Tolerant of network and storage outlier latency

OBSERVATIONS

2x or better PostgreSQL Community Edition performance on

write-only or mixed read-write workloads

PERFORMANCE

Boxcar log records ïfully ordered by LSN

Shuffle to appropriate segments ïpartially ordered

Boxcar to storage nodes and issue writes

WAL

T Y P E O F W R I T E

Read

Replica /

Secondary

Node

Write IO Traffic in an Amazon Aurora Storage Node

LOG RECORDS

Primary

Database

Node

INCOMING QUEUE

STORAGE NODE

AMAZON S3 BACKUP

1

2

3

4

5

6

7

8

UPDATE

QUEUE

ACK

HOT

LOG

DATA

BLOCKS

POINT IN TIME

SNAPSHOT

GC

SCRUB

COALESCE

SORT

GROUP

PEER TO PEER GOSSIPPeer

Storage

Nodes

All steps are asynchronous

Only steps 1 and 2 are in foreground latency path

Input queue is far smaller than PostgreSQL

Favors latency-sensitive operations

Uses disk space to buffer against spikes in activity

OBSERVATIONS

IO FLOW

Receive record and add to in-memory queue

Persist record and acknowledge

Organize records and identify gaps in log

Gossip with peers to fill in holes

Coalesce log records into new data block versions

Periodically stage log and new block versions to Amazon

S3

Periodically garbage collect old versions

Periodically validate CRC codes on blocks

IO traffic in Aurora Replicas

PAGE CACHE

UPDATE

Aurora Master

30% Read

70% Write

Aurora Replica

100% New Reads

Shared Multi-AZ Storage

PostgreSQL Master

30% Read

70% Write

PostgreSQL Replica

30% New Reads

70% Write

SINGLE-THREADED

WAL APPLY

Data Volume Data Volume

Physical: Ship redo (WAL) to Replica

Write workload similar on both instances

Independent storage

Physical: Ship redo (WAL) from Master to Replica

Replica shares storage. No writes performed

Cached pages have redo applied

Advance read view when all commits seen

POSTGRESQL READ SCALING AMAZON AURORA READ SCALING

Applications Restart Faster With Survivable Caches

Cache normally lives inside the

operating system database processï

and goes away when/if that database

dies

Aurora moves the cache out of the

database process

Cache remains warm in the event of a

database restart

Lets the database resume fully loaded

operations much faster

Cache lives outside the database

process and remains warm across

database restarts

SQL

Transactions

Caching

SQL

Transactions

Caching

SQL

Transactions

Caching

RUNNING CRASH AND RESTART RUNNING

Amazon Aurora with PostgreSQL Compatibility

Performance monitoring and management

First Step: Enhanced Monitoring
Released 2016

O/S Metrics

Process & thread List

Up to 1 second granularity

Next Step: Performance Insights

Database Engine

Performance Tuning

Why Database Tuning?

RDS is all about managed databases

Customers want performance managed too:

Ç Want easy tool for optimizing cloud database workloads

Ç May not have deep tuning expertise

ĄWant a single pane of glass to achieve this

What makes Database Load

such a useful metric?

ÅBased on sampling active database requests

ÅFrequent sampling builds a time model of usage

ÅVisualizations illuminate the time model in one chart

