Where's Waldo?

Using a brute-force approach to find an
Execution Plan the CBO hides

Carlos Sierra and Mauro Pagano

© N O UL WNRE

Hard parsing review

Syntax validation

Semantics validation

Shared pool search

Shared pool memory allocation
Get bind variables values

Optimize query execution

Build parse tree and execution plan
Store tree and plan in shared pool

Cost Based Optimizer

“I do the very best | know how—the very best | can;
and | mean to keep doing so until the end.”
Abraham Lincoln

Motivation

CBO produces optimal execution plans

— Almost always

CBO produces consistent execution plans

— Sometimes an execution plan changes

AWR captures good and bad execution plans

— Only a small set of plans is actually captured

Sometimes we cannot easily reproduce a good plan!

How many plans? -~

SELECT /% ~"pathfinder_testid x/
el.email, jh.job_id
FROM employees el,
job_history jh
WHERE el.employee_id = jh.employee_id
AND jh.start_date > '@1-JAN-01°'
AND el.salary > (SELECT AVG(e2.salary)
FROM employees e2
WHERE el.department_id = e2.department_id)
AND el.department_id IN (SELECT d.department_id
FROM departments d,
locations 1
WHERE d.location_id = 1l.location_id
AND l.country_id = 'US')

e a+(bxT)!

 Where d and b are constants, T is the number
of Tables, and “!” represents “factorial”

Why a plan changes?

Maybe access paths?
Maybe CBO statistics?

Maybe bind variable values?
— Exacerbated with histograms

Maybe CBO version and configuration?
Maybe CBO is pure evil!

CBO versions and configuration

¢ 7.3,8.0,8.1,9.0,9.1,9.2,10.0, 10.1, 10.2, 11.0,
11.1,11.2,12.0,12.1, 12.2, ... plus patch sets

* Parameters
— optimizer_features _enable

. % ESPQA:demol> show parameters optimizer
O ptl m Z e r_ NAME TYPE VALUE
. _optimizer_use_feedback boolean TRUE
— ﬁ X C O n t ro I optimizer_capture_sql_plan_baselines boolean FALSE
— — optimizer_dynamic_sampling integer 2
optimizer_features_enable string 11.2.0.3
h | d h . d d optimizer_index_caching integer 0
- Ot e rS (reg u a r a n I e n optimizer_index_cost_adj integer 100
optimizer_mode string ALL_ROWS
optimizer_secure_view_merging boolean TRUE
optimizer_use_invisible_indexes boolean FALSE
optimizer_use_pending_statistics boolean FALSE
optimizer‘_use;sql_plan_baselines boolean TRUE

Why the CBO “hides” my plan?

 CBO only evaluates a subset of possible plans
— Reduce parse time by reducing plans to evaluate

-

III

e “Optimal” plan means

— The one with lowest cost

* Cost depends on

— Representative CBO statistics (and bind values)

— Simplified modeling and arbitrary heuristics

What if?

We loop over all CBO parameters

For each iteration we produce an execution plan
Execute each plan and measure its performance
Report all executions and their performance

Then maybe we get to produce a good plan the
CBO failed to relinquished as an optimal plan

Meet Pathfinder

Free software (by Mauro Pagano)
Installs nothing

Uses brute-force analysis to find “Waldo”

— Execution plans for most CBO related parameters
* Near 1,000 on 11.2.0.3 and over 1,500 on 12.1.0.2
* Most produce same execution plan (baseline)

— Some might produce more than one plan due to cardinality feedback

Reports all executions (plan and performance)

Three reasons to use Pathfinder

* To discover several plans not selected by the CBO
— Incidentally some may perform better than baseline

* To identify what causes a wrong result
— Which query transformation or patch is causing it

* To narrow reason of a long parse
— When executed on SQL that returns no rows

Pathfinder v1501 (2015-10-02): Plan Finder

dbname:demo connect string:sys/enkltec@demo as sysdba startime:2015/11/13 08:06:07

Test#

[- S L o S

Setting

BASELINE

ALTER SESSION SET "_add_stale_mv_to_dependency_list" = FALSE,
ALTER SESSION SET "_allow_level_without_connect_by" = TRUE;
ALTER SESSION SET "_always_anti_join" = 'CHOOSE';

ALTER SESSION SET "_always_anti_join" = 'HASH",

ALTER SESSION SET "_always_anti_join" = 'MERGE";

ALTER SESSION SET "_always_anti_join" = 'NESTED_LOOPS";
ALTER SESSION SET "_always_anti_join" = 'OFF";

ALTER SESSION SET "_always_semi_join" = 'CHOOSE';

ALTER SESSION SET "_always_semi_join" = "HASH',

ALTER SESSION SET "_always_semi_join" = 'MERGE",

ALTER SESSION SET "_always_semi_join" = 'NESTED_LOOPS',
ALTER SESSION SET "_always_semi_join" = "OFF",

ALTER SESSION SET "_always_star_transformation” = TRUE;
ALTER SESSION SET "_and_pruning_enabled" = FALSE,

ALTER SESSION SET " _b_tree_bitmap_plans" = FALSE;

ALTER SESSION SET "_bloom_filter_enabled” = FALSE,

ALTER SESSION SET "_bloom_folding_enabled" = FALSE,
ALTER SESSION SET "_bloom_minmax_enabled" = FALSE;
ALTER SESSION SET "_bloom_predicate_enabled" = FALSE;

ALTER SESSION SET "_bloom_predicate_pushdown_to_storage" = FALSE;

ALTER SESSION SET "_bloom_pruning_enabled" = FALSE;
ALTER SESSION SET "_bt_mmv_query_rewrite_enabled" = FALSE,
ALTER SESSION SET "_complex_view_merging" = FALSE;

ALTER SESSION SET "_connect_by_use_union_all" = 'FALSE",

ALTER SESSION SET "_connect_by_use_union_all" = 'OLD_PLAN_MOCDE",

ALTER SESSION SET "_connect_by_use_union_all" = 'TRUE",
ALTER SESSION SET "_convert_set_to_join" = TRUE;
ALTER SESSION SET "_cost_equality_semi_join" = FALSE,
ALTER SESSION SET "_db_file_optimizer_read_count” = 4,

Plan

Hash Value

566236885
566236885
566236885
566236885
566236885
566236885
566236885
566236885
566236885
566236885
566236885
566236885
566236885
566236885
566236885
566236885
566236885
566236885
566236885
566236885
566236885
566236885
566236885
566236885
566236885
566236885
566236885
566236885
566236885
566236885

Elapsed CPU Buffer
Time Time Gets Processed Plan

.081
.038
.041
.038
.039
.042

.04
.038
.037
.038
.038
.038
.035
.042
.038
.037
.041
.039
.038
.038
.038
.038
.042
.037
.039

.038

.037
.039

.075
.038

.04

.036
.039
.042
.039
.038
.036
.038
.037
.037
.034
.042
.038
.036
.041
.038
.038
.038
.037
.038
.041
.036
.038
.042
.037
.041
.035
.039

760
116
116
118
116
116
116
116
116
116
116
116
116
116
116
116
1186
116
116
116
116
116
116
114
116
116
116
116
116
116

Rows Execution V$SQL

2 plan
2 plan
2 plan
2 plan
2 plan
2|plan
2 plan
2plan
2 plan
2 plan
2 plan
2|plan
2|plan
2 plan
2plan
2 plan
2 plan
2 plan
2|plan
2 plan
2 plan
2 plan
2 plan
2 plan
2 plan
2|plan
2 plan
2 plan
2 plan
2 plan

Detalls
details
details
details
details
details
details
details
details
details
details
details
details
details
details
details
details
details
details
details
details
details
details
details
details
details
details
details
details
details
details

Execution Plan

Inst: 2 Child: 0 Plan hash value: 566236885

| Ia | Operation | Name | Starts | E-Rows |E-Bytes| Cost (%CPU)|
| 0 | SELECT STATEMENT]] 1 | | 11 (100}
| 1 | NESTED LOOPS SEMI] | 1 | 1| 76 | 11 (19)]
| 2 | NESTED LOOPS] | 1 | 1| 74 | 9 (23)]
[+ 3 | HASH JOIN]] 1] 17 | 765 | 8 (25)]
| 4 | VIEW | vw_so 1 | 1] 11 | 286 | 4 (25)]
| 5 | HASH GROUP BY] | 1 11 | 77 | 4 (25)]
| 6 | TABLE ACCESS STORAGE FULL| EMPLOYEES] 1] 107 | 749 | 3 (0)]
| 7 | TABLE ACCESS STORACGE FULL | EMPLOYEES | 1 107 | 2033 | 3 (0)]
[+ 8 | TABLE ACCESS BY INDEX ROWID | JOB_HISTORY | 38 | 1| 29 | 1 (0]
[+ 9 | INDEX RANCE SCAN | JHIST EMPLOYEE IX | 38 | 1| | 0 (0)]
| 10 | VIEW PUSHED PREDICATE | vW_NSO_2 | 3 | 1| 2 | 2 (0)]
| 11 | NESTED LOOES]] 3 | 1| 13 | 2 (0]
| 12 | TABLE ACCESS BY INDEX ROWID| DEPARTMENTS | 3 | 1| 7 | 1 (0)]
[* 13 | INDEX UNIQUE SCAN | DEPT_ID PX] 3 | 1| | 0 (0)]
[+ 14 | TABLE ACCESS BY INDEX ROWID| LOCATIONS] 3 | 4 | 24 | 1 (0]
|+ 15 | INDEX UNIQUE SCAN | Loc_ID PX | 3 | 1| | 0 (0]

1 - SEL$2E20A9F9

4 - SEL$6B83B0107 / VW_SQ_1@SEL$7511BFD2
5 - SEL$6E3B0107

6 - SEL$683B0107 / E2@SEL$2

M A e s S e A e A

What if | find a better plan?

* Better performing plans are possible even common

* Can | “pin” one of those better plans?
— You can create a SQL Plan Baseline or a SQL Profile

— Note:
e Consider this route only as a temporary workaround
* Free SPM scripts under cscripts or SQLT

Disclaimers "“

YOUR OWN
RISK

* Pathfinder may take hours to execute
— Use only on SQL that takes a few seconds per execution

* Not a replacement for proper SQL Tuning
— More of a band-aid or discovery exercise

* Use preferably on a Test or Development tier
— Although it could be used on Production

———
—ally - =

Pathfinder instructions = £

Download from http://mauro-pagano.com/
Unzip and cd to pathfinder-master

Put your SQL into script.sql provided
— SQL must contain /* Apathfinder_testid */

Connect as SYS and execute pathfinder.sq|

Pass user/password of user who can execute script
— Optionally include TNS alias: user/password@alias

Accenture
Enkitec Group

Extreme Exadata Conference

SAVE THE DATE

Barcelona, Spain Dallas, Texas
April 25-26, 2016 June 6-7, 2016

www.accenture.com/E4

Copyright © 2016 Accenture All rights reserved.

References and Contact

* http://mauro-pagano.com/
— Download pathfinder

* http://carlos-sierra.net/ IR
— Download cscripts which include SPM scripts

e

