

ORACLE®

Why and How You Should Be Using Policy-Managed RAC Databases

Mark V. Scardina

Director of Product Management

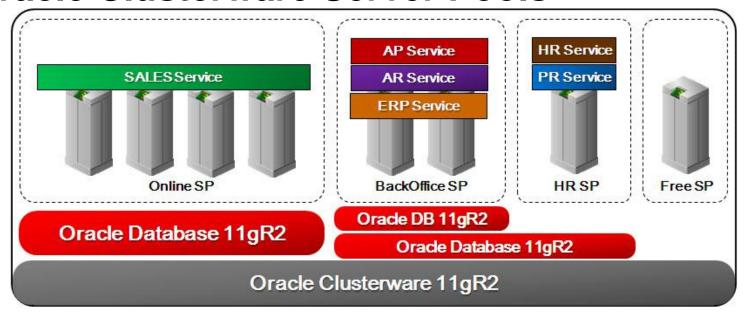
Oracle Quality of Service Management

Agenda

- Introduction
- Server Pools and Database Management
- Policy-managed Database Use Cases
- Converting to a Policy-Managed Database
- Impact upon CRS-Managed Database Services
- Considerations and Tips
- Further Information

In The Beginning ...

Parallel Server	Real Application Clusters		Private Database Cloud
Performance	PerformanceScalability	PerformanceScalabilityHigh Availability	 Performance Scalability High Availability Consolidation Provisioning Quality of Service


Policy-Managed Databases

- An Evolutionary Step
- Deploy on demand
- Actively manage to business requirements
- Scale just-in-time
- Manage performance to SLAs
- Achieve predictable failure and recovery
- Maximize IT spend and Datacenter efficiency

Agenda

- Introduction
- Server Pools and Database Management
- Policy-managed Database Use Cases
- Converting to a Policy-Managed Database
- Impact upon CRS-Managed Database Services
- Considerations and Tips
- Further Information

Oracle Clusterware Server Pools

- Dynamically manage DB resources for services by Policy
- Control availability with Min, Max, & Importance attributes
- Easily Manage large clusters consolidating databases

Server Pool Properties

- min [-I (Max ≥ int ≥ 0)]:
 - The minimum count of servers to maintain within the server pool
 - Satisfied in order of decreasing Imp value
- max [-u (-1 < int ≥ Min)]:
 - The maximum count of servers permitted within the server pool
 - Satisfied in order of decreasing Imp value once all Min values have been met.
- imp $[-i (0 \le int \le 1000)]$:
 - The higher Imp value server pools are filled to their Min values first
 - Servers logically move to replace failed servers based upon lower Imp pools satisfying higher Imp pools to preserve Min

Default Server Pools - GENERIC

- Used to model databases in "The traditional WAY!"
 - "The traditional WAY!" → "Administrator-Managed"
- Parent of all server pools for "Administrator-Managed" databases
- Always exists but may be of size 0
- Used for upgrade from 10g or 11g Release 1
- Use SRVCTL of the respective version of the database home to manage the databases in the Generic Pool.
- Servers in Generic are named (hosting member in cluster resource)

Default Server Pools - FREE

- A special default server pool, used for management of spare capacity
- Any unassigned server will go to FREE
- Always exists, but may be of size 0
- Default Importance is 0, and is editable.
- CAUTION: If Importance is higher than other pools, may steal servers from other pools above Min upon HA event
- Min and Max are defined automatically.

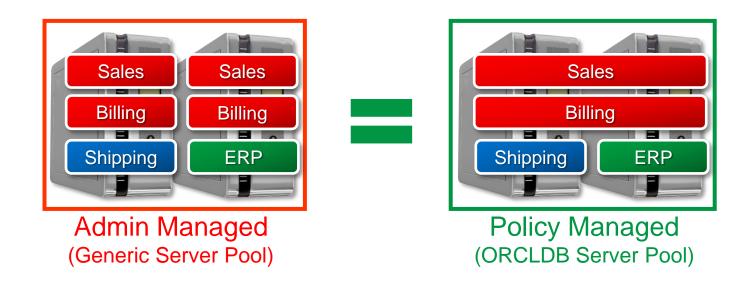
Agenda

- Introduction
- Server Pools and Database Management
- Policy-managed Database Use Cases
- Converting to a Policy-Managed Database
- Impact upon CRS-Managed Database Services
- Considerations and Tips
- Further Information

Server Pools and Database Management

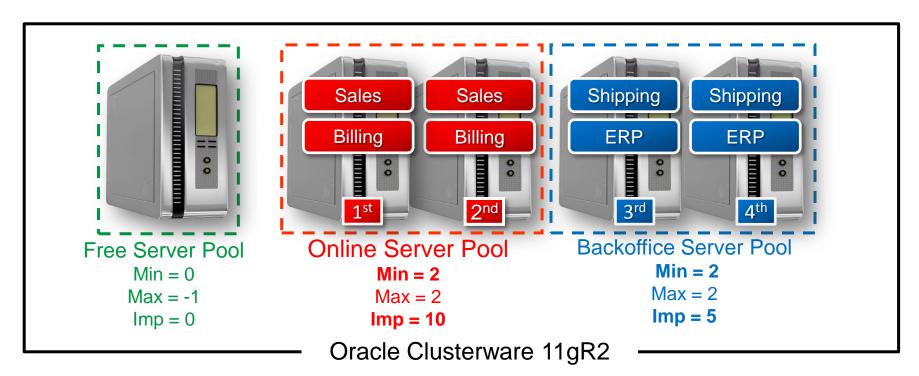
- Two Management Styles for Oracle RAC Databases

Administrator Managed

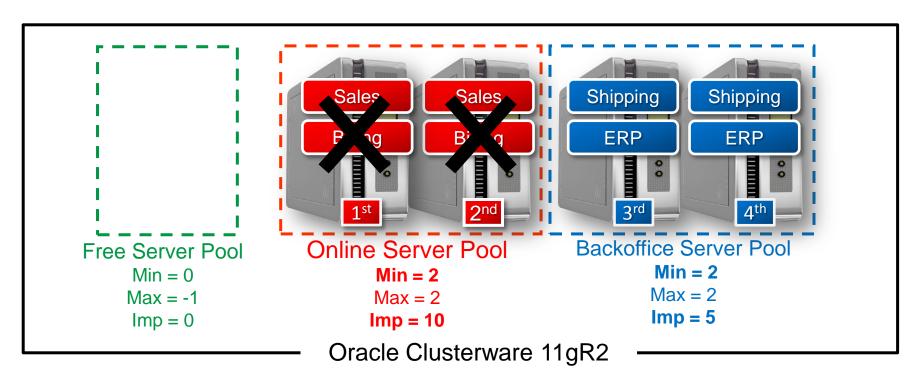

- Specify where the database should run with a list of servers names ("traditional way")
- Specify exactly where services should run within the database

Policy Managed

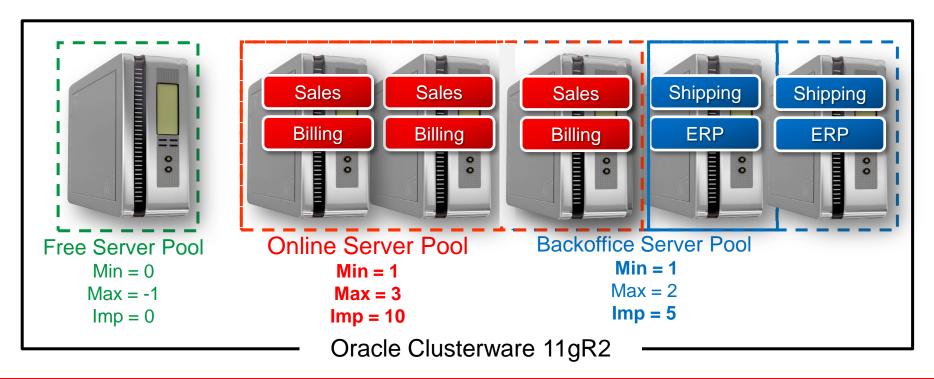
- Specify resource requirements for expected workload
- Specify database service ranking or availability management
- Enough instances are started to support expected workload
- Goal: remove hard coding of a service to a specific instance or instance to specific server and preserve business critical services.


Two Node Clusters Are Equivalent

- Singleton and Uniform Services behave the same


Managing Service Start Order

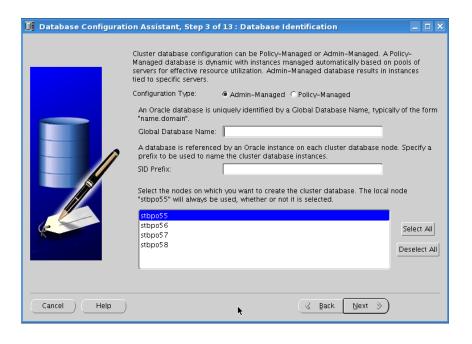
- Using Server Pool's Min and Imp Attributes


Managing Last Service Standing

- Using Server Pool's Min and Imp Attributes

Zero-Configuration Dynamic Provisioning

- Using Relocate Server or Add Node



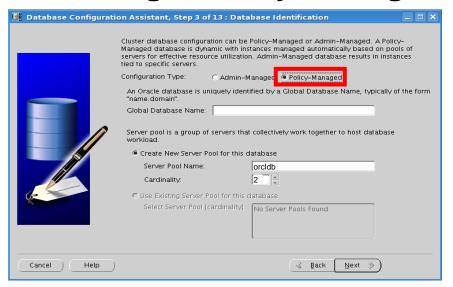

Agenda

- Introduction
- Server Pools and Database Management
- Policy-managed Database Use Cases
- Converting to a Policy-Managed Database
- Impact upon CRS-Managed Database Services
- Considerations and Tips
- Further Information

Decide on a Management Style

- At Database Creation Time

Creating an Administrator-Managed DB

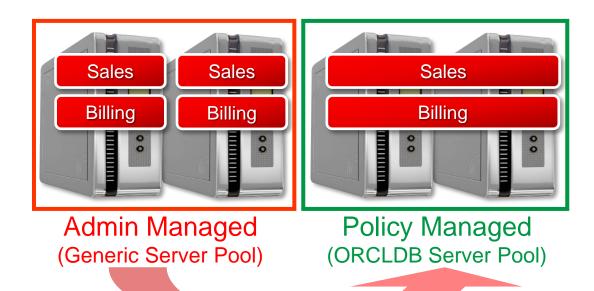


[GRID]> srvctl status srvpool

Server pool name: Free Active servers count: 0 Server pool name: Generic Active servers count: 2

[RAC]> srvctl status database -d orcl Instance ORCL1 is running on node rac1 Instance ORCL2 is running on node rac2 [RAC]> srvctl config database -d orcl Database unique name: orcl Database name: Oracle home: /u01/app/oracle/product/11.2.0/dbhome 1 Oracle user: oracle Spfile: +DATA/ORCL/spfileORCL.ora Domain: Start options: open Stop options: immediate Database role: PRIMARY Management policy: AUTOMATIC Server pools: orcl Database instances: ORCL1,ORCL2 Disk Groups: DATA Services: MyConvSrvc Database is administrator managed

Creating a Policy-Managed DB



[GRID]> srvctl status srvpool Server pool name: Free Active servers count: 0 Server pool name: Generic Active servers count: 0 Server pool name: orcldb Active servers count: 2

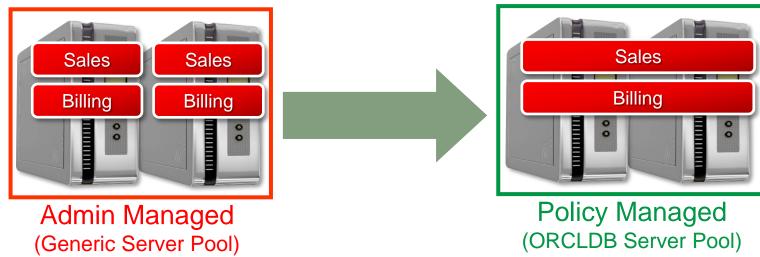
```
[RAC]> srvctl status database -d orcl
Instance ORCL 1 is running on node rac1
Instance ORCL 2 is running on node rac2
[RAC]> srvctl config database -d orcl
Database unique name: ORCL
Database name: ORCL
Oracle home:
/u01/app/oracle/product/11.2.0/dbhome 1
Oracle user: oracle
Spfile: +DATA/ORCL/spfileORCL.ora
Domain:
Start options: open
Stop options: immediate
Database role: PRIMARY
Management policy: AUTOMATIC
Server pools: orcldb
Database instances: ORCL 1 ORCL 2
Disk Groups: DATA
Services: MyConvSrv
Database is policy managed
```

Decide on a Management Style

- Convert Existing Databases – In Place

Converting to a Policy Managed Database

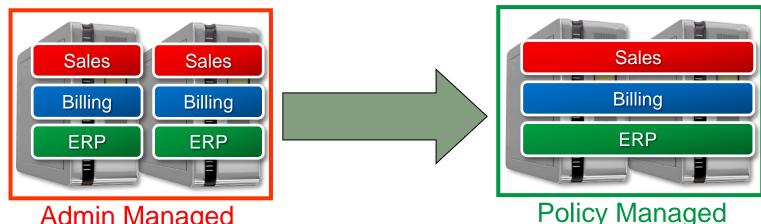
- Step-by-Step


- Check the current configuration
 - srvctl status database -d <db name>
 - srvctl status service -d <db name>
- Create a new Database Server Pool
 - srvctl add serverpool -g <pool name> -l <min> -u <max> -i <imp>
- Modify the database to use the new server pool
 - srvctl modify database -d <db_name> -g <pool_name>
- Update the remote password file for database access
 - Copy the existing password file orapw\$ORACLE SID to orapw<db unique name> on the node where the administrator-managed database was running
 - Copy this file orapw<db unique name>, to the same location on every cluster node.
- Confirm Service Placement Relocate services as needed 5.
 - srvctl relocate service -d <db name> -s <svc name> -c <current node> -n <target node>

Agenda

- Introduction
- Server Pools and Database Management
- Policy-managed Database Use Cases
- Converting to a Policy-Managed Database
- Impact upon CRS-Managed Database Services
- Considerations and Tips
- Further Information

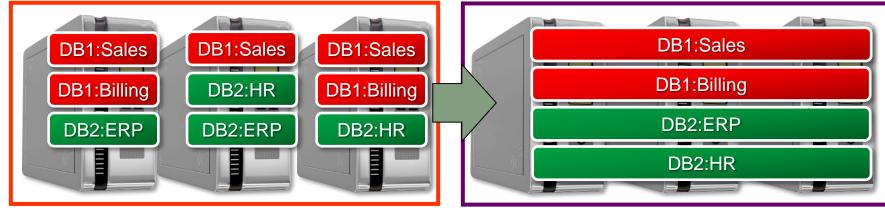
Converting to Policy-Managed – Single DB


- No Impact on Uniform Service Placement

- Services with preferred servers > 1 will be converted to Uniform.
- Uniform services run on ALL database instances in a server pool
- Use RM or QoS to manage resources between services.

Converting to Policy-Managed – Multiple DBs

- No Impact on Uniform Service Placement

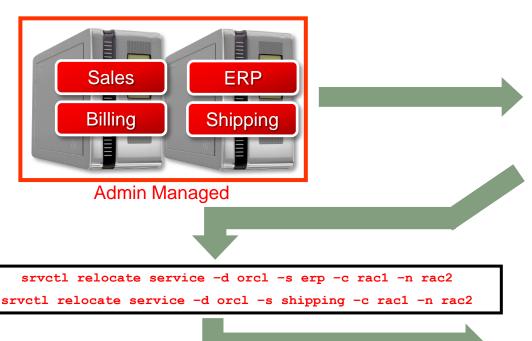


Admin Managed

- Services with preferred servers > 1 will be converted to Uniform.
- Uniform services run on ALL database instances in a server pool
- Use RM or QoS to manage resources between services
- Use Instance Caging or QoS to manage resources between databases.

Converting to Policy-Managed – Multiple DBs

- Overlapping Services to Uniform Service Placement


Admin Managed

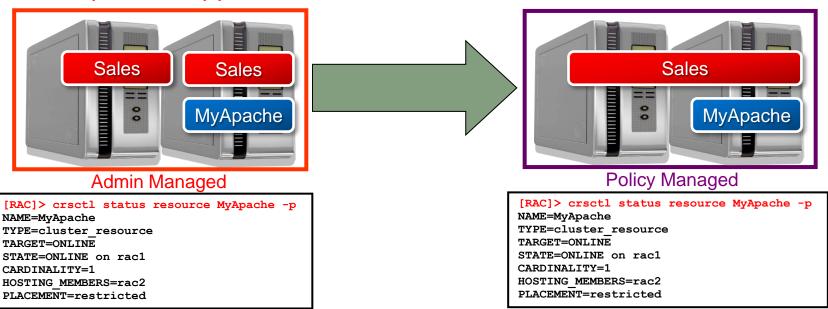
Policy Managed

- Services with preferred servers > 1 will be converted to Uniform.
- Uniform services run on ALL database instances in a server pool
- Use RM or QoS to manage resources between services
- Use Instance Caging or QoS to manage resources between databases.

Converting to Policy-Managed – Singleton Services

- Potential Impact to Service Placement

Policy Managed


Sales ERP

Billing Shipping

Policy Managed

Converting to Policy-Managed – Applications

- No Impact on Application Placement

- Hosting Members list honored across conversion
- Server Pool list can be substituted to support anonymous nodes
 - SERVER_POOLS=orcidb versus HOSTING_MEMBERS=rac1 rac2

Agenda

- Introduction
- Server Pools and Database Management
- Policy-managed Database Use Cases
- Converting to a Policy-Managed Database
- Impact upon CRS-Managed Database Services
- Considerations and Tips
- Further Information

The Upgrade – Simple But No Shortcuts

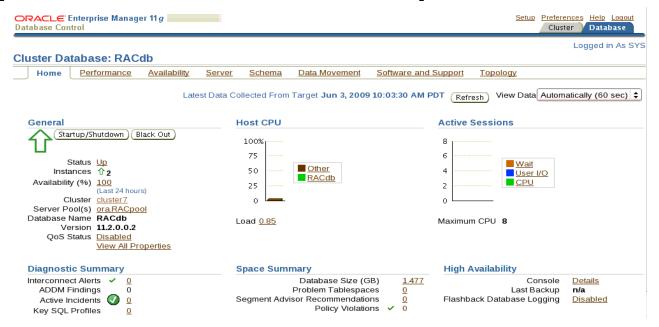
- When upgrading from:
 - Oracle pre-11gR2 Oracle RAC Database(s) hosted on
 - Oracle pre-11gR2 Grid Infrastructure
- Upgrade step 1:
 - Upgrade to Grid Infrastructure 11gR2
 - All pre-11gR2 Databases will be administrator-managed databases hosted in Generic
- Upgrade step 2:
 - Upgrade pre-11gR2 Oracle RAC Database(s)
 - Upgraded databases remain as admin-managed DBs in Generic
 - A conversion to a policy-managed database can be performed at any time following the procedure described in the documentation.

Tip:1 Consider Policy-Managed Database's New Fail-Over and Placement Protocol

- Node failures move servers between pools transactionally versus moving db instances/services
- Ensure Min value is sufficient to run workload
- Ensure Max value is only as large as necessary
- Consider Importance governs both initial placement and donor pools following a failure
- Consider changing Min, Max, and Imp as a group based upon business needs and events.

Tip 2: Understand impact of New Database Instance Names and Relocation

- Databases instances are started and stopped transactionally when:
 - Servers are moved between pools
 - srvctl relocate server -n <node name> -g <server pool>
 - Pools grow or shrink
 - srvctl modify srvpool -g <server pool> -l <min> -u<max>
- Instances can be reported legitimately as DOWN.
- Database instance reports, log and trace files are no longer nodespecific


Tip 3: Consider Database Internals

The documentation (Oracle® RAC Administration and Deployment Guide 11g Rel. 2

http://docs.oracle.com/cd/E11882 01/rac.112/e16795/admin.htm#RACAD803 states:

If you are using Oracle Automatic Storage Management (Oracle ASM) with Oracle Managed Files (OMF) for your [policy-managed database] database storage, then, when an instance starts and there is no redo thread available, **Oracle RAC automatically enables one and creates the required redo log files and undo tablespace.**

Tip 4: Consider External Components - EM

Oracle® Real Application Clusters Installation Guide 11g Release 2 (11.2) http://docs.oracle.com/cd/E11882 01/install.112/e24660/srvpool.htm#BHBJIIDC Configuring Database Control After Installation Using EMCA

NOTE: Instances will have new names and need to be registered.

ORACLE

Tip 4: Consider External Components - HA

Data Guard

- New instance not mapped to Standby Redo Log thread
- Service to instance mapping is statically registered thus all possible combinations of node name and instance need to be configured.

RMAN

Do not use Instance Specified Load Balancing CONFIGURE CHANNEL DEVICE TYPE sbt CONNECT '@racinst_1'
 CONFIGURE CHANNEL DEVICE TYPE sbt CONNECT '@racinst_2'

Golden Gate

- Extract Process requires manual intervention
 - Upon additional Redo thread Extract group must be dropped and re-added manually
- GG Extract and Replicate does not failover if server is moved
 - Solved on Linux with new Clusterware Bundled Agents available on OTN.

Agenda

- Introduction
- Server Pools and Database Management
- Policy-managed Database Use Cases
- Converting to a Policy-Managed Database
- Impact upon CRS-Managed Database Services
- Considerations and Tips
- Further Information

For Further Information

- http://www.oracle.com/technology/documentation/database.html
 - To convert to a policy-managed database, see:
 http://docs.oracle.com/cd/E11882_01/rac.112/e16795/admin.htm#RACAD803
 - For using EMCA after conversions, see:
 http://docs.oracle.com/cd/E11882_01/install.112/e24660/srvpool.htm#BHBJIIDC
- http://www.oracle.com/goto/rac
- http://www.oracle.com/goto/clusterware

Q/A

ORACLE®