

ORACLE® Using MySQL for Big Data Advantage Integrate for Insight

Sastry Vedantam sastry.vedantam@oracle.com

Agenda

- The rise of Big Data & Hadoop
- MySQL in the Big Data Lifecycle
- MySQL Solutions for Big Data
- Q&A

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decision. The development, release, and timing of any features or functionality described for Oracle's products remains at the sole discretion of Oracle.

DRIVING MySQL INNOVATION

MySQL Enterprise Monitor 2.2 MySQL Cluster 7.1 MySQL Cluster Manager 1.0 MySQL Workbench 5.2 MySQL Database 5.5 MySQL Enterprise Backup 3.5 MySQL Enterprise Monitor 2.3 MySQL Cluster Manager 1.1

All GA!

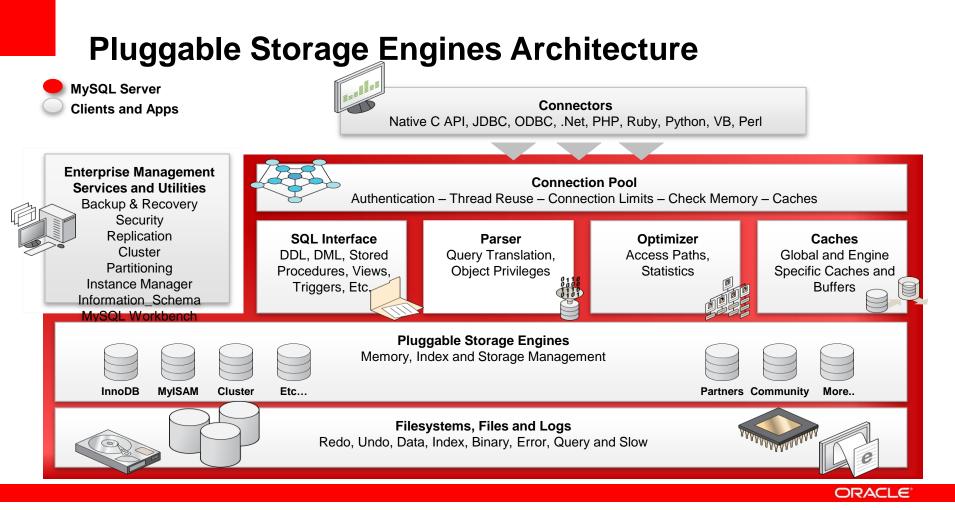
MySQL Enterprise Backup 3.7 Oracle VM Template for MySQL Enterprise Edition MySQL Enterprise Oracle Certifications MySQL Windows Installer MySQL Enterprise Security MySQL Enterprise Scalability

All GA!

MySQL Database 5.6 DMR* MySQL Cluster 7.2 DMR MySQL Labs! ("early and often") 2011 MySQL Cluster 7.2 MySQL Cluster Manager 1.4 MySQL Utilities 1.0.6 MySQL Migration Wizard MySQL Enterprise Backup 3.9 MySQL Enterprise Audit MySQL Database 5.6 MySQL Cluster 7.3

All GA!

MySQL Database 5.7.2 DMR


A BETTER MySQL 2012-13

ORACLE

Copyright 2013, Oracle and/or its affiliates. All rights reserved.


2010

*Development Milestone Release

© 2010 Oracle Corporation – Proprietary and Confidential

Industry Leaders Rely on MySQL

MySQL 5.6: In Summary

IMPROVED PERFORMANCE AND SCALABILITY

- Scales to 48 CPU Threads
- Up to 230% performance gain over MySQL 5.5

IMPROVED INNODB

· Better transactional throughput and availability

IMPROVED OPTIMIZER

• Better query exec times and diagnostics for query tuning and debugging

IMPROVED REPLICATION

• Higher performance, availability and data integrity

IMPROVED PERFORMANCE SCHEMA

• Better Instrumentation, User/Application level statistics and monitoring

New! NoSQL ACCESS TO INNODB

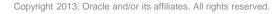
• Fast, Key Value access with full ACID compliance, better developer agility

MySQL 5.6: Best Replication Features Ever

24 HOUR

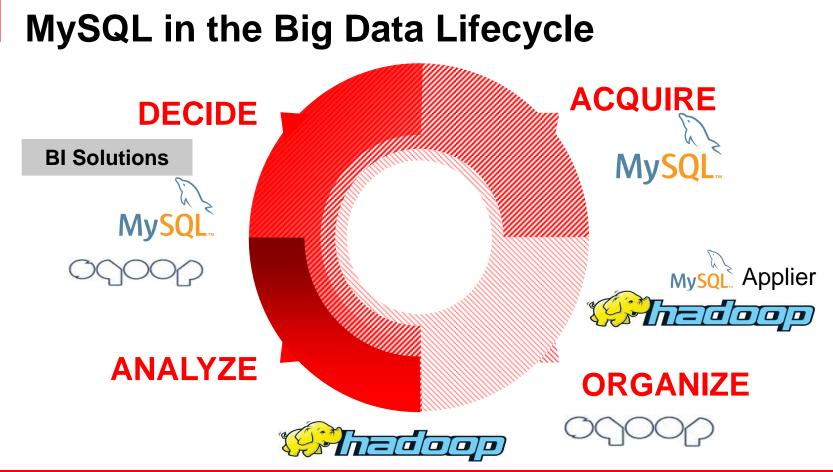
- Multi-Threaded Slaves
- Binary Log Group Commit
- Optimized Row-Based Replication

FAILOVER & RECOVERY


- Global Transaction Identifiers
- Replication Failover & Admin Utilities
- Crash Safe Slaves

DATA INTEGRITY

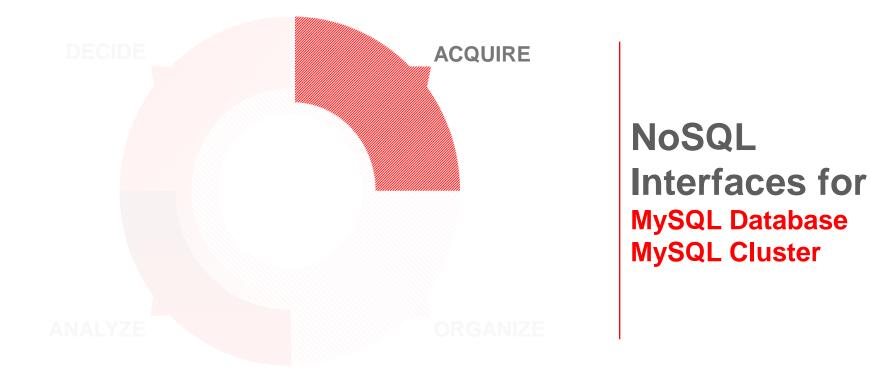
Replication Event Checksums


DEV/OPS AGILITY

- Time Delayed Replication
- Remote Binlog Backup
- Informational Log Events

Leading Use-Case, On-Line Retail

MySQL + Hadoop: Unlocking the Power of Big Data

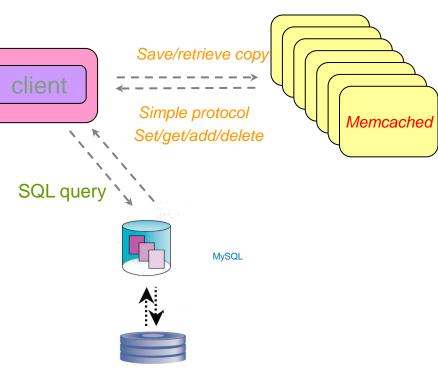

50% of our users integrate with MySQL*

Download the MySQL Guide to Big Data:

http://www.mysql.com/why-mysql/white-papers/mysql-and-hadoop-guide-to-big-data-integration/

*Leading Hadoop Vendor

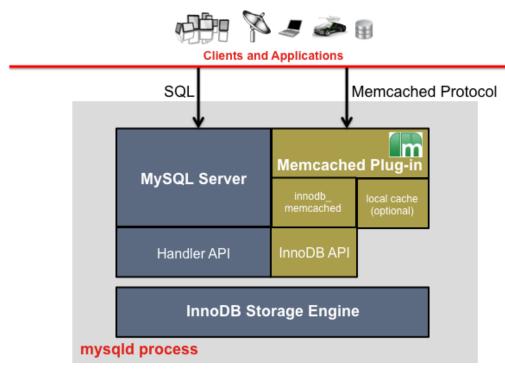
MySQL in the Big Data Lifecycle


MySQL NoSQL Interface Design Goals: Fast, Flexible and Safe

Combined with Schema Flexibility: Online DDL

How Memcached is used with MySQL separately

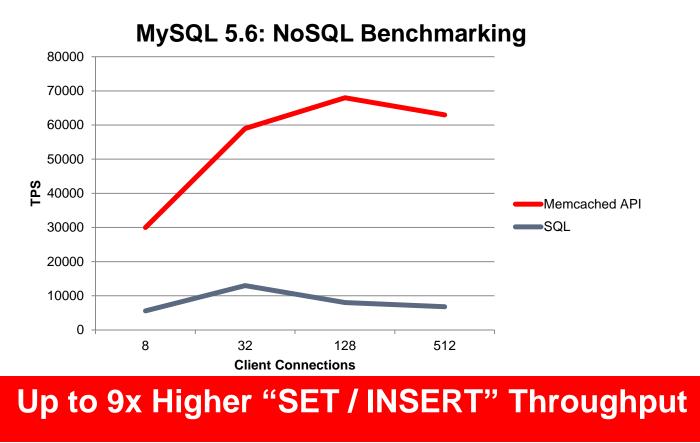
- Memcached is in-memory key-value store for small data
- It is one of the most widely used In-Memory cache implementations for social network websites
- Memcached has a simple and open protocol as opposed to a rich client bound to a specific language, and implementation makes it portable across a wide variety of languages and environments


InnoDB as a Key Value store

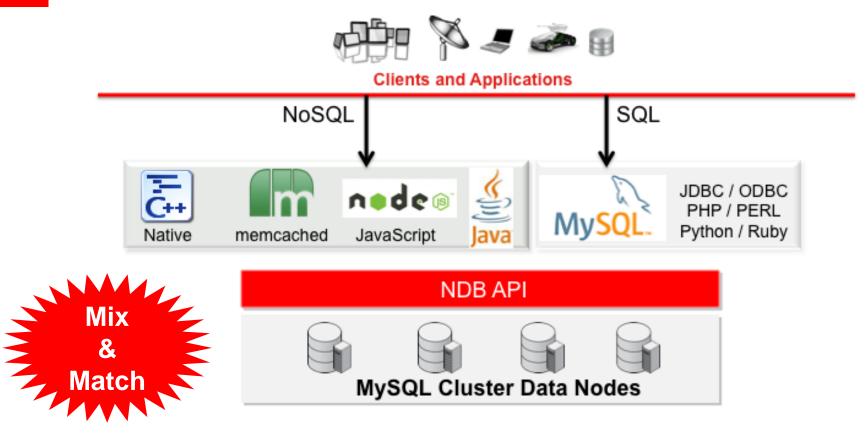
- Combine the best of the NoSQL world and SQL world
- Memcached listens on specific ports as the front end, directs requests directly to InnoDB
- Simple commands, much smaller network transmit packages
- Persistent storage from InnoDB
- Index on the key column
- Full ACID compliance
- Bypass Optimizer and QP layer of MySQL and directly access the storage engine
- Dual access of data (SQL and Memcached)

MySQL 5.6: NoSQL Interface to InnoDB

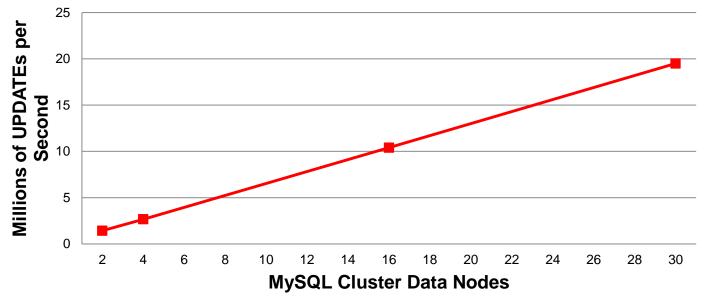
Memcached API



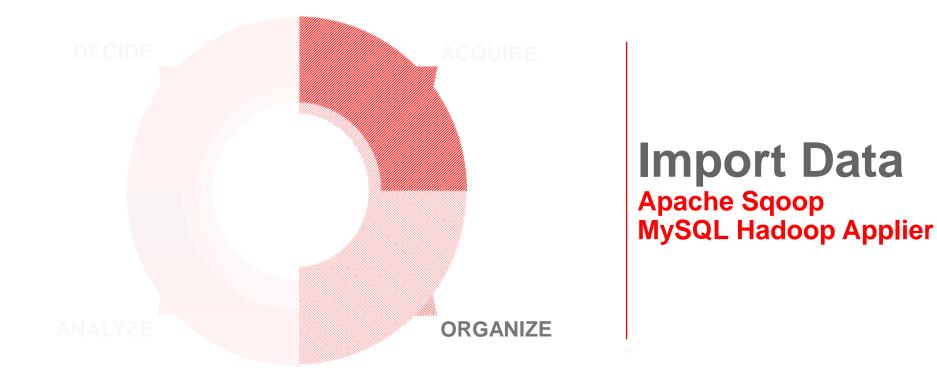
- Key-value access to InnoDB
- Bypasses SQL parsing


Implemented via:

- Memcached plug-in to mysqld
- Memcached mapped to native InnoDB API
- Use existing Memcached clients
- Shared process for ultra-low latency


Performance

MySQL Cluster: Multiple NoSQL Interfaces

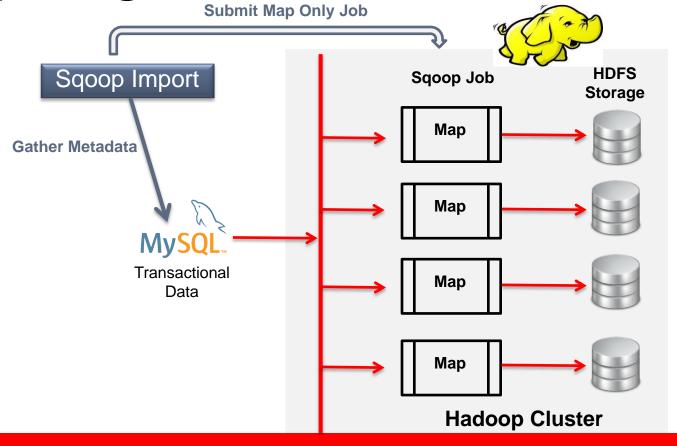


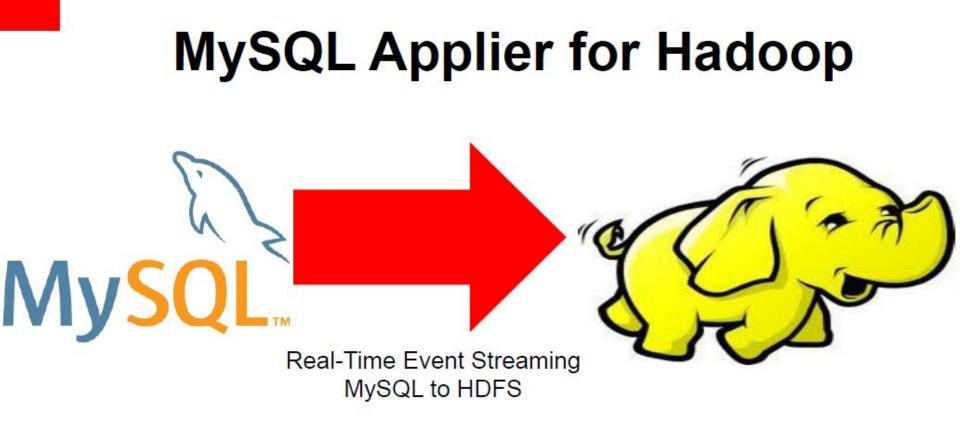
1.2 Billion UPDATEs per Minute

- NoSQL C++ API, flexaSynch benchmark
- 30 x Intel E5-2600 Intel Servers, 2 socket, 64GB
- ACID Transactions, with Synchronous Replication

MySQL in the Big Data Lifecycle

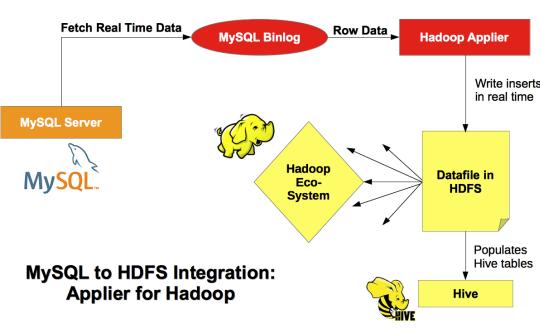
Apache Sqoop

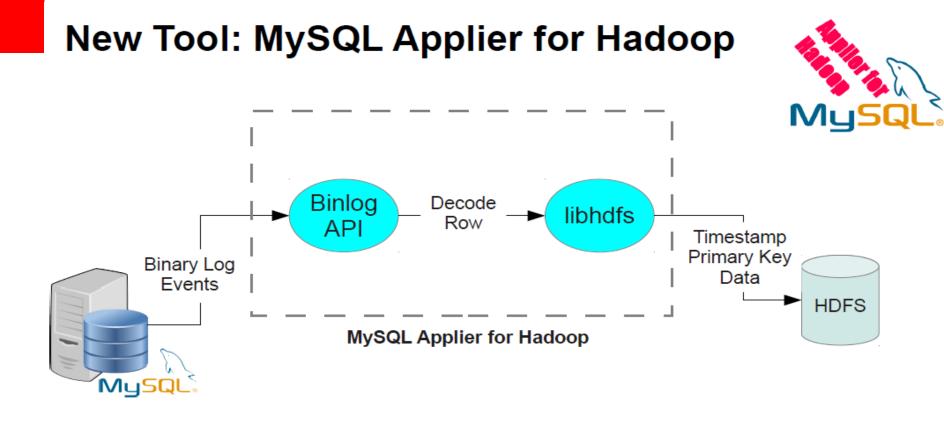

- Apache TLP, part of Hadoop project
 - Developed by Cloudera
- Bulk data import and export
 - Between Hadoop (HDFS) and external data stores
- JDBC Connector architecture
 - Supports plug-ins for specific functionality
- "Fast Path" Connector developed for MySQL



The Apache Software Foundation http://www.apache.org/

Importing Data





Hadoop Applier: Design

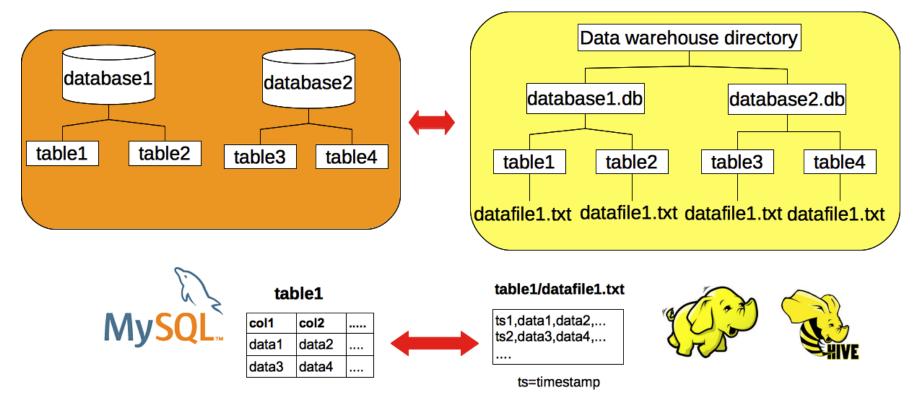
- Uses MySQL replication techniques for real time integration
- Binlog API uses Binary Log to rapidly fetch new data from a running server via the replication protocol
- MySQL Binlog comprised of events, each event represents a database change
- Hadoop Applier receives the events using the Binlog API, and writes the changes into a file in Hadoop Distributed File System
- Other tools in Hadoop Ecosystem, such as Apache Hive, can then consume this data

Hadoop Applier: Implementation

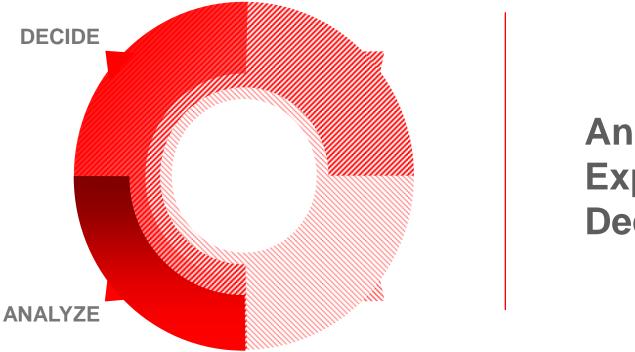
Replicates rows inserted into a table in MySQL to Hadoop Distributed File System

- •Uses an API provided by libhdfs, a C library to manipulate files in HDFS
- •The library comes pre-compiled with Hadoop Distributions
- •Connects to the MySQL master (or reads the binary log generated by MySQL) to:
 - Fetch the row insert events occurring on the master
 - Decode these events, extracting data inserted into each field of the row
 - Separate the data by the desired field delimiters and row delimiters
 - Use content handlers to get it in the format required
 - Append it to a text file in HDFS

Integration with HIVE


•Hive runs on top of Hadoop. Install HIVE on the hadoop master node

- •Set the default datawarehouse directory same as the base directory into which Hadoop Applier writes
- Create similar schema's on both MySQL & Hive
- Timestamps are inserted as first field in HDFS files
- Data is stored in 'datafile1.txt' by default
- •The working directory is
- base_dir/db_name.db/tb_name


MySQL	HIVE
SQL Query	Hive QL
CREATE TABLE t (i INT);	CREATE TABLE t (time_stamp INT, i INT) [ROW FORMAT DELIMITED] STORED AS TEXTFILE;

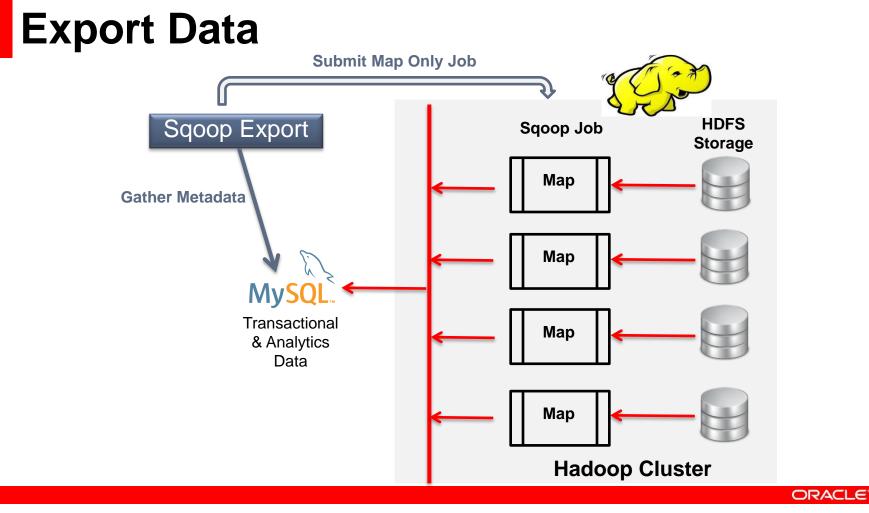
Mapping Between MySQL and HDFS Schema

MySQL in the Big Data Lifecycle

Analyze Export Data Decide

Copyright 2013, Oracle and/or its affiliates. All rights reserved.

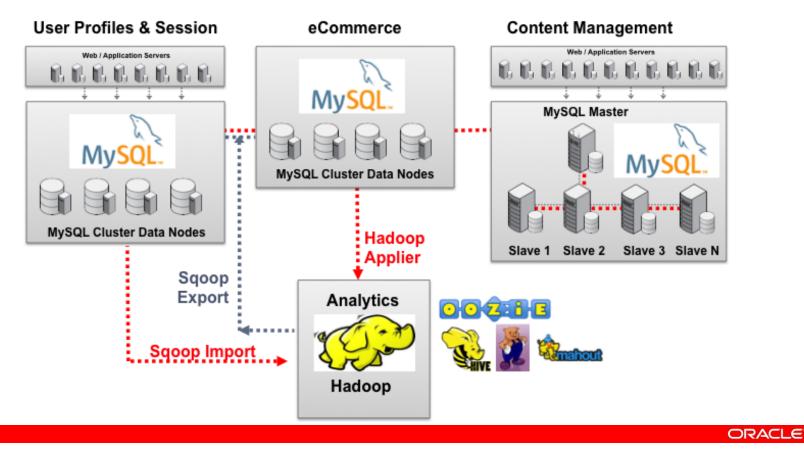
Analyze Big Data



cloudera

Copyright 2013, Oracle and/or its affiliates. All rights reserved.

MySQL Reporting Database for BI



MySQL Operational Database for Web

Data Analysis: MySQL Enterprise Edition

Highest Levels of Security, Performance and Availability

Oracle Premier Lifetime Support

MySQL Enterprise Security

MySQL Enterprise Audit

MySQL Enterprise

Scalability

MySQL Enterprise

High Availability

Oracle Product Certifications/Integrations

> MySQL Enterprise Monitor/Query Analyzer

> > MySQL Enterprise Backup

MySQL Workbench

ORACLE

Copyright 2013, Oracle and/or its affiliates. All rights reserved.

MySQL Enterprise Monitor with Query AnalyzerTune Analytical QueriesEnhance DevOps Agility

Search Type	Query Search	Query	Query Type			Database		Time Display	
Contains	~	All					From	/То 🔽	
0			Deteters	Counts		Exec Time (hh:mm			
Query		Database	⊤ Exec	Err	Warn	Total	Мах		
commit			mem	11,398	0	0	3.656	0.172	
UPDATE inventory_	_instanstance_attribu	ute_id = ?	mem	3,903	0	0	1.719	0.016	
INSERT IGNORE INT	FO dc_n) VALUES (?,?,?)	mem	2,966	2	0	1.906	0.141	
UPDATE inventory	_instanstance_attribu	ute_id = ?	mem	2,679	0	3	0.953	0.031	
INSERT IGNORE INT	FO dc_n) VALUES (?,?,?)	mem	1,469	0	0	0.594	0.078	
SELECT hibinstanc	0 istance_attribute	e_id = ?	mem	1,463	0	0	0.734	0.016	
INSERT IGNORE INT	FO dc_n? , ? , ?) /* ,	*/	mem	673	0	0	0.828	0.031	
SELECT ngsavedstr0 iance_attribute_id = ?)		mem	474	0	0	0.359	0.016		
INSERT IGNORE INTO dc_n? , ? , ?) /* , */		mem	446	0	0	0.438	0.063		
SELECT emailtarge	0rrule_schedule	e_id = ?	mem	372	0	0	0.141	0.016	
rollback			mem	298	0	0	0.000	0.000	
SELECT ruleexpres	0 .vres0 .variabl	e id = ?	mem	290	0	0	0.109	0.016	

🕼 Monitor 🔰 🛡 Advisors	\Upsilon 🖸 Events	🍸 🗷 Gr	raphs 🔰 🍯	Replication					
Replication Monitoring									
⊤ Servers	Туре	Slave IO	Slave SQL	Seconds Behind					
E Basic (2)	TREE	Running	Running						
master:10101	master								
slave:10100	slave	Running	Running	00:00:00					
E Ringlet (2)	RING	Running	Running						
Yang:10120	master/slave	Running	Running	00:00:00					
Yin:10121	master/slave	Running	Running	00:00:00					
RingSpoke (4)	MIXED	Running	Running						
ring1:10183	master/slave	Running	Running	00:00:00					
ring2:10182	master/slave	Running	Running	00:00:00					
ring3:10181	master/slave	Running	Running	00:00:00					
ring3slave:10180	slave	Running	Running	00:00:00					
Tree 3 (5)	TREE	Running	Running						
master:10153	master								
slave1:10150	slave	Running	Running	00:00:00					
slave2master:10152	master/slave	Running	Running	00:00:00					
slave2slave:10151	slave	Running	Running	00:00:00					
slave3:10154	slave	Running	Running	00:00:00					

Scaling, Security and Data Protection

MySQL Enterprise Scalability

MySQL Enterprise Security

MySQL Enterprise Audit

MySQL Enterprise Backup

MySQL Enterprise Backup

- Online Backup for InnoDB
- Full, Incremental, Partial Backups (scriptable interface)

MEB Backup

Files

- Compression
- Point in Time, Full, Partial Recovery options
- Metadata on status, progress, history
- Unlimited Database Size
- Cross-Platform
 - Windows, Linux, Unix
- Certified with Oracle Secure Backup

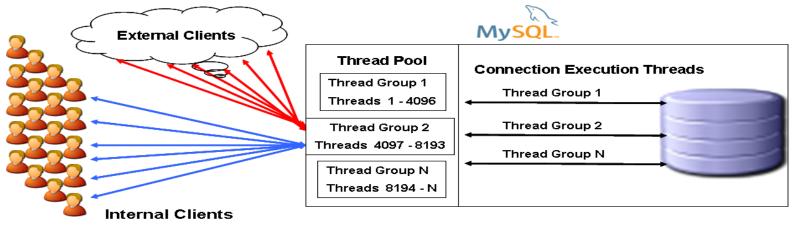
ORACLE

MvSQL

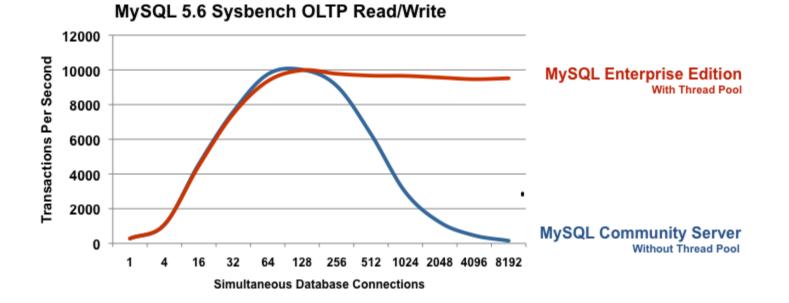
Database File

Ensures quick, online backup and recovery of your MySQL apps.

MySQL Enterprise Security


MySQL External Authentication

- PAM (Pluggable Authentication Modules)
 - Access external authentication methods
 - Standard interface (Unix, LDAP, others)
 - proxied and non-proxied users
- Windows
 - Access native Windows services
 - Authenticate users already logged into Windows (Windows Active Directory)


Pluggable Authentication API
Integrates MySOL with existing security infrastructures and SOPs

5.5 MySQL Enterprise Scalability

- MySQL default thread-handling excellent performance, can limit scalability as connections grow
- MvSQL Thread Pool improves sustained

Thread Pool

MySQL Enterprise Audit

Policy-based Auditing for MySQL Applications

- Out-of-the-box logging of connections, logins, query activity across all or specific MySQL servers
- User defined policies, filtering and log rotation
- Dynamically enabled, disabled: no server restart
- XML-based audit stream per Oracle audit specification

ORACLE

- Easily implemented via MySQL 5.5 Audit API
- MySQL 5.5.28 and higher Get it here: support.oracle.com and edelivery.oracle.com

Adds regulatory compliance to MySQL applications

Oracle Premier Support for MySQL Rely on The Experts - Get Unique Benefits

- Straight from the Source
- Largest Team of MySQL Experts
- Backed by MySQL Developers
- Forward Compatible Hot Fixes
- MySQL Maintenance Releases
- MySQL Support in 29 Languages
- 24/7/365
- Unlimited Incidents
- Knowledge Base
- MySQL Consultative Support

<u>Only From</u> <u>Oracle</u>

"The MySQL support service has been essential in helping us with troubleshooting and providing recommendations for the production cluster, Thanks."

-- Carlos Morales – Playfulplay.com

Summary

- MySQL + Hadoop: widely deployed solution
- "Best of both worlds" SQL + NoSQL Access
- Tools and expertise to support you
- End to end Oracle solutions for Big Data

Integrate for Insight

Download the Guide

http://www.mysql.com/why-mysql/whitepapers/mysql_wp_hadoop.php

Try Out MySQL 5.6

http://www.mysql.com/downloads/mysql/

Hardware and Software

ORACLE

Engineered to Work Together

Copyright 2013, Oracle and/or its affiliates. All rights reserved.

