
Ten Outrageous
Performance Tips

Chris Lawson

Ten Outrageous
Performance Tips

Chris Lawson

10 1/2

A Lesson from a junior programmer

 Keep Your Eyes Open!

 Outrageous!  

• “Outrageous” means effective, not complicated.
• Ever surprised by simplicity of a technique?
• Great techniques are often simple
• So, what other techniques have I missed?

Keep Your  
Eyes Peeled! 

• No Marketing—no fluff.
• Ten actual performance tuning discoveries.
• Some of the ideas discussed here may be

old-hat to many readers—but maybe not!

Housekeeping Notes
• All code listings in this paper are changed.
• I took liberty with formatting.
• Different (and simpler) names used.

Don’t stress over scripts

TIP 1: EASY SQL HINTS
USING STORED OUTLINES

• Baffling!
• Why do DBAs avoid hints + outlines ?
• Despite threats, are reportedly still in Oracle 12.
!

So, let’s check ‘em out.

A stored outline preserves an execution plan:
!
1. You turn-on outline capture.
2. You run the sql.
3. Oracle captures sql and exec plan.
4. Oracle stores sql hints.
5. If sql is run again, Oracle use those sql hints.

What is a Stored Outline?

Instead of preserving,
we change plans.

But Wait  
That’s Not All! 

• Create two outlines:
▫ One the “regular” sql.
▫ Another using a sql hint.
!

• We now have 2 stored outlines:
 Sql 1: No hint >> Outline 1 (bad plan)
 Sql 2: hint >> Outline 2 (good plan)
!
• Now, reverse hints!
• Oracle will apply hints from Sql 2 when it sees Sql 1.

For a Different Execution Plan

Create outline sql1 on {sql with hint}
Create outline sql2 on {regular sql}

!
Update outln.ol$hints set ol_name =
decode(ol_name, ‘sql1’, ‘sql2’, ‘sql2’, ‘sql1’)
where ol_name in (‘sql1’, ‘sql2’);

Here’s the Switch

Create outline sqlz for category tune on
Merge into tab1_gt gt using (Select /*+index(a) */ …

Create outline sqlz_fix for category tune on
Merge into tab1_gt gt using (Select …
!
Update outln.Ol$hints set ol_name =
decode(ol_name, ‘sqlz_fix’, ‘sqlz’, ‘sqlz’, ‘sqlz_fix’)
where ol_name in (‘sqlz’, ‘sqlz_fix’);

Outline Example

• Get the precise sql.
• Extra blanks OK.
• I use sql at end of AWR/Sql report

Some Traps!

Pitfall 1: AWR Spaces

What if the extra blanks occur as part
of the functionality of the sql?

AWR report removes
extra whitespace

Yea, yea, so what?

• My code had a clause like this:
 orig: where col1 like '% abc %'
 altered: where col1 like '%abc%‘
!
• Missing the blanks means the outline won’t work!
• I had to alter outline script to add back extra blanks.

Don’t Change

 My Code!

• Hints stored in outline are not simple hints.
• Outlines typically have many more hints.
• More complicated syntax—”extended” format.
• This ensures that the plan is consistent.

Pitfall 2: Hint Count

Who cares about number of hints?

When Outline Created, Oracle
Saves Number Of Hints

• If you import an outline, a secret process will
recount hints, and compare to stored value.

• If the actual doesn't match Hintcount, a bad
thing happens—Oracle drops the outline!

• My sad tale.

• When you do the "hint switch“ you will likely
end up with a different number of hints.

• You might have started with 10 hints, but after
switch, you might have 12 hints.

• So good idea to verify Hintcount.
!

Let’s see an easy way to check the
actual number of hints per outline.

Hint Count

Update Hintcount

Select ol_name, count(*) from Outln.ol$hints

Group by ol_name;

Select ol_name, Hintcount from Outln.ol$

Questions on Outlines?  

Tip 2: Easy Sql  
 Profiles

• Don’t work all the time, but--a very useful tactic.
• Very easy (when they work)
• We have > 100 stored outlines, and one sql profile.
• I was “forced” to investigate profiles for query that

would not work properly with a stored outline.

Tell me More!

• A sql profile is not actually an execution plan.
• It’s a set of sql hints, stored in the data dictionary,

ready for next time sql is run.
• This is similar to stored outlines, but the sql hints

are of a different kind.
 How different?

How do Sql Profiles Work?

• They use large amounts of cpu time checking
different plans, and gleaning better statistics.
!

• They spend more time to glean more
information
!

They use same optimizer that produced
poor execution plan in the first place!

Hints, Hints Everywhere

• Outline uses sql hints to preserve execution plan
• Like “full” or “index.”
• Sql profile hints give optimizer extra

information that it normally would not have.
!

Outline tends to lock-in a plan,
profile makes optimizer smarter.

What do I do?

• Step 1: Create the Tuning Task
• Step 2: Run The Tuning Task
• Step 3: Get Recommendations
• Step 4: Apply The Profile
• Step 5: Confirm Profile is Enabled

Step 1

Create the Tuning Task

• Call Dbms_Sqltune.Create_Tuning_Task

• Provide a specific sql_id

• Give time-limit

Step 2: Run Tuning
Task

Begin
Dbms_Sqltune.Execute_Tuning_Task(Task
_Name => 'chris1');
End;
 Now, get Recommendations

Step 3 Recommendations

Set Long 9999
Set Longchunksize 1000
Set Linesize 100
Select Dbms_Sqltune.Report_Tuning_Task('chris1')
From Dual;
!

This long report will include a
summary of recommendations

Step 3 Look for this:
SQL Profile Finding (see explain plans section below)
!
A potentially better execution plan was found for this
statement.
!
 Recommendation (estimated benefit: 67.35%)
--
- Consider accepting the recommended SQL profile.

Step 4 Apply Profile

Execute dbms_sqltune.accept_sql_profile
(task_name => 'chris1', replace => TRUE);

Step 5: Confirm Enabled

!
Select Name, Created, Type, Status
From Dba_Sql_Profiles
Where Last_Modified > Sysdate – 1;

NAME CREATED TYPE STATUS
--------------------- -------------------- ------- --------
SYS_SQLPROF_01313de6 18-JUL-11 08.38.44.AM MANUAL ENABLED

Behind the Scenes

• What is Oracle doing with a sql profile?
• What kinds of sql hints are being applied?
• You can see the hints by joining

 Sys.Sqlobj$Data Od, Sys.Sqlobj$
!

What do the hints look like?

Sql Profiles
!

Actual Hints
!
OPT_ESTIMATE(@"SEL$AF73C875", TABLE, "S"@"SEL$4", SCALE_ROWS=3024)
!
OPT_ESTIMATE(@"SEL$26", TABLE, "X$KSQEQ"@"SEL$26",SCALE_ROWS=8208.205)
!
OPT_ESTIMATE(@"SEL$34", TABLE, "X$KTCXB"@"SEL$34",SCALE_ROWS=162.5641)

!
•Opt_Estimate hint supplies cardinality information.
•Scale_Rows parameter scales the estimate of the rows

!

mailto:%22X$KTCXB%22@%22SEL$34%22,SCALE_ROWS=162.5641

Sql Profiles: A Big “Plus”

Profile can handle changing
literals (unlike stored outline)

Use Force_Match, like this:
dbms_sqltune.accept_sql_profile(task_name => 'chris1', -

 replace => TRUE, force_match => TRUE);

Sql Profiles
“Minus”

!

• Syntax awkward if you need to supply sql.
• For instance, if database has recently started.
• Especially awkward if sql has quotation marks.
• Stored outline is trivial to create for specific sql.

Questions on Profiles?  

I Only Have 10 Min Attention
Span

SO these headlines…

DBA’s No  
Longer Needed?

• Oracle’s 10g Tuning Guide:
 “Automatic SQL Tuning … automates entire SQL tuning
 process”
• 11g Tuning Guide, more modest:

 “Automatic SQL tuning automates the manual process,
 which is complex, repetitive, and time-consuming.”

Wisdom from Greatest
Philosophers on

Performance Tuning

Newly
Discovered:

“Gain competence in art of tuning,
rather than proficiency in a tool.”

Socrates, 450 B.C., Greece

“Always know which table should
be the driving table.”

Plato, 400 B.C., Rome

“I think a lot about nested-loops joins versus hash-
joins.”

Albert Einstein, 1942,
Princeton University

“Stored Outlines are our friends!”

Mr. Rogers, 1980,
Studio B, Hollywood

“Take care of the Oracle optimizer,
and it will take care of you.”

Dr. Phil, 2013,
Oprah Show, Hollywood

And Now,

Back to the Program

TIP 3: ADD SQL HINTS  
TO SQL PROFILE  

• Like we did for stored outlines so no code change.
• Just a little more difficult than with outline.
!

 Here’s our scheme

Here’s How I Add
Hints to Profile 

• Find the sql of interest in shared pool
• Run sql with added hint.
• Find the hinted-sql in the shared pool
• Create profile having original sql text with

hints from modified sql.

OUR TEST CASE
Select Sum(Cur_Amt) from Big_Table F where Bill_Id between '01' and '999';
!
ID PARENT OPERATION OBJECT_NAME
---- ------ ---------------------------------- --------------------------
2 1 PARTITION RANGE ALL
 3 2 TABLE ACCESS FULL BIG_TABLE

With sql hint, Index(F):

 ID PARENT OPERATION OBJECT_NAME
---- ------ -- -------------------------
2 1 TABLE ACCESS GLOB IND ROWID BIG_TABLE
 3 2 INDEX FULL SCAN INDEX_BIG

First, Find Sql
in Shared Pool

 Get Sql_Id, Child_Number for original sql:
!
Select sql_id, child_number, sql_text from v$sql
Where upper(sql_text) like
'SELECT%SUM(CUR_AMT)%FROM%BIG_TABLE%BETWEEN%'

Sql_Id: braqrgb7ap00j
Child_Number: 0

Now Run Hinted Sql

Select /*+Index(F) */ Sum(Cur_Amt) from Big_Table F
where Bill_Id between '01' and '999';
!
Step 3: Now find new sql in Shared Pool
Query V$Sql just like before, but find the new sql:

Sql_Id: 9f2kfv3521q79
Child_Number: 0

Sounds Like
Outline Trick!

 Using Pl/Sql do this:
!
• Get good hints from hinted sql
• Get original sql text
• Create profile using new hints & original text

 1: GET “GOOD” HINTS  

begin
select extractvalue(value(d), '/hint') as outline_hints
bulk collect into good_hints
from xmltable('/*/outline_data/hint'
passing (select xmltype(other_xml) as xmlval
from v$sql_plan
where sql_id = '9f2kfv3521q79'
and child_number = 0
and other_xml is not null)) d;

REFERENCE: XML

!
!
!
xmltable('/*/outline_data/hint‘
!
passing (select xmltype(other_xml) as xmlval

PARSES XML  WHICH PART OF XML 

SOURCE OF
THE XML 

XML TYPE
‘CONSTRUCTOR’  

COLUMN NAME 

2: GET ORIGINAL SQL TEXT 
select sql_fulltext
into orig_text from v$sql
where sql_id = 'braqrgb7ap00j' and child_number =
0;

3: CREATE PROFILE  
NEW HINTS  

+ ORIG TEXT  

dbms_sqltune.import_sql_profile(
sql_text => orig_text, profile => good_hints,
name => 'SQLPROFILETEST');
end;

SQL*PLUS AUTOTRACE  
SHOWS PROFILE USED 

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | Pstart| Pstop |

| 0 | SELECT STATEMENT | | 1 | 18 | 18507 (1)| 00:03:43 | | |

| 1 | SORT AGGREGATE | | 1 | 18 | | | | |

|* 2 | TABLE ACCESS BY GLOBAL INDEX ROWID| BIG_TABLE | 599K| 10M| 18507 (1)| 00:03:43 | ROWID | ROWID |

| 3 | INDEX FULL SCAN | INDEX_BIG | 606K| | 2386 (1)| 00:00:29 | | |

Note

 - SQL profile "SQLPROFILETEST" used for this statement

ANOTHER WAY TO SPOT

Select sql_id, sql_profile, sql_text from gv$sql
Where sql_profile = 'SQLPROFILETEST';
!
SQL_ID SQL_PROFILE
------------- --------------
braqrgb7ap00j SQLPROFILETEST
Select sum(cur_amt) from ccbL.Big_Table F where …

7r1xzcq0cvhkt SQLPROFILETEST
EXPLAIN PLAN SET STATEMENT_ID='PLUS17528894' FOR Select
sum(cur_amt)from ccbL.Big_Table F where …

 Last one is the Explain Plan!

What’s in the New Profile?

Select extractvalue(value(d), '/hint') as the_hints
from xmltable('/*/outline_data/hint'
passing (select xmltype(other_xml) as xmlval
from v$sql_plan
where sql_id = 'braqrgb7ap00j' and child_number = 0
And other_xml is not null)) d;

THE_HINTS
IGNORE_OPTIM_EMBEDDED_HINTS
OPTIMIZER_FEATURES_ENABLE('11.2.0.2')
DB_VERSION('11.2.0.2')
ALL_ROWS
OUTLINE_LEAF(@"SEL$1")
INDEX(@"SEL$1" "F"@"SEL$1" ("BIG_TABLE"."MATCH_EVT_ID"))

ISSUE: This Method
Requires we Run the

Sql

• We grabbed hints/text from shared pool.
• So must have actually have run the sql.
• We can also get these from a "Dba_Hist" table.

 Running sql a problem?

CAN’T I JUST
RUN THE SQL?

• May not be possible to run sql in Sql*Plus when it
originates from a Java application.

• Bind variables may be called, ":1" or ":2.”
• So, you will have to run a modified sql, using

bonafide bind variables, and get those hints.
• The point is, it's an annoyance.

AN ALTERNATIVE

• We normally get the hints from the shared pool
• But you could manually form the hints.
• Tricky, given the number and tricky format of

extended hints.
• However, other DBAs have demonstrated this.

 OUTLINES TRUMP PROFILES

• Couldn't get a profile to work, no matter
what.

• I finally gave up, and tried outline, but got
error, "Outline Already Exists.“

• What?? I forgot that I had earlier created
an outline for the same sql.

• My profile was"trumped" by the outline.

OTHER INFO ON  
OUTLINES & PROFILES

• Ten Surprising Performance Tactics
available on OracleMagician.com

• Special credit to the great research by Kerry
Osborne and Randolf Geist.

FOR REFERENCE 
--GET GOOD HINTS FROM HINTED SQL
declare
good_hints sys.sqlprof_attr;
orig_text clob;
l_profile_name varchar2(30);
begin
select extractvalue(value(d), '/hint') as outline_hints
bulk collect into good_hints
from xmltable('/*/outline_data/hint'
passing (select xmltype(other_xml) as xmlval
from v$sql_plan
where sql_id = '9f2kfv3521q79' and child_number = 0 --HINTED SQL
and other_xml is not null)) d;
--GET ORIGINAL SQL TEXT
select sql_fulltext
into orig_text from v$sql
where sql_id = 'braqrgb7ap00j' and child_number = 0; --orig sql
--CREATE PROFILE USING NEW HINTS WITH ORIGINAL TEXT
dbms_sqltune.import_sql_profile(
sql_text => orig_text, profile => good_hints,
name => 'SQLPROFILETEST');
end;
/

Questions on Sql Profiles?  

TIP 4: WHAT'S ALL
THAT UNDO?

• On large system, we create gigantic index.
• But, we ran out of undo space, and job failed.
• Did our job really need 1/2 TB of undo?
• How can we find undo usage?
!
 We can use Dba_Hist_Undostat

Get History  
of Undo!

Select Snap_Id, Instance_Number Node,
To_Char(Begin_Time,'Hh24:Mi') Bgn,
To_Char(End_Time,'Hh24:Mi') Endtm,
Round(Undoblks/1000000,1) Megundo, Activeblks
From Dba_Hist_Undostat
Where Snap_Id = 52316 And Instance_Number In (3,4)
And Undoblks/1000000 > .1 Order By 1,2;

Multiple Entries?

SNAP_ID NODE BGN ENDTM MEGUNDO ACTIVEBLKS
-------- ---------- ----- ----- ---------- ----------
 52316 3 07:32 07:42 .2 156400
 52316 3 07:22 07:32 .2 142064
 52316 3 06:52 07:02 .2 116464
 52316 3 07:02 07:12 .3 164592
 52316 3 07:12 07:22 .3 209648
 52316 3 07:42 07:52 .2 103152
 52316 4 06:55 07:05 .1 79312
 52316 4 07:05 07:15 .2 81232

• Multiple entries not helpful

 Let’s summarize for node

Select Snap_Id, Instance_Number Node,
Round(Sum(Undoblks/1000000),1) Megundo_Blks
From Dba_Hist_Undostat
Where Snap_Id Between 52310 And 52330
And Instance_Number In (3) And Undoblks/1000000 > .1
Group By Snap_Id, Instance_Number
Order By 1,2,3; !
 SNAP_ID NODE MEGUNDO_BLKS
--------- ---------- ------------
 52316 3 1.5
 52317 3 .4
 52322 3 .1
 52325 3 .3
 52326 3 1.3

Roll-up to Node Level

ANOTHER WAY: DBA_HIST_SYSSTAT  

Select Distinct Snap_Id, Instance_Number Node,
Stat_Name, Value From Dba_Hist_Sysstat
Where Snap_Id Between 52316 And 52330
And Stat_Name Like 'undo change%'
And Instance_Number = 3;

SNAP_ID NODE STAT_NAME VALUE
-------- ---------- -------------------------- ----------
 52316 3 undo change vector size 1.6331E+12
 52317 3 undo change vector size 1.6351E+12
 52318 3 undo change vector size 1.6352E+12
 52319 3 undo change vector size 1.6360E+12 !

 Format confusing

THE FORMAT
CONFUSES ME!  

• Results show Bytes of Undo.
• Huge values, since cumulative.

1) Sort by Snap_id
2) Convert to Megabytes
3) Use function, Lag to get delta

MORE USEFUL FORMAT

Select Distinct Snap_Id, Instance_Number NODE,
ROUND(((Value - Lag(Value,1) Over(Order By Snap_Id)))/1000000,1) MBYTES_UNDO
From DBA_HIST_SYSSTAT
Where Snap_Id Between 52315 And 52322
And Stat_Name Like 'undo change%'

SNAP_ID NODE MBYTES_UNDO
-------- ---------- -----------
 52316 3 8404.7
 52317 3 1948.2
 52318 3 165.4
 52319 3 751.7

COUNTING BYTES
UNDERCOUNTS TOTAL

BLOCKS

It's not simply a matter of dividing the
megabytes of undo by the block size.

Tiny transaction uses at least 1
undo block.

LIMITATIONS?

• These scripts summarize at instance level.
• We don't know specific user or session.

 We'll figure that one out next

WARNING: 
THE FOLLOWING TIP  

HAS NEVER BEFORE BEEN  
SEEN BY HUMAN EYES

TIP 5: FIND THE BIG
"UNDOERS" 

• We found total undo usage, but didn't really
know exactly who was doing that.

• This tip takes us a bit further down the path.
• Let’s try some other Dba_Hist tables

HOW ‘BOUT THESE?

1. Dba_Hist_Active_Sess_History
2. Dba_Hist_Sessmetric_History
3. Dba_Hist_Sess_Time_Stats
!

1. Not interested in the active sessions.
2. Records summaries of blocked user sessions.
3. Has Streams metrics.

A PRE-EXISTING SOLUTION?

• We run job saving session info 10 mins
• We join v$session, v$process, v$sessmetric

v$transaction
• We save the data in Da_Session_History.
• Size not an issue.

REF: OUR PROCEDURE

insert into da_session_history
select sysdate, s.inst_id, s.sid,s.serial#, p.spid,

s.username, s.status, s.machine, s.program, s.sql_id,
s.sql_child_number, s.sql_exec_start, s.module, s.logon_time,
s.last_call_et,s.pq_status, s.blocking_instance, s.blocking_session,
s.event, s.p1, s.seconds_in_wait, s.service_name,
m.begin_time, m.end_time, m.cpu, m.physical_reads, m.logical_reads,
t.start_date, t.used_ublk from
gv$session s, gv$process p, gv$sessmetric m, gv$transaction t
where s.inst_id = p.inst_id and s.inst_id = m.inst_id
and s.sid = m.session_id and s.serial# = m.serial_num
and s.paddr = p.addr and s.status='ACTIVE'
and s.inst_id = t.inst_id(+) and s.saddr = t.ses_addr(+);

NOW, FIND THE BIG UNDOERS

Select to_char(snap_time,'mon-dd HH24:MI') TM, inst_id
INST, sid, username,
Machine, sql_id, trans_start_date, used_ublk
From Da_session_history
Where snap_time between
To_date('17-apr-2013 09','dd-mon-yyyy hh24')
And to_date('17-apr-2013 14','dd-mon-yyyy hh24')
And Used_ublk > 1000
And Username <> 'SYS‘
!

 don’t want to see background processes

THE EVIL-UN-DOERS?

INST USERNAME SQL_ID TRANS_STA USED_UBLK
----- ---------- ------------- --------- ----------
 6 CCBPBCAPP 1rywbwh9na1r7 17-APR-13 6013
 6 CCBPBCAPP 6mm8qf07d2qn8 17-APR-13 5633
 6 CCBPBCAPP 07run4gmh3p3g 17-APR-13 1151
 4 CCBPSMAPP 5mks1rz3rgfub 17-APR-13 1249

We see some undo users on nodes 4 and 6 on April 17.

Questions on Finding Undo?  

 WAKE-UP!  
BEST ONES ARE COMING UP!

TIP 6: RAC: CAN SQL  
EFFICIENCY BE SECONDARY?

• What? Efficiency not important?
• Them is fighting words to performance DBA
!

!
 Sql efficiency is usually critical.

Tell Me More!

• We assume that a job's runtime will be
determined by adding the sql runtimes.

• On RAC, however, there are some sneaky
considerations that are even more important.

!
 Let’s check “multithreading.”

THE JOY OF MULTI-THREADING

• This is very common on RAC.
• Large number of threads run on each node.
• Like "divide and conquer,” we chunk little pieces,

and crank-up lots of processors.
!

 Hey, isn’t there a better option?

FULL TABLE
SCANS ARE OUR

FRIEND

• We could take advantage of Oracle's
multiblock read efficiency.

• This requires, that the data be partitioned in a
certain way, or—

• At least, Oracle can access all the data needed
in one pass.

STOP YER
WHINING!

• We often see designs that aren't optimal.
• Multithreading may or may not be the wisest

choice, but it's a very common.
• It’s just so appealing!
• So we might as well stop whining.

BACK TO THE PROGRAM: REAL
CASE SCENARIO

• Big RAC system, billing cycle uses hundreds of
threads over 4 nodes.

• Run similar sql millions of times.
• Sql is tuned and runs well.
• Biggest sql: Sql_Id--"g8r," or simply G8R.

HOW CAN THIS BE?

• Support group noticed that the last threads
always finish an hour later on Node 3.

• The pacing sql was our old friend, G8R.
• How can last threads always end up on node 3?
• This cannot be simply chance.

MORE MYSTERY

• Sql runtime: G8R ran similar on all nodes.
• Just a tiny bit of variation--not nearly enough to

explain the laggard.
!

 Let’s compare avg runtime

RUNTIMES EQUAL!  

Time per Sql

Se
cs

0.0

0.5

1.0

1.5

2.0

Hour

SO WHAT’S THE
BIG DEAL?  

• We wondered how often sql was commanded.
• If Sql commanded less, it will do less.
• On our cluster, it was important that all the

nodes be "driven" equally fast.
• We graphed execution count for “fast” and

“slow” nodes.

NODES COMMANDED
DIFFERENTLY!  

Exec Count

#
 E

xe
cs

0

7500

15000

22500

30000

Hour

FAST NODE SENT
COMMANDS FASTER

• Through the night, executions ramps-up.
• But fast node is completing somewhat more

executions during the peak times.
• So fast node has fewer to do at the end.
• But slow node drags on, later.

WHY IS SLOW NODE
DOING LESS? 

• Is it busy doing something else?
• Check time Oracle was actually doing work.
!

Metric is in AWR reports and in
DBA_HIST_SYSMETRIC_SUMMARY

WHAT?? SLOWER NODE  
IS LESS BUSY 
DB Time

M
in

ut
es

0

175

350

525

700

Hour

EXPLAIN,
PLEASE  

• Slow node was less busy running sql.
• Slow node was running cooler than fast node!
!

Conclusion: Application feeding
Oracle fewer sql to process.

MORE SLEEP,
LESS WORK?

• On the slow node, there was a network issue related
to some Unix settings.

• So, time to send/receive commands was longer.
• So that instance spent more time idle.

 Runtime was not related to efficiency

Questions on Sql Efficiency?  

No one in my company
knew the following tip

Tip 7: Does Oracle  
Pad the Numbers?  

• Affects both functionality as well as
performance.

• Big and surprising impact.
!

Plus, it confused me.

I’m Confused!  

• I thought that strings are only "equal" if the
two are absolutely identical.

• In Oracle, however, this is not true.
• Let’s look at actual case.

 First, I needed actual binds.

Ref: Getting Bind Info  

Select distinct a.inst_ID,
to_char(last_captured, 'mon-dd-hh24:mi') cap,
c.name||'/'||c.value_string bind_var
From GV$sqlarea a,
Dba_users b, Gv$sql_bind_capture c
Where b.user_id=a.parsing_user_id
And b.username != 'SYS'
And c.address=a.address
And a.sql_id = [TBD]
Order by 1,2;

Only Me Gets Zero? 

Var b1 Varchar2(10)
Exec :b1 := 'DIV_YS';
!
Select count(*) from Detail_Table where
Level_2_code = :b1;

COUNT(*)

 0

How ‘bout Char? 

Var b1 CHAR(10)
Exec :b1 := 'DIV_YS';
Select count(*) from Detail_Table Where
Level_2_code = :b1;

COUNT(*)

 10

Why different? 

What Happened? 

• When I switched to CHAR, Oracle switched
to blank-padded comparison semantics.

• With this method of comparison, many rows
in the table matched.
!

 When does this apply?

Happens When? 

Per Sql reference guide: Oracle Database
SQL Language Reference 11g Release 1 (11.1)

!
“Oracle uses blank-padded comparison
semantics only when both values in the
comparison are either expressions of data type
CHAR, NCHAR, text literals, or values returned
by the USER function.”

The “Law” 

1. If two values have different lengths, Oracle
adds blanks to end of shorter one to make
lengths equal.

2. Oracle then compares the values character
by character up to the first character that
differs.

3. If two values have no differing characters,
then they are considered equal.

The Funny Result 

This rule means that two values are equal if they
differ only in the number of trailing blanks.
!
 So, for a CHAR field, 'A' = 'A '

Questions on “Padding”?  

Tip 8:  
CARDINALITY FEEDBACK: NOT ALWAYS

A GOOD THING  

• We often hear that sql ran bad, then good.
• We rightly suspect the caching effect.

Here's a case where
things worked opposite.

When First is Best? 

• A user complained that his report ran fine the
very first time, then miserable afterwards.

• I was intrigued, and ran an AWR/Sql report.
• Last part of the execution plan:

Id Operation Name Rows Bytes Cost (%CPU) Time

13 * * * 00:00:01

14 SORT
AGGREGATE 1 17

15 FIRST
ROW

 1 17 1 (0) 00:00:01

16
 INDEX
RANGE SCAN
(MIN/MAX)

CMT138P0 1 17 1 (0) 00:00:01

Execution Plan

•cardinality feedback used for this statement

A Nasty Surprise 

• With Cardinality Feedback on this sql,
runtime was 1000x worse.

• Search of other AWR/Sql reports stored
showed other cardinality feedback.

• Naturally, the user was not thrilled with this
feature.
!
 So what is going on?

Help the
Optimizer  

• New for Oracle 11gR2, cardinality feedback
gleans statistics from first sql execution.

• Can help if complex predicates make accurate
estimation difficult.

• For example, several math expressions.

A Good Choice for 
This Feature? 

•In this query, how should optimizer handle?
•Full scan or index range scan?
!
Select * from Inventory
Where Qty_On_Hand < 100
AND Tab_Number = 12;

Finding Information
• It uses feedback from first execution.
• It's not a continuous monitoring system.
• However, if there are multiple child cursors

for a sql, there can be multiple cases of
feedback being used.

!
 Example--

An Example  

Select Sql_id, Child_Number Child,
Use_Feedback_Stats
From v$sql_shared_cursor
where sql_id = 'cn58bhkggqvj4‘;

SQL_ID CHILD U
------------- ---------- -
cn58bhkggqvj4 0 Y
cn58bhkggqvj4 1 Y
cn58bhkggqvj4 2 N
cn58bhkggqvj4 3 Y
cn58bhkggqvj4 4 Y
cn58bhkggqvj4 5 N

Traces Showed This 

• Cardinality feedback compares optimizer
estimated cardinality to the actual cardinality.

• The estimated cardinality is called E-Rows, and
the actual is called A-rows.

• If large gap, applies hint Opt_Estimate to
change cardinality

!
Some DBAs examined traces; first

execution had no hint; second had hint.

Beginning to Look  
Like Sql Profile 

• Opt_Estimate is same hint used in sql profile.
• So cardinality feedback is like having a Sql

Profile applied automatically.
• The value Oracle uses in Opt_Estimate hint is

actual number of rows returned.
• Well, that makes sense; what could be better

than the actual, empirical value?

Example of Hints 

SELECT /*+
OPT_ESTIMATE (TABLE "D4" MIN=42.000000)
OPT_ESTIMATE (INDEX_SCAN "D4" "DIM4_PK" MIN=56.000000)
OPT_ESTIMATE (INDEX_FILTER "D4" "DIM4_PK" MIN=56.000000)
OPT_ESTIMATE (TABLE "D2" MIN=56.000000)
OPT_ESTIMATE (INDEX_SCAN "D2" "DIM2_PK" MIN=560.000000)
* * *

I Have Issues!

• Scanty Documentation.
• Unclear how cardinality feedback works with

optimizer_dynamic_sampling.
• Some DBAs report dynamic sampling must be

set to level 4 for feedback to work.

Other Notes

• Let’s see how bugs get ironed out.
• Note that the feedback information is only

kept until instance restart.
• Feature is on by default, but may be turned

off at the system or session level:
!
 Alter system
 set "_optimizer_use_feedback" = false;

Questions on  
Cardinality Feedback? 

WARNING:  
THE FOLLOWING TIPS MAY BE TOO

INTENSE FOR YOUNGER DBAS

TIP 9: WHEN FLASHBACK  
 IS NOT TOO FLASHY

• Flashback - a misleading Name?
• Catchy name, but FB often runs poorly.
• On a production database, can take 10 hours.

 What?? How can that be?

RECONSTRUCTIVE
SURGERY

• Oracle must reconstruct object as it was at a
certain time.

• Hey—That’s same process as read-consistency!
• Slow--one block at a time, going backwards

undoing each transaction.
• But that’s not all!

Other issues with flashback
make the process run slower

!
Related to OTHER

transactions

Oracle Likes“Forward”

Before Oracle can reconstruct an object, it
has to find what needs to be undone.

!
Not trivial--especially on busy database.

TRANSACTION TABLE

• In each undo segment header there lies a
structure known as the transaction table.

• Maybe a "list" would have been a better name.
• It’s meta data pointing to undo records in that

undo segment.
• For example, where to find actual undo block.
!
 This table only has room for
 34 transactions.

TRANSACTION
TABLE SLOTS

• So, slots are often overwritten.
• Information is not lost but extra steps needed.
• Can take millions of extra reads just to find

where to start.
!
 Hence, Oracle likes going Forward

ADDS MORE
TIME?

• This preliminary work is before the "real
work" of rebuilding the object.

• Finding where to start can be more costly
than work to actually do the reconstructing.

Details, Schmetails
• I have seen flashback queries require millions of

extra reads
• Just for small table with only 20,000

transactions.
!

Active session history shows sequential
reads from undo tablespace.

A Logical, but Wrong Conclusion

• Reading Undo >> “Must be huge number of
transactions on that table.”

• Not so--the reads were actually Oracle building
meta data to find the transactions.

What About
Old Info?

• Oracle stores old slot info at start of the new
undo block that used that slot.

• So data is linked together so we can
reconstruct transaction table

UNDOING THE UNDO?

• Hey, this sounds like "undoing the undo!"
• You're right. Oracle calls it, "Transaction

Table Rollback."
!

You can also get a summary in the AWR report,
in the Instance Activity section:

HOW TO GET 10M DISK READS

Statistic Total per Second per Trans

transaction tables consistent
read rollbacks 1,869 0.10 0.00

transaction tables
consistent reads -
undo records
applied

9,577,664 531.95 3.91

AWR Instance Activity Stats

AHA!

Measuring Undo
of the Undo?

• You can also see this event in real time,
to get a feel for things.

• On busy system, it is likely happening all
the time.

• Query V$Sessstat for

 'transaction tables consistent reads’

REFERENCE
Col Module Format A22
Col Sid Format 99999
Col Program Format A20
Col Inst Format 9999
Col Trundo Format 9999999

Select One.Inst_Id INST, One.Sid, Substr(Program,1,20) PROG,
Substr(Module,1,20) Mod, Value TRUNDO
From Gv$Sesstat One, V$Statname Two, Gv$Session Three
Where One.Statistic# = Two.Statistic#
And One.Inst_Id = Three.Inst_Id
And One.Sid = Three.Sid And Name =
'transaction tables consistent reads - undo records applied'
And Program Not Like 'Oracle@%'
And Value > 90000 Order By Value;

Sample Output

 INST SID PROG TRUNDO
 ---- ------ ------------ --------
 7 1978 xtsora@cisxx01 157315
 4 408 xtsora@cisxx01 178481

 So 2 sessions rebuilding millions of records

So, the
problem is,

what?

• Rebuilding "slots" in transaction table.
• So, Oracle support says,

!
 “Keep more undo segments online.”

!
• More slots available >> less reusing.

A Tricky Fix

• Set the underscore parameter,
_rollback_segment_count.

• Overrides automatic undo process, and
force more undo segments online.

• Thus, number of reused slots should go
down.

• That's the theory, anyway!

Conclusion:  
How Will It End?

• How can you be sure it worked?

• We wonder about adverse effects.

• Why does database take undo segments
offline in the first place?

• Caching effect better with fewer?

!
 Now, You Know the Issue!

Special thanks for his research  
to Jonathan Lewis,  

Oracle Core: Essential Internals  
for DBAs and Developers  

 
 

see esp Chapter 3

TIP 10: USE SQL
PROFILE IN ODD WAY

• MV refresh never finished.

• It restarted refresh anew at 2:00 AM.

!
Not good:128 tables set

 PARALLEL DEFAULT

!
This “helps” to max-out CPUs.

ACTUAL MV SQL

INSERT /*+ BYPASS_RECURSIVE_CHECK */

INTO TABLEX_MV" SELECT
[plus lots more complicated SQL]

Hey, don’t we
know the
sql_id?

• We know the sql.
• So we know sql_id.

• Can’t I just create a sql profile?

Remember Sql  
Profile Steps?

• Step 1: Create the Tuning Task
• Step 2: Run The Tuning Task
• Step 3: Get Recommendations
• Step 4: Apply The Profile
• Step 5: Confirm Profile is Enabled

CREATE TUNING SET 
 

D l_sql_tune_task_id VARCHAR2(100);
Begin l_sql_tune_task_id :=
DBMS_SQLTUNE.create_tuning_task
(sql_id => '6ggsjkphdwnwg', scope =>
Dbms_Sqltune.scope_comprehensive,
time_limit => 200, [secs]
task_name => 'chris3', description => 'chris3');
Dbms_output.put_line('l_sql_tune_task_id: ' ||
l_sql_tune_task_id);
End;
/

Run Tuning Task

BEGIN
DBMS_SQLTUNE.EXECUTE_TUNING_TASK(task_nam
e => 'chris3');END;

/
!
RECOMMENDATIONS

Set long 9999
Set longchunksize 1000 !
Select dbms_sqltune.REPORT_TUNING_TASK('chris3')

FROM DUAL;
!
!

Apply & Verify
Profile

Execute
dbms_sqltune.accept_sql_profile(task_name
=> 'chris3', replace => TRUE);

Select name, created, type, status, sql_text

From dba_sql_profiles

Where last_modified > sysdate – 1;

COMPARE HISTORICAL RUNTIMES

Query Dba_Hist_Sqlstat over recent snapshots.

Select S.Snap_Id,
To_Char(Begin_Interval_Time, 'Dd-Mon-Yy-Hh24:Mi') Beg,
 Executions_Delta EXECS, Rows_Processed_Delta ROWSP,
Round(Elapsed_Time_Delta/1000000/60) Totalmins
From Dba_Hist_Sqlstat S, Dba_Hist_Snapshot T
where sql_id = '6ggsjkphdwnwg'
and S.snap_id > 11330
And S.Instance_Number = T.Instance_Number
And S.Snap_Id = T.Snap_Id
Order By 1;

YEA! GREAT RESULTS!

!
 SNAP_ID BEG EXECS ROWSP TOTALMINS
--------- --------------- ---------- ---------- ----------
 11331 10-Oct-12-14:00 0 0 60
 11332 10-Oct-12-15:00 0 0 60
 11333 10-Oct-12-16:00 0 0 60
 11337 11-Oct-12-08:58 0 0 62
 11338 11-Oct-12-10:00 0 0 59

 11354 12-Oct-12-02:00 1 631173 4

Data Confuses Me!

SHOW GRAPHS, NOT DATA

GENIUS
DBA!

Is That All?

Oh, and One
More Thing …

Tip # 10.5 The Final Tip

Learn How to

Give Better
Presentations

Get this Book

Sharing Tips !!

!

Sharing ideas is a hallmark of a top
DBA.

Chris@OracleMagician.com

mailto:Chris@OracleMagician.com

