
Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 1

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 2

With Oracle Database 12c,
there is all the more reason
to use database PL/SQL

Bryn Llewellyn,
Distinguished Product Manager,
Database Server Technologies Division
Oracle HQ

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 3

The following is intended to outline our general product direction. It is intended
for information purposes only, and may not be incorporated into any contract.
It is not a commitment to deliver any material, code, or functionality, and should
not be relied upon in making purchasing decisions. The development, release,
and timing of any features or functionality described for Oracle’s products
remains at the sole discretion of Oracle.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 4

Before we start…

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 5

What is SQL?
§ This is not SQL select Count(*) from DBA_Objects where Object_Type = 'PACKAGE';

§  It’s one statement, from a sequence of statements, in the SQL*Plus scripting language, when you’ve earlier done this statement
SET SQLTERMINATOR ; in that same language

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 6

What is SQL?
§ This is SQL:

select Count(*) from DBA_Objects where Object_Type = 'PACKAGE’

§  It’s a declarative scheme to define a single outcome
§  Its scope is the single statement
§  It has NO notions for assembling SQL statements into a program
§ For that you need a procedural language (not a scripting language)

No terminator!

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 7

What is PL/SQL?

§  It’s a procedural language designed explicitly for issuing
SQL statements and receiving their results

§  It’s designed for maximum efficiency (e.g. implicit soft parse
avoidance)

§  It runs inside the database – eliminates client/server round
trips, executes in the same process as the SQL

§  It has explicit language features for doing SQL – embedded
SQL (name-resolved at compile-time), anchored declarations,
automatic conversion of a SQL error to a PL/SQL exception…

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 8

This is PL/SQL

<>declare
 n integer not null := -1;
 Object_Type constant DBA_Objects.Object_Type%type not null :=

 'PACKAGE';
begin
 select Count(*)
 into b.n
 from DBA_Objects o
 where o.Object_Type = b.Object_Type;
 if n < 1200 then
 Raise_Application_Error(-20000, 'Not enough PL/SQL!');
 end if;
end b;

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 9

Agenda
§  The universally accepted 50-year-old modular design

principles – and why do many (most?) Oracle customers
refuse to follow?

§  Objection #1 demolished by EBR

§  Objection #2 demolished by binding to PL/SQL datatypes
from the client

§  Objection #3 demolished ‘cos each developer
can self-provision his own PDB

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 10

The big picture

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 11

Let’s start by thinking about the big picture of applications that use Oracle Database to implement their
database of record and, in that context, how to understand the optimal top-down architecture of such an
application.

Using PL/SQL, rather than avoiding it altogether, brings a significant performance benefit. Only when the
case for using PL/SQL is time to talk about its details. PL/SQL’s purpose in the optimal architecture is to
issue SQL statements and to deal with the results, and in that sense, SQL statements can be seen as a special
kind of subprogram within the closure of subprograms that implement the net effect of entry into PL/SQL.
Therefore, the division of labor between the PL/SQL and SQL subsystems in the database, is the most
critical determinant of overall PL/SQL performance. The stage-setting, and the interplay between PL/SQL
and SQL, are addressed in the book’s first two sections.

It would be meaningless to try to improve the performance of an incorrect application! Correctness must
first be established; and only then, may performance be considered.

I’ll take the opportunity, here, to specialize software engineering’s central, generic principle for maximizing
the chance of application correctness to the problem domain that this book addresses. By a very happy
coincidence, it turns out that we can both have our cake and eat it: the architectural approach that maximizes
the chance of application correctness is the same one that brings optimal performance.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 12

Few would deny that the correct implementation of a large software system depends upon good modular
design. A module is a unit of code organization that implements a coherent subset of the system’s
functionality and that exposes this via an API that directly expresses this, and only this, functionality, and that
hides all the implementation details behind this API.

Of course, this principle of modular decomposition is applied recursively: the system is broken into a small
number of major modules, each of these is further broken down, and so on. This principle is arguably the
most important one among the legion best practice principles for software engineering — and it has been
commonly regarded as such for at least the past fifty years.

These days, an application that uses Oracle Database as its persistence mechanism is decomposed at the
coarsest level into the database module, the application server module, and the client module.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 13

The ultimate implementation of the database module is the SQL statements that query from, and make
changes to, the content of the application’s tables. However, very commonly, an operation upon a single table
implements just part of what, in the application’s functional specification, is characterized as a business
transaction.

The canonical example is the transfer funds business function within the scope of all the accounts managed
by an application for a particular bank. This function is parameterized primarily by identifying the source
account, the target account, and the cash amount; other parameters, like the date on which the transaction is
to be made, and a transaction memo, are sometimes required.

This immediately suggests this API:

function Transfer_Funds(Source in..., Target in..., Amount in..., ...)

 return Outcome_t is...

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 14

The API is specified as a function to reflect the possibility that the attempt may be disallowed, and the return
datatype is nonscalar to reflect the fact that the reason that the attempt is disallowed might be characterized
by several values, including, for example, the shortfall amount in the source account.

We can see immediately that there are several different design choices. For example, there might be a separate
table for each kind of account, reflecting the fact that different kinds of account have different account
details; or there might be a single table, with an account kind column, together with a family of per-account-
kind details tables. There will similarly be a representation of account holders, and again these might have
various kinds, like personal and corporate, with different details. There will doubtless be a table to hold
requests for transfers that are due to be enacted in the future.

The point is obvious: a single API design that exactly reflects the functional specification may be
implemented in many different ways. The conclusion is equally obvious:

The database module should be exposed by a PL/SQL API.
And the details of the names and structures of the tables,
and the SQL that manipulates them,
should be securely hidden from the application server module.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 15

This paradigm is sometimes known as “thick database”. It sets the context for the discussion of when to use
SQL and when to use PL/SQL. The only kind of SQL statement that the application server may issue is a
PL/SQL anonymous block that invokes one of the API’s subprograms:

begin :r := Transfer_Funds(:s, :t, :a, ...); end;

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 16

As a bonus, PL/SQL is better suited to the task of executing SQL statements and processing their results than any other programming language that
can do this. For example:

• It supports embedded SQL as an intrinsic part of the definition of the syntax and the semantics of the language.

• The fact that a PL/SQL identifier can be used in embedded SQL where ordinary SQL would use a placeholder not only frees the programmer
 from the chore of writing code to bind to placeholders programatically, but also guarantees that the code is not vulnerable to SQL injection.

• The ability to anchor declarations of PL/SQL variables and types to the datatypes of columns in schema-level tables (%type, %rowtype, and
 the iterator in a cursor for loop) means that PL/SQL programs automatically adjust themselves to changes in the definitions of the tables
 they manipulate. PL/SQL programs that make only static references to other PL/SQL programs, tables, views, and so on are guaranteed
 to execute using only the latest definitions of what they depend upon.

• The ability to control which users can perform which business functions by selectively granting the Execute privilege on specified PL/SQL
 subprograms, rather than controlling which users can see and change data in which individual tables, by granting the Select, Insert, Update,
 and Delete privileges, is key to protecting the integrity of data.

• The fact that PL/SQL has intrinsic exception handling and that SQL errors (the notorious ORA-nnnnn) are mapped to PL/SQL
 exceptions, together with the fact the commit and rollback SQL statements are supported as embedded SQL statements in PL/SQL,
 guarantees the atomicity of business functions that change more than one table. This is another key factor in protecting data integrity.

• PL/SQL’s SQL processing is optimally performant, not only because SQL executes in the same server process as the PL/SQL that issues it,
 but also because of various under-the-covers optimizations like the famous soft-parse avoidance.

Of course, it is no coincidence that PL/SQL uniquely has these properties. They were defined specifically as the requirements, at the time of its
invention, that the language should meet.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 17

I know of many customers who strictly adhere to the thick database paradigm; and I know of many who do not — to the extent that all calls to the
database are implemented as SQL statements that explicitly manipulate the application’s tables. This, of course, makes the database unworthy of the
term “module”!

Customers in the first group seem generally to be very happy with the performance and maintainability of their applications.

Ironically, customers in the second group routinely complain of performance problems (because the execution of a single business transaction often
involves many round trips from the application server module to the database module). And they complain of maintenance problems (because even
small patches to the application imply changes both to the implementation of the database module and to the implementation of the application
sever module).

I am convinced that an application that uses Oracle Database
as its persistence mechanism has no special properties
that recommend that its design,
uniquely among an uncountable number of diverse software systems,
should disregard otherwise universally respected wisdom.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 18

Modular software principles
applied to applications that use Oracle Database

§ Fifty-year-old wisdom instructs us to expose the database
to client-side code as a PL/SQL API:

§ securely hide the implementation details:

§  the names and structures of the tables
§ and the SQL statements that manipulate them

 from the client.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 19

Modular software principles
with an Oracle Database conference slant

§ Everyone at every OUG-style conference: bind to
placeholders; avoid literals (performance and injection-
proofing)

§ Cary Millsap (and legion others): one client/server
round trip rather than many

§ Mark Farnham: avoid deadlocks by updating the tables
in a FK-PK related set in the proper, and fixed, order

§ Tom Kyte: avoid implicit conversions when binding to SQL

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 20

Modular software principles
with an Oracle Database conference slant – cont

§ Tom Kyte: never (think that you can) enforce data rules
using client-side code

§ Tom (and many others): use SQL in preference to
procedural code, and write the proper SQL…

§ Jeff Jacobs (and many others): I can’t stop a Java
developer writing bad SQL

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 21

Why don’t the unhappy customers
do what’s good for them?

§  I hear four reasons

§ “PL/SQL” doesn’t start with the letter “J”

§  I can’t change PL/SQL code in my production
app without causing lots of downtime

§  I can’t call PL/SQL procedures with IBPI’s of
records from Java and other clients

§  I can’t give each developer his own sandbox
database to work in

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 22

Oracle Database 12c brings changes that
demolish each of these objections

§ EBR is enhanced to make adopting it a no-brainer

§ PL/SQL is enhanced to allow subprograms with
formals declared using PL/SQL-only datatypes (IBBI
of records)

§ Oracle Multitenant allows a PDB to be created (new
or as a clone) very quickly – or even instantaneously
using SLQ statements. Building a self-provisioning
mini-app is trivial

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 23

Agenda

§  Why do many (most?) Oracle customers refuse to follow
universally accepted 50-year-old modular design principles?

§  Objection #1 demolished by EBR

§  Objection #2 demolished by binding to PL/SQL datatypes
from the client

§  Objection #3 demolished ‘cos each developer
can self-provision his own PDB

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 24

Quiz

§ Who does scheduled backups too?

§ Who has Data Guard?

§ Who has used Oracle Active Data Guard Rolling Upgrade?

§ Who has used Rolling RAC Upgrade?

§ Who has used edition-based redefinition (EBR)?

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 25

The EBR page on OTN

§  http://www.oracle.com/technetwork/database/
 features/availability/ebr-455513.html

§  Technical White Paper

§  Recorded Overview
Presentation (download)

§  Documentation

§  Tutorial

§  Self-contained EBR exercise

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 26

Lightening review
of the “classic”
conference presentation
on EBR

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 27

Editioned and noneditioned objects
§ An object whose type is noneditionable is never editioned

§ An object whose type is editionable is editioned only when you
request it for that object (requires that the owner is editions-
enabled)

§ Theorem: a noneditioned object cannot ordinarily depend on
an editioned object

–  For example, a table cannot depend on an editioned UDT

–  If you want to use a type as the datatype for a column,
that UDT must not be editioned

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 28

Improvements to EBR in Oracle Database 12c

§ The granularity of the editioned state of an object

–  In 11.2, the granularity is the whole schema

–  From 12.1, the granularity is the indvidual object

§ A materialized view or an index on a virtual column is allowed
to depend on an editioned PL/SQL function or an editioned
view

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 29

Public synonyms for customer editioned objects

§ Notice that a public synonym is no more than an ordinary
synonym that happens to have the owner public

§  In 11.2, you couldn’t editions-enable public, so a public
synonym couldn’t denote (and therefore depend upon) an
editioned object. This caused a noticeable adoption barrier for
EBR

§  In 12.1, public is always editions-enabled – but the Oracle-
maintained public synonyms are not editioned. (If you did make
any of them editioned, it would cause havoc.)

§ You can safely make public synonyms that denote your own
editions objects editioned

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 30

Tables with UDT columns

§ An ordinary (as opposed to virtual) column cannot specify the
evaluation edition or edition range metadata

§ Therefore, a UDT that defines the datatype for a table column
must remain noneditioned.

§  In an EBR exercise, if the aim is to redefine the UDT, then the
“classic” replacement column paradigm is used

§  A spec doesn’t depend on its body. So the body of an ADT,
where the code is, can be editioned. (The appropriate one is
found at run time.)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 31

Materialized views and indexes on virtual columns

§ Objects of these kinds have metadata that is explicitly set by
the create and alter statements

–  the evaluation edition explicitly specifies the name of the edition in
which the resolution of editioned names, within the closure of the
object’s dependency parents (at compile time), and those objects
that are identified during SQL execution (at run time)

–  The edition range explicitly specifies the set of adjacent edtitions
in which the optimizer will consider the object when computing the
execution plan

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 32

Agenda

§  Why do many (most?) Oracle customers refuse to follow
universally accepted 50-year-old modular design principles?

§  Objection #1 demolished by EBR

§  Objection #2 demolished by binding to PL/SQL
datatypes from the client

§  Objection #3 demolished ‘cos each developer
can self-provision his own PDB

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 33

Binding values of PL/SQL-only datatypes
into SQL statements

§ Before 12.1, you could bind only values of SQL
datatypes

§  In 12.1, you can bind PL/SQL index-by-pls_integer
tables (of records) and booleans

§ from client-side programs – OCI or both flavors
of JDBC – and from PL/SQL

§ to anonymous blocks, statements using
functions, or statements using the table operator

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 34

Binding a PL/SQL index-by table to SQL

§ Before 12.1, you could select from a collection, but

•  The type had to be defined at schema-level

•  Therefore it had to be a nested table or a varray

•  A non-scalar payload had to be an ADT

§ New in 12.1
•  The type can be defined in a package spec – can be

 index by pls_integer table

•  The payload can be a record – but the fields
 must still be SQL datatypes

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 35

The collection

package Pkg authid Definer is
 type r is record(n integer, v varchar2(10));
 type t is table of r index by pls_integer;
 x t;
end Pkg;

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 36

Example 1
binding an IBPI to a PL/SQL function in SQL
function f(x in Pkg.t) return varchar2 authid Definer is
 r varchar2(80);
begin
 for j in 1..x.Count() loop
 r := r||...;
 end loop;
 return r;
end f;

procedure Bind_IBPI_To_Fn_In_SQL authid Definer is
 v varchar2(80);
begin
 select f(Pkg.x) into v from Dual;
 ...
 execute immediate 'select f(:b) from Dual' into v
 using Pkg.x;
end Bind_IBPI_To_Fn_In_SQL;

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 37

Example 2
using with the table operator
procedure Select_From_IBPI authid Definer is
 y Pkg.t;
begin
 for j in (select n, v from table(Pkg.x)) loop
 ...
 end loop;

 execute immediate 'select n, v from table(:b)'
 bulk collect into y
 using Pkg.x;
 for j in 1..y.Count() loop
 ...
 end loop;
end Select_From_IBPI;

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 38

Example 3
binding an IBPI to an anonymous block
procedure p1(x in Pkg.t) authid Definer is
begin
 for j in 1..x.Count() loop
 ...;
 end loop;
end p1;

procedure Bind_IBPI_To_Anon_Block authid Definer is
begin
 execute immediate 'begin p1(:b); end;' using Pkg.x;
end Bind_IBPI_To_Anon_Block;

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 39

Example 4
binding a boolean to an anonymous block
procedure p2(b in boolean) authid Definer is
begin
 DBMS_Output.Put_Line(case b
 when true then 'True'
 when false then 'False'
 else 'Null'
 end);
end p2;

procedure Bind_Boolean_To_Anon_Block authid Definer is
 Nil constant boolean := null;
begin
 execute immediate 'begin p2(:b); end;' using true;
 execute immediate 'begin p2(:b); end;' using false;
 execute immediate 'begin p2(:b); end;' using Nil;
end Bind_Boolean_To_Anon_Block;

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 40

Improved support for binding PL/SQL types in JDBC

§ Before 12.1

•  Generate a schema level object type to mirror the
structure of the non-SQL package type

•  Populate and bind the object into a custom PL/SQL
wrapper around the desired PL/SQL subprogram

•  Convert the object to the package type in the wrapper
and call the PL/SQL subprogram with the package type

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 41

Improved support for binding PL/SQL types in JDBC

§ New in 12.1

•  PL/SQL package types supported as binds in JDBC

•  Can now execute PL/SQL subprograms with non-SQL
types

•  Supported types include records, index-by tables,
nested tables and varrays

•  Table%rowtype, view%rowtype and package defined
cursor%rowtype also supported. They’re technically
record types

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 42

Example1: Bind a single record from Java
into a PL/SQL procedure, modify it,
and bind it back out to Java

package Emp_Info is
 type employee is record(First_Name Employees.First_Name%type,
 Last_Name Employees.Last_Name%type,
 Employee_Id Employees.Employee_Id%type,
 Is_CEO boolean);

 procedure Get_Emp_Name(Emp_p in out Employee);
end;

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 43

Example1:
§ Use the EmpinfoEmployee class, generated by

JPub, to implement the Employee formal parameter
{ …
 EmpinfoEmployee Employee = new EmpinfoEmployee();

 Employee.setEmployeeId(new java.math.BigDecimal(100)); // Use Employee ID 100

 // Call Get_Emp_Name() with the Employee object

 OracleCallableStatement cstmt =
 (OracleCallableStatement)conn.prepareCall("call EmpInfo.Get_Emp_Name(?)");
 cstmt.setObject(1, Employee, OracleTypes.STRUCT);

 // Use "PACKAGE.TYPE NAME" as the type name

 cstmt.registerOutParameter(1, OracleTypes.STRUCT, "EMPINFO.EMPLOYEE");
 cstmt.execute();

 // Get and print the contents of the Employee object
 EmpinfoEmployee oraData =
 (EmpinfoEmployee)cstmt.getORAData(1, EmpinfoEmployee.getORADataFactory());
 System.out.println("Employee: " + oraData.getFirstName() + " " + oraData.getLastName());
 System.out.println("Is the CEO? " + oraData.getIsceo());
}

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 44

Example 2: populate a collection of table%rowtype
using a bulk collect statement, and pass the collection
as an out parameter back to the caller

package EmpRow is
 type Table_of_Emp is table of Employees%Rowtype;
 procedure GetEmps(Out_Rows out Table_of_Emp);
end;

package Body EmpRow is
 procedure GetEmps(Out_Rows out Table_of_Emp) is
 begin
 select *
 bulk collect into Out_Rows
 from Employees;
 end;
end;

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 45

Example 2:
{ …
 // Call GetEmps() to get the ARRAY of table row data objects
 CallableStatement cstmt = conn.prepareCall("call EmpRow.GetEmps(?)");

 // Use "PACKAGE.COLLECTION NAME" as the type name

 cstmt.registerOutParameter(1, OracleTypes.ARRAY, "EMPROW.TABLE_OF_EMP");
 cstmt.execute();

 // Print the Employee Table rows
 Array a = cstmt.getArray(1);
 String s = Debug.printArray ((ARRAY)a, "",
 ((ARRAY)a).getSQLTypeName () +"(", conn);
 System.out.println(s);
}

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 46

Agenda

§  Why do many (most?) Oracle customers refuse to follow
universally accepted 50-year-old modular design principles?

§  Objection #1 demolished by EBR

§  Objection #2 demolished by binding to PL/SQL datatypes
from the client

§  Objection #3 demolished ‘cos each developer
can self-provision his own PDB

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 47

The macroscopic provisioning operations

§ Create PDB

§ Clone PDB

§ Unplug PDB

§ Plug in PDB

§ Drop PDB

§ Also, set the mode

§ read-write, read-only, mounted | restricted?

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 48

The SQL statements

create pluggable database... admin user... identified by...

create pluggable database... from...

alter pluggable database... unplug into...

-- "as clone" is incompatible with "move"
create pluggable database... [as clone] using... [copy/move]

-- "keep" makes sense only after "unplug"
drop pluggable database... [including/keep] datafiles

alter pluggable database... close [immediate] [force]

alter pluggable database... open [read only/read write] [restricted]

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 49

Raw PL/SQL encapsulation: clone a PDB
declare
 Source_Open_Mode Sys.v_$PDBs.Open_Mode%type not null := '?';
begin
 select a.Open_Mode
 into Source_Open_Mode
 from Sys.v_$PDBs a
 where a.Name = 'PDB3';

 if Source_Open_Mode = 'READ WRITE' then
 execute immediate 'alter pluggable database PDB3 open read only force';
 end if;

 execute immediate 'create pluggable database PDB4 from PDB3';

 if Source_Open_Mode = 'READ WRITE' then
 execute immediate 'alter pluggable database PDB3 open read write force';
 end if;

 execute immediate 'alter pluggable database PDB4 open read write';
end;

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 50

The PL/SQL API – core

procedure Sys.Create_PDB(
 PDB_Name in varchar2)

procedure Sys.Clone_PDB(
 Source_PDB_Name in varchar2, Clone_PDB_Name in varchar2)

procedure Sys.Unplug_PDB(
 PDB_Name in varchar2, Manifest_Dir in varchar := null)

procedure Sys.Plug_In_PDB(
 PDB_Name in varchar2, Manifest_Dir in varchar2 := null)

procedure Sys.Drop_PDB_Incl_Files(
 PDB_Name in varchar2)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 51

The API – extras

function Check_Plug_Compatibility(
PDB_Name in varchar2, Manifest_Dir in varchar2 := null)
return varchar2

view PDBs(Name, Open_Mode, Res, Status, Create_Scn)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 52

Putting the PL/SQL API through its paces
procedure Demo_Plsql_Provisioning_API authid Definer is
begin

 Create_PDB@c##Provisioner_At_cdb2('pdb1');

 Clone_PDB@c##Provisioner_At_cdb2('pdb1', 'pdb2');

 Unplug_PDB@c##Provisioner_At_cdb2('pdb2');

 Drop_PDB_Incl_Files@c##Provisioner_At_cdb2('pdb1');

 Plug_In_PDB@c##Provisioner_At_cdb1('pdb2');

 Drop_PDB_Incl_Files@c##Provisioner_At_cdb1('pdb2');

end Demo_Plsql_Provisioning_API;

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 53

Agenda

§  Summary

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 54

Oracle Database 12c brings these enhancements

§ Edition-based redefinition

§ The granularity of the editioned state of the name of
a PL/SQL unit, a view, or a synonym is now the
single occurring name. Materialized views and
virtual columns have new metadata to specify the
edition to be used to resolve the name of an
editioned dependency parent. They also have new
metadata to specify the range of editions within
which the optimizer may consider the object.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 55

Oracle Database 12c brings these enhancements

§ PL/SQL:

§ Values of non-SQL datatypes can be bound to the
formal parameters of database PL/SQL
subprograms invoked from the client. In
particular, row sets can now be passed between
the client and the database using the natural
datatype: an index-by-PL/SQL-table of records.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 56

Oracle Database 12c brings these enhancements

§ The multitenant architecture:

§ The clone PDB operation, taking advantage of
the snapshot facility in the underlying filesystem,
and the drop PDB operation are exposed as SQL
statements. This makes it very straightforward to
write a PL/SQL application to allow developers to
rapidly, and thinly, self-provision a private
database environment in which to change and
test their checked out code.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 57

Conclusion

§ There is now no excuse for violating the best
practice principle that is already universally
followed in the majority of successful software
projects. Now you can confidently expose the
Oracle Database using a PL/SQL API — hiding
all the details of tables and SQL statements
behind this API — knowing that this approach
brings only benefits.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 58

The PL/SQL page on OTN

§  http://www.oracle.com/technetwork/database
 /features/plsql/index.html

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 59

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 60

