

Database Tables to Storage Bits: Data Protection Best Practices for Oracle Database

Gurmeet Goindi, Principal Product Manager, Oracle

Agenda

- Database & Storage Architecture
- Data Protection with Storage Technologies
- Storage-based Data Protection Database Implications
- Database-Integrated Data Protection
- Summary

Quick Show of Hands

- How many Database administrators?
- How many Storage administrators?
- ③ Neither? Example, Managers?

Oracle Database Architecture

Logical View

Logical and Physical Database Structures

Logical and Physical Database Structures Summary

The Anatomy of Storage Infrastructure

- Storage controllers/heads are specialized servers
- Running hundreds of thousands of lines of code
- Most setups require redundant configuration of controllers, disk shelves, switches, etc.

Exposed to similar failures as your server hardware and software

The Anatomy of a Storage Controller

- Client traffic comes in at 10GbE or 4-8Gb FC
- Storage backend is usually slower
- Further, one client request usually results in multiple IO requests to drives
- A write is only acknowledged once written to disk or some form of Non Volatile Memory
- Data flows through many interfaces, each interface can have bugs, add corruptions, etc.
- For performance:
 - Add more drives and/or add faster drives

ORACLE

- Introduce Flash in the architecture

So What About Flash in Storage Architecture

- What's special about Flash
 - Performance
 - No moving parts
 - Expensive, but getting cheaper
- Server Attached Flash
 - PCI Express Attached IO cards
 - Extremely fast, improves performance for currently active data
- Flash in Storage Controller
 - Flash is faster than Hard Disk Drives
 - Flash in server is faster than Flash in the storage controller

Server Attached Flash

Standalone Servers with Local Flash Cards

Typical deployment:

- Standalone x86 server(s)
- Single instance (non-RAC) databases
- 1-10 TB local Flash
- Database stored on Flash
- Ex: HP DL580 G7 + Fusion-io

• ANY component failure = loss of database access

- CPU, memory, O/S, Flash, etc.
- Local second server with identical Flash recommended (\$\$\$ x 2)

Good for performance, Not so good for HA

Agenda

- Database & Storage Architecture
- Data Protection with Storage Technologies
- Storage-based Data Protection Database Implications
- Database-Integrated Data Protection
- Summary

Traditional Approach to Datacenter Disruptions

Backups & Snapshots

Human Errors

Storage Failures

Data Corruptions

Storage Replication

Systemwide Failures

Site or Network Failures

Natural Disasters

Snapshots Overview

- Point-in-time, read-only logical copy of your data
- Space efficient because only changed blocks are stored
- Multiple implementations:

Copy on write	Redirect on write
Array copies the original block before changing it	Writes are directed to new blocks
High write overhead	Low write overhead
EMC BCV	NetApp Snapshots

Snapshots Limitations

- Snapshots are application data-format unaware and cannot validate application data
- Snapshots reside on the same array as the source data, so they are vulnerable to failures that affect the storage array
- Snapshots are rendered useless in a data loss or corruption scenario
- A corrupted block can potentially affect a series of Snapshots
- Reconstruction has the same performance penalty as that of a full copy

ORACLE

Restoring a Snapshot can invalidate all Snapshots taken after it

Here is the rub: Snapshots are NOT Backups !!

Synchronous Mirroring

- Update made to a data volume on primary site is synchronously replicated to a data volume on secondary site
- The data volume on the secondary site is not mountable for most implementations
- The distance between the sites is typically less than 100km, though the technology limits it to 200km
- Deploying FC links is expensive and complicated. Bandwidth is usually shared by multiplexing Multiple FC channels using a DWDM switch(\$\$)

Synchronous Mirroring: Limitations and Challenges

Physical Limitations

- Cable degrades the signal, the signal can only be transmitted in the range of ~200km without regenerating
- Latency for light travelling in a fiber cable is 1 ms for every 100 km
- FC is an acknowledgement-based protocol, hence latency if transmitting each frame will have at least 2 ms latency
- An IO request from an application will involve transmitting multiple such frames
- Protocol Limitations
 - FC uses credit based algorithm for flow control (buffer credits)
 - A transmit port can send only as many frames as the number of available buffer credits
 - Ineffective management of buffer credits will affect availability and performance

Asynchronous Storage Replication

- An Update made to a data volume on the primary site is transmitted to a data volume on the secondary site at a later point in time
- The data volume on the secondary site might be mountable
- Can easily support distances greater than 500 km
- Not the same level of protection as synchronous mode
- The link between the two sides is typically an IP based WAN link (FCIP)
- In case of FCIP the networking gear must handle FC over IP, and also have advanced QoS features

In the Event of a Disaster

- Remote system will detect an outage
- The storage resources at the remote site will have to be enabled for writes
- The Remote host will perform the required procedure to access the storage. For example a UNIX host will need to do the following:

- Import the Volume group
- Activate the logical Volumes
- Sanity check the Files System (fsck)
- Mount the Volumes
- Restart the application

Agenda

- Database & Storage Architecture
- Data Protection with Storage Technologies
- Storage-based Data Protection Database Implications
- Database-Integrated Data Protection
- Summary

Storage Level Data Protection for Database

Database Recovery in Event of a Disaster

- Activating Storage Replica
 - Failure Detection
 - Follow Vendor specific process to bring DR storage online (can take hours)
- Bring database to a consistent state
 - Roll Forward (redo)
 - Transaction Recovery
- Open database for applications

Storage Remote-Mirroring: Fundamental Flaw

Zero Oracle Awareness, Mirrors Every Write for Real-Time Protection

Protection From Localized Failures

Silent corruptions and disk failures

- Bit Error Rates for memory, media and network elements have remained almost constant over last few years
- The density of bits packed in those media has increased. The rate of processing these bits has also increased
- Hence the probability of corrupting these bits keeps increasing.
- HBA and disk drives all have firmware and firmware have bugs
- Disk Drive firmware sometimes misrepresent the state of a write – Lost Writes

Corruption Propagation

What is my exposure ??

Storage Remote Mirroring... blocks are just bits on a disk

Block	k 3!	941	(0)	xofe	65)											
	0	1	2	3	4	5	6	7	8	9	а	b	c	d	e	- f
000	20	28	20	54	77	61	73	20	74	68	65	28	6e	69	67	68
010	74	28	62	65	66	6f	72	65	28	73	74	61	72	74	2d	75
828	78	28	61	6e	64	20	61	бc	6c	20	74	68	72	6f	75	67
030	68	28	74	68	65	28	6e	65	74	2c	8a	20	28	20	20	20
848	6e	6f	74	28	61	28	70	61	63	6b	65	74	20	77	61	73
050	20	6d	6f	76	69	бe	67	3b	20	6e	6f	20	62	69	74	20
060	6e	61	72	20	61	63	74	65	74	2e	0a	20	20	20	54	68
070	65	20	65	6e	67	69	6e	65	65	72	73	20	72	61	74	74
080	6c	65	64	20	74	68	65	69	72	20	63	61	72	64	73	20
090	69	6e	20	64	65	73	70	61	69	72	2c	0a	28	20	20	28
0a0	20	68	6f	78	69	6e	67	28	61	28	62	61	64	20	63	68
ebe	69	78	20	77	6f	75	6c	64	28	62	60	6f	77	28	77	69
0c0	74	68	20	61	28	66	6c	61	72	65	Ze	0a	28	20	20	54
0d0	68	65	28	73	61	6c	65	73	6d	65	6e	20	77	65	72	65
0e0	20	6e	65	73	74	6c	65	64	20	61	6c	6c	20	73	бe	75
010	67	20	69	бе	20	74	68	65	69	72	20	62	65	64	73	2c
100	0a	28	20	28	28	20	77	68	69	6-c	65	20	76	69	73	69
110	6f	6e	73	28	6f	66	20	64	61	74	61	20	6e	65	74	73
120	20	64	61	6e	63	65	64	28	69	6e	20	74	68	65	69	72
130	20	68	65	61	64	73	2e	6a	28	20	20	41	6e	64	20	49
140	28	77	69	74	68	28	6d	79	20	64	61	74	61	73	63	6f
150	70	65	20	74	72	61	63	69	6e	67	73	20	61	6e	64	28
160	64	75	6d	70	73	0a	20	28	20	20	20	70	72	65	70	61
170	72	65	64	20	66	61	72	20	73	61	6d	65	20	70	72	65
180	74	74	79	20	62	61	64	20	62	72	75	69	73	65	73	20
190	61	6e	64	20	6c	75	6d	70	73	2e	0a	20	20	20	57	68
1a0	65	6e	20	6f	75	74	20	69	6e	20	74	68	65	28	68	61
168	6c	6c	20	74	68	65	72	65	28	61	72	6f	73	65	20	73
1c8	75	63	68	28	61	20	63	бс	61	74	74	65	72	2c	8a	20
1d0	20	28	20	20	49	20	73	70	72	61	6e	67	20	66	72	6f
1e0	6d	20	6d	79	20	64	65	73	6b	20	74	6f	20	73	65	65
1f0	20	77	68	61	74	20	77	61	73	20	74	68	65	20	6d	61

Only Application aware data consistency check can guarantee end to end data integrity. Eg: Oracle Data Guard

Checksum is the only validation method

Far superior than storage level checksum

Storage Based Data Protection for Databases

Summary – Risks and Limitations

Attributes	Storage Based Solution
Transactional Integrity	Not Guaranteed
Time to recover to normal operations	In hours
Complexity	High
Use of Network Resources	Inefficient
Idle DR Resources	Mostly
Cost of the Solution	Expensive
Management Overhead	High
Risk of a Resume Generating Event 😊	Very High

Agenda

- Database & Storage Architecture
- Data Protection with Storage Technologies
- Storage-based Data Protection Database Implications
- Database-Integrated Data Protection
- Summary

Oracle Integrated Data Protection

- Oracle recommendation: Maximum Availability Architecture (MAA)
 - Vastly more intelligent data protection than offered by storage layer
 - Architectural principle: Fault Isolation
- Examples of MAA's unique value-proposition
 - Database-optimized Physical Replication
 - Surgical Protection from Corruptions e.g. Lost Writes
 - Zero Downtime Auto-repair of Corrupted Blocks
 - Efficient Correction of Human Errors

Maximum Availability Architecture (MAA)

Low-Cost, Integrated, Fully Active, High ROI

Production Site

RAC

- Scalability
- Server HA

Flashback

 Human error correction

Online Redefinition, Edition-based Redefinition, Data Guard, GoldenGate

 Minimal downtime maintenance, upgrades, and migrations

ASM

- Volume Management

RMAN & Fast Recovery Area

– On-disk backups

Active Replica

- Active Data Guard
- Data Protection, DR
- Query Offload

GoldenGate

- Active-active
- Heterogeneous

Oracle Secure Backup – Backup to tape / cloud

Maximum Availability Architecture (MAA)

Low-Cost, Integrated, Fully Active, High ROI

Production Site

RAC

- Scalability
- Server HA

Flashback

 Human error correction

Online Redefinition, Edition-based Redefinition, Data Guard, GoldenGate

 Minimal downtime maintenance, upgrades, and migrations

ASM

- Volume Management

RMAN & Fast Recovery Area

– On-disk backups

Active Replica

Active Data Guard

- Data Protection, DR
- Query Offload

GoldenGate

- Active-active
- Heterogeneous

Oracle Secure Backup – Backup to tape / cloud

Oracle Integrated Data Protection

- Oracle recommendation: Maximum Availability Architecture (MAA)
 - Vastly more intelligent data protection than offered by storage layer
 - Architectural principle: Fault Isolation
- Examples of MAA's unique value-proposition
 - Database-optimized Physical Replication
 - Surgical Protection from Corruptions e.g. Lost Writes
 - Zero Downtime Auto-repair of Corrupted Blocks
 - Efficient Correction of Human Errors

Database Integrated Physical Replication

Data Guard: Why A Big Deal

 With Data Guard, redo blocks are transmitted directly from SGA: like a memcpy over the network

- Better performance since no disk I/O
- Better isolation from lower layer faults
- Better network utilization: only redo blocks sent over the network
- Transactional consistency always maintained
- Upon database failover, apps simply reconnect to new primary database

Data Guard, Compared to Storage Mirroring

Oracle Aware – Simple, Efficient, Physical Replication

Oracle Integrated Data Protection

- Oracle recommendation: Maximum Availability Architecture (MAA)
 - Vastly more intelligent data protection than offered by storage layer
 - Architectural principle: Fault Isolation
- Examples of MAA's unique value-proposition
 - Database-optimized Physical Replication
 - Surgical Protection from Corruptions e.g. Lost Writes
 - Zero Downtime Auto-repair of Corrupted Blocks
 - Efficient Correction of Human Errors

Outage at Financial Services Company

- Production database alert.log:
 - Errors in file /opt/app/oracle/admin/dg/bdump/dg1.trc:
 - ORA-01186 : file 93 failed verification tests
 - ORA-01251 : Unknown File Header Version read for file number 93

- ORA-01251 Corrupted file header. This could be caused due to missed read or write or hardware problem or process external to oracle overwriting the information in file header.
- Database crashed customer-facing applications down
 - Trade confirmation, new accounts, customer account information

Data Corruption Protection

Integrated with the Database

- Only the database system has intrinsic knowledge of its block structure
- Only the database can perform true end-to-end validation as block traverses the system stack
- Validation checks can be scaled across related processes such as transaction management, backup & recovery, mirroring, etc.

Oracle-aware Corruption Protection

Built-in Data Validation

- Database can check data, detect and repair corruptions
 - Checksum validation to detect data and redo block corruption
 - Checks semantic integrity of data blocks (Oracle knows Oracle)
 - Detects writes acknowledged but really lost by the I/O subsystem
 - Administrator can configure the level of checking
 - Can be configured for data blocks / data + index blocks
- Specific technologies provide additional validation
 - RMAN validates while doing backup and recovery
 - ASM validates using mirroring copies
 - Data Guard validates with standby database

The Problem of Lost Writes

One of the Nasty Ones!

- Lost Writes because of storage layer bug / malfunction, a write operation has really failed, but acknowledged as successful
- Database now has stale blocks
 - Subsequent transactions may access the stale blocks
 - May update the same block / other blocks based on stale contents, with serious business implications

- Forwarding confidential information to a terminated employee?
- Investment on a stock with multiple sell orders?
- Issuing an incorrect press release?
- Database may continue running for days, till various ORA-600s

Lost Write Real Life Example

From Support Database: Lengthy Outage for Multi-TB Database

Problems first appear at the standby, but standby data is safe

ORA-00600: internal error code, arguments: [3020], [648], [1182463], [2719091455], [] ORA-10567 : Redo is inconsistent with data block (file# 648, block# 1182463) **Recovery interrupted!**

• 4 days later: Production Database still down

Noticed odd query results on production Noticed ORA-600 errors on production this morning for which SGA Heapdump was uploaded. New info : I was rebuilding an index. After a few minutes, the database took an unexpected crash. ***please help. it's very urgent, production is down.

The Problem of Lost Writes

Solution!

- Remedy A basis of comparison with valid blocks
- Oracle solution Data Guard Physical Standby
- Controlled by DB_LOST_WRITE_PROTECT
 - **TYPICAL:** buffer cache read operations logged in redo, for read-write tablespaces
 - FULL: buffer cache read operations logged in redo also for read-only tablespaces
- When lost write protection enabled, SCNs of incoming redo blocks from primary database compared to SCNs of blocks on physical standby

The Problem of Lost Writes

Detection by Data Guard

- Primary(SCN) lower than Standby(SCN) implies lost-write error on primary database:
 - ORA-00752: recovery detected a lost write of a data block
 - ORA-10567: Redo is inconsistent with data block (file# 7, block# 26)
 - ORA-10564: tablespace TBS_2
 - ORA-01110: data file 7: '/oracle/dbs/btbs_21.f'
 - ORA-10561: block type 'TRANSACTION MANAGED DATA BLOCK', data object# 57503
- In such a case, best option: failover to the standby database
 - SQL> ALTER DATABASE ACTIVATE STANDBY DATABASE;
- Additional information:
 - MOS Note 1265884.1 Resolving ORA-752 or ORA-600 [3020] During Standby Recovery

Demonstration

Lost Write Protection

http://www.oracle.com/technetwork/database/features/availability/demonstrations-092317.html

Oracle Integrated Data Protection

- Oracle recommendation: Maximum Availability Architecture (MAA)
 - Vastly more intelligent data protection than offered by storage layer
 - Architectural principle: Fault Isolation
- Examples of MAA's unique value-proposition
 - Database-optimized Physical Replication
 - Surgical Protection from Corruptions e.g. Lost Writes
 - Zero Downtime Auto-repair of Corrupted Blocks
 - Efficient Correction of Human Errors

Active Data Guard: Auto-Block Repair

High Availability by Repairing Corruptions Online

Automatic Block Repair

- When Oracle detects corrupt blocks at primary database, it repairs online by copying good version from an active standby database (& vice versa)
- Transparent to the user and application

Demonstration

Auto-Corruption Fix

http://www.oracle.com/technetwork/database/features/availability/demonstrations-092317.html

Auto Block Repair ... In Real Life

Email From Customer For A Tier-1 Deployment

 As you know, we have put one of our physical standby database in "open read only" mode to make use of "ABMR" (Automatic Block Media Recovery) feature. One incident happened last night ... I thought I will share this information with you. Physical standby Database which we opened in read only mode reported below messages in alert.log.

Tue Nov 15 22:00:04 2011

Automatic block media recovery requested for (file# 99, block# 369368) Automatic block media recovery successful for (file# 99, block# 369368) Errors in file /home/oracle/admin/physdby_ora_10751_ORAOOP.trc (incident=560569): ORA-01578: ORACLE data block corrupted (file # 99, block # 369368) ORA-01110: data file 99: '+DATA/data2/data2.dbf'

 From operational perspective we see that, Physical standby database which was in open read only mode has seen block corruption, and ABMR helped us to recover this block from primary. Thrilled to see that ABMR works!!

Auto Block Repair ... Insights

Don't Leave Home Without It!

- For your production databases, deploying an Active Data Guard standby is a good thing!
- You may not need to run real-time reports, but ...
 - Active Data Guard standby, in real-time, protects your production database from block corruption, in an app transparent manner
 - As we saw earlier, this also works vice-versa
- Does not matter whether redo transport mode is SYNC or ASYNC as long as corresponding block can be applied within timeout threshold (default=60 secs), Auto Block Repair will be successful

Oracle Integrated Data Protection

- Oracle recommendation: Maximum Availability Architecture (MAA)
 - Vastly more intelligent data protection than offered by storage layer
 - Architectural principle: Fault Isolation
- Examples of MAA's unique value-proposition
 - Database-optimized Physical Replication
 - Surgical Protection from Corruptions e.g. Lost Writes
 - Zero Downtime Auto-repair of Corrupted Blocks
 - Efficient Correction of Human Errors

IOUG Survey: Causes for Unplanned Downtime To Err Is Human

Flashback Technologies

Fast, Granular Error-Correction

- Flashback revolutionizes error correction:
 - View 'good' data as of a point in time before error
- Time/work to rewind data depends on the work done since the error happened, instead of the database size!

Correction Time = Error Time + f(DB_SIZE)

- Simple: SQL> flashback database to <timestamp>;
- Flexible: Flashback Query, Table, Transaction, Database, Drop

60

40

20

Oracle Recovery Manager (RMAN)

Oracle-Integrated Backup & Recovery Engine

 Intrinsic knowledge of database file formats and recovery procedures

- Block validation
- Online block-level recovery
- Tablespace/data file recovery
- Online, multi-streamed backup
- Unused block compression
- Native encryption
- Integrated disk, tape & cloud backup leveraging the Fast Recovery Area (FRA) and Oracle Secure Backup

ORACLE

*RMAN also supports leading 3rd party media managers

Database Integrated Data Protection

Contrasting with a Storage based Data Protection Solution

Attributes	Storage Based Solution	Database Integrated Solution
Transactional Integrity	Not Guaranteed	Guaranteed
Time to recover to normal operations	In hours	Seconds
Complexity	High	Minimal
Use of Network Resources	Inefficient	Efficient
Idle DR Resources	Mostly	Never
Cost of the Solution	Expensive	Low
Management Overhead	High	Low
Risk of a Resume Generating Event 🙂	Very High	Very Low

Agenda

- Database & Storage Architecture
- Data Protection with Storage Technologies
- Storage-based Data Protection Database Implications
- Database-Integrated Data Protection
- Summary

HA and Data Protection are in Oracle's DNA

Oracle's Design Approach

- High Availability is ingrained in Oracle's software development process
- Bottom's Up approach the solution is highly available since each component is highly available
- Each new feature adheres to Maximum Availability guidelines

Resources

• OTN HA Portal:

http://www.oracle.com/goto/availability

- Maximum Availability Architecture (MAA): http://www.oracle.com/goto/maa
- MAA Blogs: http://blogs.oracle.com/maa
- Exadata on OTN:

http://www.oracle.com/technetwork/database/exadata/index.html

 Oracle HA Customer Success Stories on OTN: http://www.oracle.com/technetwork/database/features/ha-casestudies-098033.html

