

Oracle RAC Private Network

Paresh Patel, Member of Technical Staff, PayPal Core Data Platform

Agenda

- Who am I and Introduction to PayPal
- 2. Usage of Private network in RAC
- 3. RAC related background processes
- 4. SGA in RAC Database
- 5. Parameters Influencing RAC behavior
- 6. Wait events in RAC Database
- 7. Hardware and OS support
- 8. Infiniband
- 9. UDP vs. RDS
- 10. Monitoring
- 11. Troubleshooting
- 12. Putting it all together
- 13. Questions?

Disclaimer: Some of the observations here may not be applicable to your environment so test them out or contact Oracle before implementing.

Who am I

- MTS 2 Database Engineer, Oracle Database Engineering
- Oracle RAC Certified Professional with more than a decade's experience starting with Oracle 9i
- Oracle RAC, ADG, performance tuning and GoldenGate expert
- Conversant with MongoDB, Cassandra and Couchbase

Introduction to PayPal

Two decades ago, our founders invented payment technology to make buying and selling faster, secure, and easier—and put economic power where it belongs: In the hands of people.

Our customers can accept payments in >100 currencies, withdraw funds to their bank accounts in 56 currencies, and hold balances in their PayPal accounts in 25 currencies.

Almost **8,000** PayPal team members provide support to our customers in over **20** languages.

We are a trusted part of people's financial lives and a partner to merchants in 200+ markets around the world.

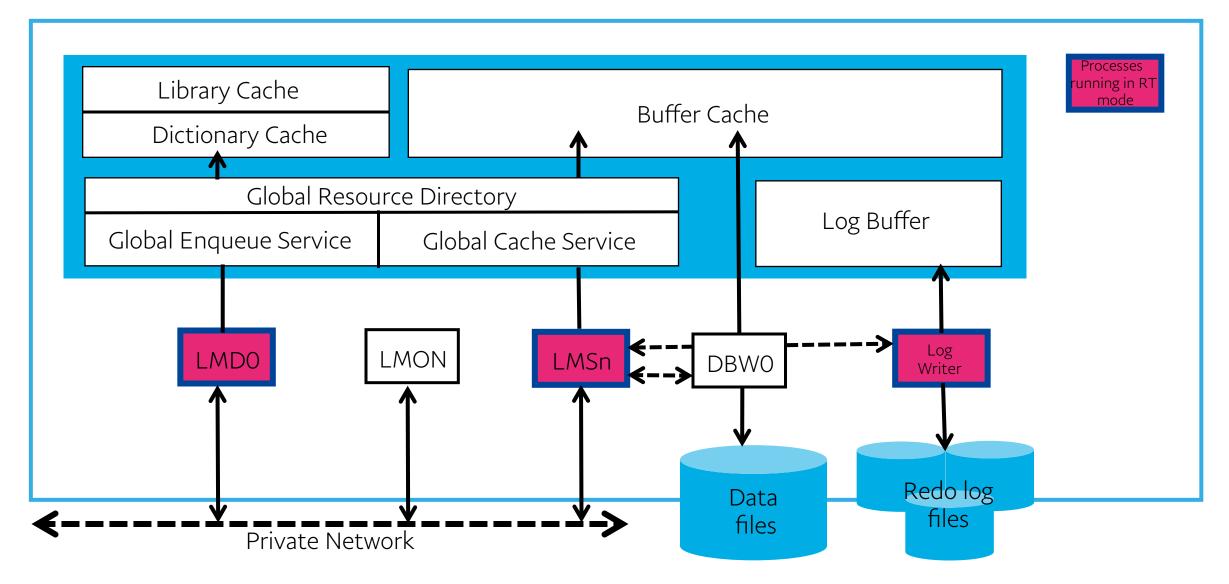
Usage of Private Network

✓ Clusterware

- Inter-node communication to maintain cluster integrity
 - Cluster Synchronization service
 - octssd to avoid time drift
 - crs resources and crsd agent processes

✓ Database

- Global Cache Services(GCS)/Parallel Cache Management(PCM)
 - Allocating, de-allocating and locking Data buffer cache resources
- Global Enqueue Services(GES)/non-Parallel Cache Management(non-PCM)
 - Dictionary cache and Library cache resources



RAC related background processes

- ✓ Critical Oracle Background Processes using private interconnect
 - LMSn (Global Cache Service Process)
 - Handles cache fusion(GCS) (Block transfers, messages)
 - Maintains records of each data file and block open in a cache in GRD (Global Resource Directory)
 - Controls flow of messages of remote instance(s)
 - Tracks global data block access
 - LCKO (Instance Enqueue Background Process)
 - Handles requests related to non-fusion resources such as library and row cache requests
 - LMD0 (Global Enqueue Service Daemon)
 - Manages global enqueues
 - Detection of deadlocks
 - LMON (Global Enqueue Service Monitor)
 - Maintenance instance membership
 - Reconfiguration of GCS/GES during recovery from instance crash or startup
 - LMHB (Global Cache/Enqueue Service Heartbeat Monitor)
 - Monitors LMON, LMD and LMSn Processes

SGA in RAC Database

Parameters Influencing RAC behavior

- 1. Always run critical background processes in RT priority
 - _lm_lms_priority_dynamic = false
 - _high_priority_processes = 'LMS*|VKTM|LMD*|LGWR'
- 2. Disable Undo DRM during instance start after crash
 - _gc_undo_affinity = false
- 3. Disable DRM to avoid unacceptable and unpredictable freezes
 - _gc_policy_time = 0
- 4. Minimize reconfiguration time for bigger SGA
 - _lm_tickets
 - gcs_server_processes
- 5. Monitoring related critical background parameters
 - Heartbeat ping to local processes
 - _lm_rcvr_hang_check_frequency
 - _lm_rcvr_hang_allow_time
 - _lm_rcvr_hang_kill
 - Heartbeat ping to peer process on remote instances
 - _lm_idle_connection_check
 - _lm_idle_connection_check_interval
 - _lm_idle_connection_kill
- 6. Fairness and light work rule (_fairness_threshold)

Wait events in RAC Database

- 1. gc cr/current grant 2-way (message wait)
 - Block does not exist in cache and LMS grants to FG process to read from disk
- 2. gc cr/current block 2-way/3-way (block wait)
 - Requested for read and write operations
 - Every execution triggers this since SCN advances
- 3. gc cr/current block congested (block congestion waits)
 - LMS didn't process within 1 ms due to CPU shortage or scheduling delays
- 4. gc cr/current block busy (block concurrency/contention waits)
 - Indicates high concurrency
 - LMS needs to perform additional work to prepare block in requested mode
- 5. gcs log flush sync
 - Before sending reconstructed CR/CURR block, LMS request LGWR to flush redo vectors
- 6. gc cr failure/gc cr retry
 - Inefficiencies with interconnect or invalid block request or checksum error
- 7. gc cr/current block corrupt/lost
 - Dropped packets due buffer overflow
 - Misconfigured interconnect

Hardware and OS support

- ✓ Supported networks
 - Ethernet
 - Ethernet with Jumbo frames
 - Infiniband
- ✓ Network protocols
 - UDP
 - RDS
- ✓ Redundancy
 - Oracle Clusterware HAIP
 - In-built on HCA (in the case of Infiniband)
 - Bonding on Linux
 - Bonding such as IPMP on Solaris

InfiniBand

- High speed communication link
- Built in availability and load balance features
- Port failover on dual-port HCA(Host Channel Adapter)
- Onboard processor
- Supports both UDP and RDS protocols
- Integrated with Zero-copy mechanism and RDMA (Remote Direct Memory Access)
- Provides higher bandwidth(40Gb/s) and throughput(Network PPS)
- Ultra low latency(less than 80µs) and high-efficiency
- Fabric consolidation for cluster and storage
- Oracle Exadata uses for both interconnect and storage
- Failure of IB Card makes database dysfunctional

©2016 PayPal Inc. Confidential and proprietary.

UDP vs RDS

✓ UDP

- Implemented reliability in USER mode(acking/windowing/fragmenting/re-ordering)
- Kernel consumes higher CPU cycles
- Results in retransmits and lost datagrams under heavy CPU utilization
- Requires all memory to be pre-registered

✓ RDS

- Ultra low latency, highly reliable and high bandwidth IPC protocol
- Driver controls with reliable delivery rather than OS kernel
- Compatible to existing IPC models using in Oracle RAC
- Runs on Infiniband
- Unlike UDP, consumes very low system CPU cycles
- Supports up to 1 MB Datagram Payload

Monitoring

✓ Capacity/Performance measures and metrics to track in Database

- 1. Estimate Global Cache traffic flowing in/out a given node from AWR
 - Messages are typically 200 bytes in size or less while CR/Curr blocks are in 8k(Same as DB_BLOCK_SIZE) in size
 - Goal is to keep network Packets/sec under 70% of estimate throughput of interconnect device
 - DBA_HIST_SYSSTAT provides data related to all GC wait events, block/message transfers
 - DBA_HIST_IC_DEVICE_STATS provides stats like packets received/transmitted/dropped for each interface
 - DBA_HIST_IC_CLIENT_STATS provides usage of interconnect by area(IPQ, DLM and Cache)

Begin	Date and Time	- CI	R Blocks -	 CURR BI 	locks -	- GCS I	Messages -	- GES N	fessages	Estd.
SnapID		 Served 	Recd	Served	Recd	Sent	Recd	Sent	Recd -	Traffic
005899	25-OCT-16_01:45	497,271	3,403,272	1,099,257	3,457,773	15,304,842	0	170,851	0	78,537
005900	25-OCT-16_02:00	523,275	3,629,648	1,140,903	3,587,882	16,162,008	0	163,385	0	82,036
005901	25-OCT-16_02:15	579,853	4,246,162	1,189,130	4,361,968	18,046,899	0	169,351	0	96,087
005902	25-OCT-16_02:30	543,690	3,793,673	1,201,856	3,799,555	16,890,334	0	163,888	0	86,424
	25-OCT-16_02:45	542,762	3,795,403	1,200,702	3,809,292	16,685,774	0	182,148	0	86,659
	25-OCT-16_03:00		3,785,220	1,224,125	3,881,049	16,922,233	0	179,242	0	87,382
	25-OCT-16_03:15		4,487,084	1,339,603	4,946,569	19,587,570	0	171,978	0	105,428
	25-OCT-16_03:30		4,001,571	1,311,175		18,080,367	0	205,834	0	93,467
	25-OCT-16_03:45	599,172		1,296,741		18,228,523	0	170,961	0	92,016
005908	25-OCT-16_04:00	575,364	3,954,142	1,314,352	4,133,448	17,829,586	0	175,135	0	94,377

Monitoring

- ✓ Capacity/Performance measures and metrics to track in Database
 - 2. Estimate Global Cache traffic flowing in/out a given node from AWR
 - Goal is to keep avg wait time for GC * grant wait events below 0.5 ms.
 - Goal is to keep avg wait time for GC * block transfer wait events below 1 ms

		Wait	Event Wait Time Summary Avg Wait Time (ms)									
I#	Class	Event	Waits	%Timeouts	Total(s)	Avg (ms)	%DB time	Avg	Min	Max	Std Dev	Cnt
187		DB CPU	N/A	N/A	1,599,417.54	N/A	65.82					4
	Applicatio	eng: TX - row lock contention	1,466,368	1.5	311,134.98	212,2	20.31	212.33	210.70	213.97	2.31	2
	User I/O	db file sequential read	630,685,513	0.0	275,374.03	0.4	11.33	0.44	0.43	0.44	0.00	4
	Cluster	gc current block 2-way	1.064523E+09	0.0	157,796.05	0.1	6.49	0.15	0.15	0.15	0.00	4
	Cluster	gc current block 3-way	526,151,094	0.0	118,935.87	0.2	4.89	0.23	0.22	0.23	0.00	4
	Cluster	gc cr grant 2-way	426,768,530	0.0	52,460.22	0.1	2.16	0.12	0.12	0.12	0.00	4
-	System 1/0		210,937,024	0.0	37,023.90	Û.Z	1.50	0.10	0.15	0.22	0.03	**
	Commit	log file sync	96,775,172	0.0	36,217.24	0.4	1.49	0.35	0.29	0.39	0.04	4
	Cluster	gc cr block busy	47,301,703	0.0	31,469.79	0.7	1.30	0.67	0.65	0.67	0.01	4
	System I/O	db file parallel write	181,716,855	0.0	27,260.16	0.2	1.12	0.15	0.15	0.16	0.00	4

					% of	Waits			
	Total		-						
Event	Waits	<1ms	<2ms	<4ms	<8ms	<16ms	<32ms	<=1s	>1s
gc buffer busy acquire	4789	97.0	. 9	- 5	- 5	.3	2	- 7	
gc buffer busy release	286	77.3	9.1	2.4	1.4	2.1	6.3	1.4	
gc cr block 2-way	191.9	99.8	.1	. 1	- 0	- 0	- 0	- 0	
gc cr block 3-way	215.8		.1	. 1	- 0	- 0	- 0	- 0	
gc cr block busy	62.6K		1.0	. 1	.1	- 0	- 0	- 0	
gc cr block congested	5254	99.6	- 0	. 2	. 1	. 0		. 1	
gc cr failure	490	99.8	. 2	_	_	_	_	_	
gc cr grant 2-way	888.7		. 1	- 0	- 0	- 0	- 0	- 0	
gc cr grant congested	7112		. 1	. 1.	. 1	. 1	. 1	. 1	
gc cr multi block request		100.0	_	_	_	_	_	_	
gc current block 2-way	2185.		. 1	- 0	- 0	: 0	- 0	- 0	
		99.7	.1_	.1	. 1	. 0	. 0	. 0	
gc current block busy	44.1K		2.7	.2	. 1	- 0	- 0	- 0	
gc current block congested			.1	. 1	. 1	. 1	- 0	. 1	
gc current grant 2-way	400.4	99.9	- 0	- 0	. 0	- 0	- 0	- 0	
gc current grant busy	124.9		. 2	. 1	. 1	. 0	- 0	. 1	
gc current grant congested		99.6	- 0	. 1	. 1	. 0	. 0	. 1	
gc current multi block req		99.5	. 2	.1	.2				
gc current retry	69	97.1	1.4	1.4					
gc current split	104	77.9	4.8	7.7	4.8	4.8			

©2016 PayPal Inc. Confidential and proprietary.

Monitoring

✓ Performance monitoring from OS

- 1. OSWatcher
 - Add "node:STORAGE" in /opt/oracle.cellos/image.id to collect IB data when using RDS
- 2. OS Commands
 - nmon utility (AIX)
 - netstat -i -I ibd1 -P udp 1 (Solaris, AIX)

```
ibd1
                      output
    input
                                    input
                                           (Total)
                                                       output
packets errs packets errs colls packets errs packets errs
                                                                 colls
10621
              8981
                                    48977
                                                   38061
                                                                 0
10678
              8979
                                    46569
                                                   34689
10531
              8892
                                    46015
                                                   34066
                                                                 0
8592
              7104
                                    39050
                                                   28561
9430
              7609
                                    41647
                                                   29762
8556
              7274
                                    38055
                                                   28249
```

collectl –s x

```
PktIn
                KBOut PktOut Errs
1732
       16025
2547
       21107
                 6479
                        20903
                                   0
        8039
                 2791
                         8271
      21627
                 6744
2200
                        21643
       13379
                 4136
                        13389
      17755
                 5361
       22880
                 7373
                        22892
                                   0
                                   0
1883
      17861
                 5149
                        17860
```


©2016 PayPal Inc. Confidential and proprietary.

Troubleshooting

✓ GIPCD log file

- 1. css uses UDP to check network heartbeat
- 2. Rank below 99 indicates some trouble with private network

```
2016-11-05 21:12:19.081: [GIPCDMON] [1677719296] gipcdMonitorSaveInfMetrics: inf[ 0] ib0.8004 - rank 99, avgms 0.000001 [ 31 / 29 / 29 ] 2016-11-05 21:12:19.081: [GIPCDMON] [1677719296] gipcdMonitorSaveInfMetrics: inf[ 1] ib2.8004 - rank 99, avgms 1.000000 [ 32 / 30 / 30 ] 2016-11-05 21:12:19.081: [GIPCDMON] [1677719296] gipcdMonitorSaveInfMetrics: inf[ 2] ib1.8004 - rank 99, avgms 0.645161 [ 31 / 31 / 31 ] 2016-11-05 21:12:19.081: [GIPCDMON] [1677719296] gipcdMonitorSaveInfMetrics: inf[ 3] ib3.8004 - rank 99, avgms 0.645161 [ 31 / 31 / 31 ]
```

✓ CSSD log files

- 1. cssd/gipcd establishes communication between nodes when node joins
- 2. Starting 11.2.0.2, multicast communication is MUST

PayPal

Troubleshooting

✓ OSWatcher

- oswnetstat
 - Received packets
 - Transmitted packets
 - Dropped packets
- 2. osw_ib_diagnostics
 - Interface port status
 - processor utilization
- 3. osw_rds_diagnostics
 - IB connections
 - RDS connections
 - RDS sockets
 - Checks remote node reachable over RDS
 - Various RDS counters
 - send_queue_full
 - cong_send_error
 - send_delayed_retry
 - ib_tx_stalled
 - ib_rx_total_frags

Putting it all together

- GCS/GES drives private network workload
- Slow private network impacts all activities in RAC cluster
- Redundancy is MUST for cluster to function without any disruptions
- Capacity analysis and Monitoring is essential to stay ahead of problem
- RDS on Infiniband to achieve ultra low latency and high throughput
- Always run critical background processes in RT priority
- Stable interconnect is the key for stable cluster performance
- If application doesn't scale well in single instance won't scale well in RAC

©2016 PayPal Inc. Confidential and proprietary.

