
Lightweight REST Approaches to Data Access at Xtime

Adam Galper
CTO, Xtime
August 2015

Goals

● Problem Statement
● Data Access Approaches
● REST Advantages
● Dynamic Data Service (DDS)
● Experience with DDS Implementation at Xtime
● Comparison to ORDS 3.0

Problem Statement

● We may build long-lived systems in a RDBMS, but:
○ application frameworks come and go
○ development languages come and go
○ drivers vary across languages and frameworks

● As we build new applications or rewrite old ones, there is a significant cost in porting
a data access layer

● A data access layer should be:
○ lightweight for the developer, requiring only basic knowledge of the data model
○ lightweight for the app, requiring no unnecessary transformations of data
○ lightweight for the database, never allowing untuned requests from the app
○ mostly universal, applicable to at least 80% of data access use cases
○ long-lived, relying on protocols that are independent of languages and app

frameworks

● At Xtime, over a 13 year period, we have built data access layers for executing
queries and stored behaviors in Oracle, using:

○ Our own ORM, written in Java and XSLT
○ Hibernate
○ Spring JDBC
○ Spring Batch
○ Our own Python access framework

● All were heavyweight
○ Generating code for classes, interfaces, deployment descriptors
○ Requiring an app-level query language (OQL)
○ Consuming CPU when mapping result sets to transfer objects to access

objects
● A few years ago, we hypothesized that a thin REST layer over tables, views,

and stored behaviors would address >80% of our use cases

Data Access Approaches

● REST: REpresentational State Transfer
○ Introduced in 2000 as an architecture for scalable web services

● Uses HTTP protocol and verbs (GET, PUT, POST, DELETE), resulting in simple,
consistent, stateless interfaces

● Every development language supports HTTP, so clients do not require a
database driver (e.g. OCI, JDBC, or cx_Oracle)

○ A RESTful server exposing interfaces can manage connections/pools
● REST is message format agnostic

○ JSON is the most common format input/output
○ But can also return non-JSON messages (XML, CSV, etc…)

● REST is the most widely used interface for accessing both internal and external
services in the enterprise

REST Advantages

● We decided to build our own REST-based data access layer, because Oracle REST
Data Services (ORDS) seemed too heavyweight at the time

○ Dependent on APEX
○ Difficult to configure
○ Missing features

● DDS is a Jersey (JAX-RS) Java program deployed as a WAR in Tomcat clusters
○ DDS reads its endpoint metadata from a table registry and a procedure registry
○ The registries define the access path, security scheme, and various default behaviors for the

endpoints
○ DDS listens for incoming JAX-RS requests that match the endpoints, executing the access or

update, and converting return data (cursors) into the requested response format
@GET
@Path("/{key}")
@Produces({MediaType.APPLICATION_XML, MediaType.TEXT_XML})
@Transactional
public Object executeFunctionXml(@PathParam("key") String key, @QueryParam("sqlDebug") String sqlDebug)
throws XMLStreamException, JSONException {
 return executeFunction(key, ReturnMediaType.XML, sqlDebug);
}

○ DDS provides built-in features for managing the registries, caching results, paging results,
and applying the appropriate security scheme (e.g. Spring Security)

○ The core of DDS was ready for testing after a two week development effort
○ DDS is not intended for use outside of Xtime

Dynamic Data Service (DDS)

Configuration with DDS

DDS Table Operations

CRUD via standard REST Operations

GET /rest/table/[key] Select all rows

GET /rest/table/[key]/[id] Select a single row

GET /rest/table/[key]?<query_params> Select rows using (optional) query params

POST /rest/table/[key] Insert a row, provided in JSON

PUT /rest/table/[key]/[id] Update a row, attribute subset provided in JSON

DELETE /rest/table/[key]/[id] Delete a single row

Guidelines:

1. Tables must have a single column primary key which must be the first column in the table.
2. Transactions cannot span DDS service calls.
3. If a sequence of steps must commit or rollback as a unit, use a single procedural service

instead of a sequence of CRUD services.

DDS Table Operations

DDS Table Examples

DDS Procedure Operations

Guidelines:
1. Functions generally return a REF CURSOR, which is converted into JSON, XML, or CSV:

> curl 'http://<hostname>/rest/proc/dealerinfo?dealerCode=02037&make=SCION'
[

{
 "annualMileage": 12000,
 "authContextId": 4013530356,
 "dealerCode": "02037",
 "dealerName": "ALEXANDER TOYOTA YUMA",
...

2. Parameters do not need to be in order; a default naming convention (e.g. “dealerCode” => “I_DEALER_CODE”) is used to map to
the actual procedure arguments in the right order.

3. If desired, a custom set of parameter names can be specified (in procedure defined order) using the registry’s parameter_list column.
This allows a call of this form: <hostname>/rest/proc/dealerinfoCustom?d=02037&m=SCIO N

4. Results can be automatically cached (e.g. by TTL) by designating the cache type for the procedure in the registry.
5. In addition to returning JSON and XML, procedures (regardless of return type) can be requested to return data in csv format, using -H

'Accept: text/csv'

GET /rest/proc/[key]?<query-params>
POST /rest/proc/[key]?<query-params>

Execute function with params mapped to procedure arguments

Functions above returns a sys_refcursor for a multi-table join, result displayed below.

DDS Procedure Example

In two years of use:

1. Two old applications have been completely retrofitted with DDS
2. Two new applications have been built with DDS as the data access layer.
3. Two existing applications have been extended with features supported by DDS.
4. Over 600 endpoints registered, including 80+ tables
5. Table and Proc DDS invocations handle >90% of the new applications’ database requests
6. Xtime DDS clients are written in Javascript, Flex, Python, and Java using standard HTTP

invocation features of these languages.
7. DB connection pool management is simplified, concentrated in a DDS cluster
8. Clients contain no traces of SQL or references to named DB objects
9. Apps using DDS are built faster, require less code, shorter test cycles

10. DDS itself changes infrequently

Experience with DDS

ORDS 3.0 released May 2015, includes:

1. Features for “auto-enablement” of tables ⇒ equivalent to our Table Operations
2. Easy to write JSON filters allow query predicates and sorts to be specified in a query-by-

example format.
3. For more complex operations, REST calls are mapped to SQL and PL/SQL routines you can

write which return data in JSON and other formats.

In addition, ORDS is now independent of APEX and is easier to install/configure.

Finally, ORDS 3.0 has support for:

1. OAuth 2.0 security standard
2. Oracle NoSQL REST Access
3. Oracle 12c JSON Document Store

Comparison to ORDS 3.0

