Amazon Aurora Deep Dive

Kevin Jernigan, Sr. Product Manager
Amazon Aurora PostgreSQL
Amazon RDS for PostgreSQL

May 18, 2017

_ g
T amaron | webinars

Agenda

pX

v Iy Iy Dy Dy Dy D

Why did we build Amazon Aurora?

A Why add PostgreSQL compatibility?
Durability and Availability Architecture
Performance Results
Performance Architecture
Announcing Performance Insights
Getting Data In
Feature Roadmap
Preview Information & Questions

PostgreSQL

Traditional relational databases are hard to scale

Multiple layers of
functionality all in a
monolithic stack

Traditional approaches to scale databases

Sharding Shared Nothing Shared Disk

Coupled at the application layer Coupled at the SQL layer Coupled at the caching and
storage layer

Each architecture is limited by the monolithic mindset

Reimagining the relational database

What if you were inventing the database today?

} You would break apart the stack

} You would build something that:
V Can scale out é
V Isself-heal i ngée
V Leverages distributed ser:

A service-oriented architecture applied to the database

Move the logging and storage layer into a o N
multitenant, scale-out, database-optimized soL
storage service _ ;

Transactions : Amazon RDS

e N
Caching

Integrate with other AWS services like ﬂa\ o
Amazon EC2, Amazon VPC, Amazon OoOomEg | Amazon
DynamoDB, Amazon SWF, and Amazon Logging + Storage 3 DynamoDB
Route 53 for control & monitoring \2 : y

|

Make it a managed service i using Amazon Amazon SWF

RDS. Takes care of management and
administrative functions. Amazon S3

=

Amazon Route 53

What i1Is Amazon Aurora?

Cloud-optimized relational database

Performance and availability of
commercial databases

Simplicity and cost-effectiveness of
open source databases,
with MySQL compatibility

So what 0s next ?

Making Amazon Aurora Better

In 2014, we launched Amazon Aurora with MySQL compatibility.

Now, we are adding PostareSOL compatibility.

Customers can now choose how t
cloud-optimized relational database, with the performance and
availability of commercial databases and the simplicity and cost-
effectiveness of open source databases.

Start With the Customer i Why Add PostgreSQL?

P

Amazon m

MySaol:

Start With the Customer i Why Add PostgreSQL?

P

Amazon @ PostgreSQL

PostgreSQL Fast Facts

> v v D>y >y Dy D D

>

Open source database
In active development for 20 years

Owned by a foundation, not a single company Postgre SQL
Permissive innovation-friendly open source license

High performance out of the box

Object-oriented and ANSI-SQL:2008 compatible /

Most geospatial features of any open-source database

Supports stored procedures in 12 languages (Java, Perl, Python,
Ruby, Tcl, C/C++, its own Oracle-like PL/pgSQL, etc.)

Most Oracle-compatible open-source database

Highest AWS Schema Conversion Tool automatic conversion rates
are from Oracle to PostgreSQL

Open Source Initiative

What does PostgreSQL compatibility mean?

PostgreSQL 9.6 + Amazon Aurora cloud-optimized storage
Performance: Up to 2x+ better performance than PostgreSQL alone
Availability: failover time of < 30 seconds
Durability: 6 copies across 3 Availability Zones
Read Replicas: single-digit millisecond lag times on up to 15 replicas

PostgreSQL

B BE e

Amazon Aurora Storage

What does PostgreSQL compatibility mean?

Cloud-native security and encryption

AWS Key Management Service (KMS) and AWS
ldentity and Access Management (IAM)

Easy to manage with Amazon RDS
Easy to load and unload

AWS Database Migration Service and AWS Schema
Conversion Tool

Fully compatible with PostgreSQL, now and for the
foreseeable future

Not a compatibility layer 7 native PostgreSQL
Implementation

&

PostgreSQL

Amazon RDS

o

>
=
%
)
<
o

Amazon Aurora

Durability & Availability

Scale-out, distributed, log structured storage

AWS Region

&

Availability Zone 1

Availability Zone 2

Read
Replica /
Secondary

Node

—

Availability Zone 3

Read
Replica /
Secondary

Node

Read
Replica /
Secondary

Node

Amazon Aurora Storage Engine Overview

Data is replicated 6 times across 3 Availability
Zones

Continuous backup to Amazon S3
(built for 11 9s durability)

Continuous monitoring of nodes and disks for
repair

10GB segments as unit of repair or hotspot
rebalance

Quorum system for read/write; latency tolerant
Quorum membership changes do not stall writes

Storage volume automatically grows up to 64 TB

AZ 1

Database
Node

AZ 2 AZ 3
[| | I | [] |] |
Storage | | Storage Storage | [Storage | :
Node Node Node Node

Node

Node

Storage
Monitoring

Amazon Aurora Storage Engine Fault-tolerance

What can fail? Optimizations
Segment failures (disks) 4 out of 6 write quorum
Node failures (machines) 3 out of 6 read quorum
AZ failures (network or datacenter) Peer-to-peer replication for repairs

AZ 2 AZ 3

Amazon Aurora Replicas

! 1
AZ1 \ o AZ2 ! AZ 3
! 1
Availability | |
ili . Primary : Read : ead
Failing database nodes are automatically Datahase [====b ||| 00 ftp]|| RE2O
detected and replaced Node

Failing database processes are
automatically detected and recycled [Em [mm | :’ﬁ I T EE | [EE |

Replicas are automatically promoted to S —
primary if needed (failover)

Performance

Customer applications can scale out read traffic
across read replicas

Customer specifiable fail-over order

Read balancing across read replicas

Amazon Aurora Continuous Backup

Segment snapshot Log records
Segment 1 I I

Segment 2 H B B N I H B EH N I HE B B B N I H B B B B B B ©H
|
Segment 3 HE B B B B N I H B B BE B B B N I. HE B B B N

I Recovery point Time

>

A Take periodic snapshot of each segment in parallel; stream the logs to Amazon S3

A Backup happens continuously without performance or availability impact

A At restore, retrieve the appropriate segment snapshots and log streams to storage nodes
A Apply log streams to segment snapshots in parallel and asynchronously

Amazon Aurora Instant Crash Recovery

Traditional databases Amazon Aurora

Have to replay logs since the last No replay at startup because storage system
checkpoint IS transaction-aware

Typically 5 minutes between checkpoints Underlying storage replays log records

continuously, whether in recovery or not
Single-threaded in MySQL and

PostgreSQL; requires a large number of Coalescing is parallel, distributed, and
disk accesses asynchronous
Crash at T, requires Crash at T, will result in logs being applied to
a re-application of the each segment on demand, in parallel,
SQL in the log since asynchronously

last checkpoint

Faster, more predictable failover with Amazon Aurora

Amazon RDS for PostgreSQL is good: failover times of ~60 seconds

o

v__

Recovery

Amazon Aurora is better: failover times < 30 seconds

' 15-20 sec !3-10 sec!

Amazon Aurora

Performance vs. PostgreSQL

Benchmark System Configurations

PostgreSQL Amazon Aurora

Azl e AZ1 . AZ 2 AZ3
c4.8xlarge c4.8xlarge i
client driver client driver |

m4.16xlarge
database
instance

m4.16xlarge !
database . |
instance S

L] || pupmmmg | [Jpmungil || L]
Storage | | Storage | +——> [Storage | | Storage | +—* [Storage | | Storage :
ext4 fIIeSyStem Node Node | Node Node ! Node Node |:
-- T T
45,000 total IOPS ; i
. : Amazon S3 :

m4.16xlarge (64 VCPU, 256GiB), c4.8xlarge (36 VCPU, 6OG|B)

Amazon Aurora is >=2x Faster on PgBench

PGBENCH TPCB-LIKE THROUGHPUT, 30 GB

45000
40000

! -3
= 35000 38201
£ 30000

5
2 25000

o 17989
g 20000 L

o
& 15000 —— ——
r—
10000
5000

256 512 768 1024 1280 1536
—4—PostgreSQL ——Amazon Aurora CLIENT CONNECTIONS

pgbenphl inked wor kload, scale 2000 (30Gi B) . Al'l configurati

Amazon Aurora is 2x-3x Faster on SysBench

Amazon Aurora delivers 2x the absolute peak of PostgreSQL and 3x
PostgreSQL performance at high client counts

SYSBENCH WRITE-ONLY THROUGHPUT, 30GB

100000
90000 i
80000 - =

L 70000 = 92225

w .

v 60000

S

{8 50000 u

& 40000

=
=00a0 P 47352
20000
10000

0
256 512 768 1024 1280 1536 1792

=#=—PostgreSQL B Amazon Aurora CLIENT CONNECTIONS

SysBench oltp(write-only) workload with 30 GB database with 250 tables and 400,000 initial rows per table

Amazon Aurora: Over 120,000 Writes/Sec

Sustained sysbench throughput over 120K writes/sec

OLTP test statistics
queries performed

read : 0

write : 432772903

other :(begin + commit) 216366749

total 649139652
transactions ; 108163671 (30044.73 per sec.)
read / write requests 432772903 (120211.75 persec.)
other operations 216366749 (60100.40 per sec.)
ignored errors 39407 (10.95 per sec.)
reconnects O (0.00 per sec.)

sysbench write-only 10GB workload with 250 tables and 25,000 initial rows per table. 10-minute warmup, 3,076 clients
Ignored errors are key constraint errors, designed into sysbench

Amazon Aurora Loads Data 3x Faster

Database initialization is three times faster than PostgreSQL using the
standard PgBench benchmark

pgbench Initialization, Scale 10000 (150 Gb)

Vacuum &
Index Build

Amazon
Aurora

PostgreSQL

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
RUNTIME (S)

Command: pgbench -i -s2000 7TF90

Amazon Aurora Gives >2x Faster Response Times

Response time under heavy write load >2x faster than PostgreSQL
(and >10x more consistent)

700 Sysbench Write Response Time (P95), 1024 Users

Uy Uh%m

0 60 120 180 240 300 360 420 480 540 600
TIME FROM START OF RUN (S)

600

=—PostgreSQL ——Amazon Aurora

500

-
=]
o

RESPONSE TIME (MS)
[*F]
o
]

SysBench oltp(write-only) 23GiB workload with 250 tables and 300,000 initial rows per table. 10-minute warmup.

Amazon Aurora Has More Consistent Throughput

While running at load, performance is more than three times
more consistent than PostgreSQL

pghench Throughput Over Time

45000

40000

35000

30000

(o]
[%a)
[=]
[=]
o

20000 §

Throughput (tps)

15000

10000

5000

0 600 1200 1800 2400
® PostgreSQL © Amazon Aurora Time (s)

PgBenchitpchb-l i ke o wor kl oad at scale 2000. A mRostgrabQlAvasronrweh was r un
512 clients (the concurrency at which it delivered the best overall throughput)

Amazon Aurora is 3x Faster at Large Scale

Scales from 1.5x to 3x faster as database grows from 10 GiB to 100 GIiB

SysBench write-only

120,000 112,390

m PostgreSQL = Amazon Aurora
82,714
27,491

10GB 100GB
SysBench Test Size

100,000

80,000 75,666

60,000

writes / sec

40,000

20,000

0

SysBench oltp(write-only) i 10GiB with 250 tables & 150,000 rows and 100GiB with 250 tables & 1,500,000 rows

Amazon Aurora Delivers up to 85x Faster Recovery

Transaction-aware storage system recovers almost instantly

Crash Recovery Time - SysBench 10GB Write Workload

Recovery Time in Seconds
20 40 60 80 100 120 140

o

Nocheckpore WitesperSecond 9246]
No Checkpoints

:IRecovery Time (seconds) 1.2

PostgreSQL

Checkpoint .
eckpomn -lme (seconds) 13.0

PostgreSQL
8.3GB
Checkpoint

PostgreSQL
12.5GB
Checkpoint

o

20,000 40,000 60,000
Writes Per Second

80,000

SysBench oltp(write-only) 10GiB workload with 250 tables & 150,000 rows

Amazon Aurora with PostgreSQL Compatibility

Performance By The Numbers

PgBench

SysBench

Data Loading
Response Time
Throughput Jitter
Throughput at Scale

Recovery Speed

>= 2x faster

2x-3x faster

3x faster

>2x faster

>3X more consistent
3x faster

Up to 85x faster

Amazon Aurora

Performance Architecture

How Does Amazon Aurora Achieve High Performance?

DO LESS WORK BE MORE EFFICIENT
Do fewer I0s Process asynchronously
Minimize network packets Reduce latency path

Offload the database engine Use lock-free data structures

Batch operations together

DATABASES ARE ALL ABOUT I/O
NETWORK-ATTACHED STORAGE IS ALL ABOUT PACKETS/SECOND
HIGH-THROUGHPUT PROCESSING NEEDS CPU AND MEMORY OPTIMIZATIONS

Write 10 Traffic in Amazon RDS for PostgreSQL

RDS FOR POSTGRESQL WITH MULTI-AZ IO FLOW
Issue write to Amazon EBS, EBS issues to mirror,
Azl e AZZ2 acknowledge when both done
i 5 : Standby Stage write to standby instance
Database — Database | Issue write to EBS on standby instance
Node ! | Noce OBSERVATIONS

Steps 1, 3, 5 are sequential and synchronous
This amplifies both latency and jitter
Many types of writes for each user operation

Amazon Elastic
Block Store (EBS)

Amazon S3

| TYPE OF WRITE

WAL ‘ DATA e COMMIT LOG & FILES

Write 10 Traffic in an Amazon Aurora Database Node

AMAZON AURORA 10 ELOW
1
Azl v AZ3 Boxcar log records i fully ordered by LSN
ey : Read : Shuffle to appropriate segments i partially ordered
e | g .
S Replica / . Replica/ Boxcar to storage nodes and issue writes
|
Nod Secondary |: ‘| Secondary
ode I Node : o Node :
...................... ! I OBSERVATIONS
ASYNC | \
4/6 QUORUM | |

Only write WAL records; all steps asynchronous

No data block writes (checkpoint, cache replacement)
6X more log writes, but 9X less network traffic
Tolerant of network and storage outlier latency

g A bié%'éig'b'{éﬁ R '

! TR PERFORMANCE
S P . i 2xorbetter PostgreSQL Community Edition performance on
* : : write-only or mixed read-write workloads
1
I
1

l TYPE OF WRITE l

sl AMAZON AURORA + WAL LOG m WAL B DATA Bl COMMIT LOG & FILES

Write 10 Traffic in an Amazon Aurora Storage Node

STORAGE NODE

{ INCOMING QUEUE a
LOG RECORDS

Primary Aok nd nd
Database |[¢g——— GC
Node L
UPDATE -
QUEUE COALESCE . VNP
] —— > [scrus
SORT e ¢
GROUR
: -
Peer PEER TO PEER GOSSIP [Tels
Storage |4 . 4 oG
Nodes e inn POINT IN TIME

SNAPSHOT

IO FLOW

Receive record and add to in-memory queue
Persist record and acknowledge

Organize records and identify gaps in log

Gossip with peers to fill in holes

Coalesce log records into new data block versions

Periodically stage log and new block versions to Amazon
S3

Periodically garbage collect old versions
Periodically validate CRC codes on blocks

OBSERVATIONS

All steps are asynchronous

Only steps 1 and 2 are in foreground latency path
Input queue is far smaller than PostgreSQL
Favors latency-sensitive operations

Uses disk space to buffer against spikes in activity

|O traffic in Aurora Replicas

POSTGRESQL READ SCALING

PostgreSQL Master PostgreSQL Replica

SINGLE-THREADED
WAL APPLY

70% Write > 70% Write

30% Read 30% New Reads

Data Volume Data Volume

AMAZON AURORA READ SCALING

Aurora Replica

100% New Reads

Aurora Master PAGE CACHE

UPDATE
70% Write

30% Read

Shared Multi-AZ Storage

Physical: Ship redo (WAL) to Replica
Write workload similar on both instances

Independent storage

Physical: Ship redo (WAL) from Master to Replica
Replica shares storage. No writes performed
Cached pages have redo applied

Advance read view when all commits seen

Applications Restart Faster With Survivable Caches

Cache normally lives inside the
operating system database processi
and goes away when/if that database
dies

Aurora moves the cache out of the
database process

Cache remains warm in the event of a
database restart

Lets the database resume fully loaded
operations much faster

Cache lives outside the database
process and remains warm across
database restarts

RUNNING CRASH AND RESTART RUNNING

Transactions

Caching

Amazon Aurora with PostgreSQL Compatibility

Performance monitoring and management

First Step: Enhanced Monitoring

Launch DB Instance Hide Monitoring =+

Process List Dashboard

ib e
I)

Free Memory

246568

246568

2485G8

Used Filesystem

(16 days, 3:04:32)

2465 GB

246568
W 4.85GB
- ' I‘ P ¥
) %ﬁmﬂ ‘Mi
r' |AN 48568
486GB ']
12018 12016 12116 12118 216 12118
225 230 2235 2225 2:30 22:35
378GB Load Avg 1 min
08
.A\
02 { \
0.0
, [
1216 12116 12116 1216 1216 1216
2325 2Z230 2235 2225 230 2235
Loptean®™ s ppom i e i, —

Active Memory

48508

Instance Actions +

! Released 2016

.. OIS Metrics

002 Load Avg

0.15

i Process & thread List

-~ = = | Upto 1second granularity

2 223
Hide Monitoring ~ Instance Actions v & v & 8
Process List Dashboard
NAME = WVIRT ~ RES - CPU% - MEM% -
B aurora 47.37 GB 44,72 GB 1] 74.52 .
aurora 1.68
aurora 0.03 ¢
aurora 0.03
OS5 processes B683.41 MB 25.71 MB Q 0.01
RDS processes 332GB 48213 MB 0.3 0.76
I

Next Step: Performance Insights

Database Engine
Performance Tuning

Why Database Tuning?

RDS is all about managed databases

Customers want performance managed too:

C Want easy tool for optimizing cloud database workloads
C May not have deep tuning expertise

A Want a single pane of glassto achieve this

What makes Database Load \‘_I
such a useful metric?

©0-0

A Based on sampling active database requests
A Frequent sampling builds a time model of usage

A Visualizations illuminate the time model in one chart

