
<Insert Picture Here>

Doing SQL from PL/SQL:
 Best and Worst Practices

Bryn Llewellyn
Distinguished Product Manager
Database Server Technologies Division, Oracle HQ

The following is intended to outline our general
product direction. It is intended for information
purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any
material, code, or functionality, and should not be
relied upon in making purchasing decisions.
The development, release, and timing of any
features or functionality described for Oracle’s
products remain at the sole discretion of Oracle.

Caveat…

Doing SQL from PL/SQL:
Best and Worst Practices

Doing SQL from PL/SQL:
Best and Worst Practices

•  An unattributed programmers’ axiom has it that
rules exists to serve, not to enslave.

“All rules were meant to be broken — including this
one.”

•  Here’s a more sensible suggestion, given as
the first (meta) best practice principle.

Seek approval from an
experienced colleague
before disobeying
any of the following
best practice principles

Agenda

•  State 22 principles in turn

•  For each, explain some background

•  Take the chance to explain
aspects of PL/SQL that
not everyone finds obvious

•  Motivate studying the whitepaper

we’re off…

Learn the terms of art:
session cursor, implicit cursor,
explicit cursor, cursor variable, and
DBMS_Sql numeric cursor.

Use them carefully and don’t
abbreviate them.

#1

Why ?

•  When discussing a PL/SQL program, and this
includes discussing it with oneself, commenting it, and
writing its external documentation,

…aim to avoid the unqualified use of “cursor”.

•  Rather, use the appropriate term of art.

•  The discipline will improve the quality of your thought

…and will probably, therefore,improve the quality of
your programs.

Embedded SQL

•  Allows SQL syntax directly within a PL/SQL statement

•  Therefore very easy to use

•  Supports only the following kinds of SQL statement:
•  select

•  insert, update, delete, merge [“DML”]

•  lock table

•  commit, rollback, savepoint

•  set transaction

How does embedded SQL work ?

•  You say this at compile time:

insert into t(PK, v1) values(j, b.v1);
...

select a.*
into b.The_Result
from t a
where a.PK = b.Some_Value;
...

update t a
set row = b.The_Result
where a.PK = b.The_Result.PK;

How does embedded SQL work ?

•  Your program says this at run time:

INSERT INTO T(PK, V1) VALUES(:B2 , :B1)
...

SELECT A.* FROM T A WHERE A.PK = :B1

...

UPDATE T A
SET "PK" = :B1 ,"N1" = :B2 ,"N2" = :B3 ,
 "V1" = :B4 ,"V2" = :B5
WHERE A.PK = :B1

In embedded SQL, dot-qualify each
column name with the table alias.

Dot-qualify each PL/SQL identifier
with the name of the name of
the block that declares it.

#2

<>declare
 Some_Value t.PK%type := ...
begin

 for r in (
 select a.PK, a.v1
 from t a
 where a.PK > b.Some_Value
 order by a.PK)
 loop
 Process_One_Record(r);
 end loop;

end;

Why ?

•  To avoid the risk of the addition of
a column to the table capturing
a PL/SQL identifier

•  Maximize the benefits of
fine-grained dependency tracking
(the compiler can’t trust your naming convention)

Declare every PL/SQL variable
with the constant keyword
unless the block intends
to change it.

#3

Why ?

•  Self-evident correctness w.r.t. injection risk

•  Generic readability

•  Occasional performance benefit

•  ER asks for new warning

Always specify the authid property
explicitly.

Choose deliberately between
Current_User and Definer.

Neither is “best”.

#4

Why ?

•  DR: protect access to tables via PL/SQL API

•  IR: Avoid the risk of privilege escalation

•  You will be warned

Use the Owner to dot-qualify
the names of objects that
ship with Oracle Database.

#5

Why ?

•  Avoid the risk of subversion by a local object

Strive to use SQL statements
whose text is fixed at compile time.

When you cannot, use a
fixed template.

Bind to placeholders.
Use DBMS_Assert to make
concatenated SQL identifiers safe.

#6

Why ?

•  Avoid the risk of injection

•  Avoid avoidable hard parse

For dynamic SQL, aim to use
native dynamic SQL.
Only when you cannot, use the
DBMS_Sql API.

#7

Why ?

•  native dynamic SQL is easier to write

•  And it’s faster

When using dynamic SQL,
avoid literals in the SQL statement.
Instead, bind the intended values
to placeholders.

#8

Why ?

•  You can’t say this one too often!

Always open a DBMS_Sql numeric
cursor with Security_Level => 2

#9

Cur := DBMS_Sql.Open_Cursor(
 Security_Level=>2)

Why ?

•  (New in 11.1.)

•  Inoculate against "cursor snarfing“
(David Litchfield)

•  ER asks for new warning

The only explicit cursor attribute you
need to use is Cur%IsOpen.
The only implicit cursor attributes
you need are Sql%RowCount, Sql
%Bulk_RowCount, and Sql
%Bulk_Exceptions.

#10

Why ?

•  Cur%IsOpen – to close ‘em in a catch all handler

•  Sql%RowCount – how many rows did my DML affect?

•  Sql%Bulk_RowCount – same for forall

•  Observe at the earliest opportunity

•  Sql%Bulk_Exceptions – in the ORA-24381 handler

(don’t forget the save exceptions keyword)

selecting

This one is contentious!

When you don’t know how many rows
your query might get,use
fetch... bulk collect into
with the limit clause
inside an infinite loop.

#11

Why ?

•  Bulk constructs are faster!

•  But the target collections mustn’t get arbitrarily big

•  ER asks for new warning

(requires the use of an identified cursor)

When you do know how the maximum
number of rows your query might get,
use select... bulk collect into or
execute immediate... bulk collect into
to fetch all the rows in a single step.

#12

Why ?

•  One step is better than many

•  select… into is functionally complete

•  Fetch into a varray declared with the maximum size
that you are prepared to handle.

•  Implement an exception handler for ORA-22165
(index outside the range of existing elements) to help
bug diagnosis.

Use the the DBMS_Sql API when you
don’t know the binding requirement or
what the select list is until run time.

If you do, at least, know the select list,
use To_Refcursor() and then
batched bulk fetch..

#13

Why ?

•  You have no choice.

Method 4 is what it is –

and the DBMS_Sql API is here to stay for that,
and only that, use case

•  But there’s no virtue in masochism

so twizzle to a ref cursor when you can

select Count(*)
from All_Objects
where 1 = 1
and Object_Name = :b1
and (1=1 or :b2 is null)

select Count(*)
from All_Objects
where Object_Name = :b1

Well, you do have a choice…

•  This:

•  is simplified by SQL compilation to this:

To get exactly one row, use
select... into or
execute immediate... into.

Take advantage of No_Data_Found
and Too_Many_Rows.

#14

Why ?

•  The construct says what you mean

•  The exceptions are what you need for the regrettable
and the unexpected cases

•  It’s fewer steps and so it’s quicker

religion

Expose your database application
through a dedicated schema that has
only private synonyms for the objects
that define its API.

#15

Why ?

•  How else can you enforce an API ?

Expose your database application
through a PL/SQL API.
Hide all the tables in schemas that the
client to the database cannot reach.

#16

OK, this one is contentious…

•  Universal best practice principle of software
engineering:

•  Decompose your system into modules

•  Expose each module’s functionality, at a carefully designed
level of abstraction, with a clean API

•  Hide the module’s implementation behind that API

•  PL/SQL subprograms define an API

•  Tables and SQL statements are part of a module’s
implementation – to be hidden from clients

Define the producer/consumer API as
a function whose return datatype
represents the desired data.

Hide all the SQL processing in the
producer module.

Parameterize the producer function as
you would parameterize the query.

#17

Why ?

•  This way, the consumer is immune to an
implementation change that a requirements change
might cause.

•  Approach accommodates getting the rows in batches
or getting all the rows in one call — where this might
be a slice.

insert, update, delete -ing

For each application table, maintain a
template record type that defines the
same constraints and defaults.

#18

Why ?

•  Lets you implement the insert of a new row where the
caller mentions only some of many optional columns

 New_Row Tmplt.T_Rowtype;
begin
 New_Row.PK := PK;

 if n1_Specified then
 New_Row.n1 := n1;
 end if;
 ...

 insert into t values New_Row;

Use merge for an “upsert”
requirement.

Don’t use update... set row...
together with insert in an exception
handler.

#19

Why ?

•  merge says what you mean in a single statement

•  So it’s quicker

 Result t%rowtype;
begin
 ...
 merge into t Dest
 using (select
 Result.PK PK,
 Result.n1 n1,
 ...,
 Result.v1 v1,
 ...
 from Dual d) Source
 on (Dest.PK = Source.PK)

 when matched then update set
 Dest.n1 = Source.n1,
 ...,
 Dest.v1 = Source.v1,
 ...

 when not matched then insert values (
 Source.PK,
 Source.n1,
 ...,
 Source.v1,
 ...);

Use the forall statement rather than
repeating a single-row statement.
Handle ORA-24381 when it’s safe to
skip over a failed iteration.
For bulk merge, use the table operator
with a collection of objects.

#20

Why ?

•  It’s quicker

 Results Results_t;
begin
 ...
 merge into t Dest
 using (select * from table(Results))

Source
 on (Dest.PK = Source.PK)

 when matched then update set
 Dest.n1 = Source.n1,
 ...,
 Dest.v1 = Source.v1,
 ...

 when not matched then insert values (
 Source.PK,
 Source.n1,
 ...,
 Source.v1,
 ...);

Don’t be afraid to get rows with
batched bulk fetch, process them in
PL/SQL, and to put each batch back
with a forall statement.
The approach carries no noticeable
performance cost compared to using a
PL/SQL function directly in a SQL
statement.

#21

Why ?

•  You have a data transformation that you need to
solve

•  Beyond a certain level of complexity, procedural code
is easier to write and understand than declarative
code

•  Therefore the chances of its being correct are
increased

 cursor Cur is
 select Rowid, a.v1 from t a for update;

 type Rowids_t is varray(1000) of Rowid;
 Rowids Rowids_t;

 type vs_t is varray(1000) of t.v1%type;
 vs vs_t;

 Batchsize constant pls_integer := 1000;
begin
 ...
 loop
 fetch Cur bulk collect into Rowids, vs

 limit Batchsize;
 for j in 1..Rowids.Count() loop
 -- This is a trivial example.
 vs(j) := f(vs(j));
 end loop;
 forall j in 1..Rowids.Count()
 update t a
 set a.v1 = b.vs(j)
 where Rowid = Rowids(j);
 exit when Rowids.Count() < Batchsize;
 end loop;

11.1 lifts a notorious restriction

•  q PLS-00436:

implementation restriction:

cannot reference fields of
BULK In-BIND table of records

 loop
 fetch Cur bulk collect into Results
 limit Batchsize;
 for j in 1..Results.Count() loop
 -- This is a trivial example.
 Results(j).v1 := f(Results(j).v1);
 end loop;
 forall j in 1..Results.Count()
 update t a
 set a.v1 = b.Results(j).v1
 where Rowid = b.Results(j).Rowid;
 exit when Results.Count() < Batchsize;
 end loop;

Note…

•  There are no special considerations for
doing DML with native dynamic SQL except:

•  You can’t use the “whole row” syntax

a straggler…

Use this:

#22

for the functionality of an in list
whose element count you don’t know
until run time.

select ...

from ...

Where x in (select Column_Value
 from table(The_Values))

Why ?

•  Avoid native dynamic SQL with concatenated literals

•  Avoid method 4 DBMS_Sql

create type Strings_t is table of varchar2(30)
/

 ...
 ps Strings_t;
begin
 select a.PK, a.v1
 bulk collect into b.Results
 from t a
 where a.v1 in (select Column_Value
 from table(b.ps));

finally…

Search for:

Doing SQL from PL/SQL

search.oracle.com

Technology Network

In the section:

•  Read the detailed technical whitepaper

•  It’s listed on the PL/SQL Homepage

www.oracle.com/technetwork/database/features/plsql/

•  Or…

<Insert Picture Here>

A	

Q	

&	

