
Extracting Performance and

Scalability Metrics from TCP

Percona Inc

2012

About us

• Prepared by Baron Schwartz
• Chief Performance Architect, Percona Inc

• Presented by Vadim Tkachenko

• CTO, Percona Inc

• Percona

• Consulting, Support, Development for MySQL

• “High Performance MySQL”, 2nd,3rd editions

• MySQLPerformanceBlog.com

Agenda

• Fundamental Metrics of Performance

• Capturing TCP Data

• Part 1: Black-Box Performance Analysis

o Detecting Stalls and Locking

o Detecting Performance Variations

• Part 2: Forecasting Scalability and Performance

o A Mathematical Model of Scalability

o Evaluating Results Against the Model
o Real-World Applications

Why TCP/IP Headers are Great

• IP headers + TCP headers = 384 bytes

• This is usually non-privileged data, and it's easy to get
• It provides the following interesting data:

o Origin IP address and TCP port
o Destination IP address and TCP port
o TCP sequence number, etc, etc

• In addition, by observing with tcpdump, we get:
o Packet timestamp

The Fundamental Metrics

• In a protocol with call-and-response semantics, the following
are enough to learn a lot:
o Arrival time

o Completion time

o Session identifier

Derived Metrics

• Straightforward metrics over an observation interval
o Queries per second (throughput)
o Busy time

o Total execution time

• Derived via Little's Law, the Utilization Law, etc

o Average concurrency

o Average response time

o Utilization

Capturing TCP/IP Network Traffic

tcpdump -s 384 -i any -nnq -tttt \
 'tcp port 3306 and (((ip[2:2] - ((ip[0]&0xf)<<2))
 - ((tcp[12]&0xf0)>>2)) != 0)' > tcp-file.txt

Capturing TCP/IP Network Traffic

• Beware of dropped packets!
• Sometimes writing to a file with -w works better.

A Sample of the Data

2012-02-10 10:30:57.818202 IP 10.124.62.89.56520 > 10.124.62.75.3306: tcp 142

2012-02-10 10:30:57.818440 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 64

2012-02-10 10:30:57.819916 IP 10.124.62.89.56520 > 10.124.62.75.3306: tcp 246

2012-02-10 10:30:57.820229 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 2896

2012-02-10 10:30:57.820239 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 1168

2012-02-10 10:30:57.822832 IP 10.124.62.89.56520 > 10.124.62.75.3306: tcp 142

2012-02-10 10:30:57.823071 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 64

A Sample of the Data

2012-02-10 10:30:57.818202 IP 10.124.62.89.56520 > 10.124.62.75.3306: tcp 142

2012-02-10 10:30:57.818440 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 64

2012-02-10 10:30:57.819916 IP 10.124.62.89.56520 > 10.124.62.75.3306: tcp 246

2012-02-10 10:30:57.820229 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 2896

2012-02-10 10:30:57.820239 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 1168

2012-02-10 10:30:57.822832 IP 10.124.62.89.56520 > 10.124.62.75.3306: tcp 142

2012-02-10 10:30:57.823071 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 64

2012-02-10 10:30:57.818202 IP
10.124.62.89.56520 > 10.124.62.75.3306: tcp
142

Transforming the Data

2012-02-10 10:30:57.818202 IP 10.124.62.89.56520 > 10.124.62.75.3306: tcp 142

2012-02-10 10:30:57.818440 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 64

2012-02-10 10:30:57.819916 IP 10.124.62.89.56520 > 10.124.62.75.3306: tcp 246

2012-02-10 10:30:57.820229 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 2896

2012-02-10 10:30:57.820239 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 1168

2012-02-10 10:30:57.822832 IP 10.124.62.89.56520 > 10.124.62.75.3306: tcp 142

2012-02-10 10:30:57.823071 IP 10.124.62.75.3306 > 10.124.62.89.56520: tcp 64

pt-tcp-model tcp-file.txt > requests.txt

 # start-timestamp end-timestamp elapsed host:port
 == ============== ============== ======= ===================

 7 1328887857.818202 1328887857.818440 0.000238 10.124.62.89:56520

 10 1328887857.819916 1328887857.820229 0.000313 10.124.62.89:56520

 14 1328887857.822832 1328887857.823071 0.000239 10.124.62.89:56520

 15 1328887857.824518 1328887857.824828 0.000310 10.124.62.89:56520

 13 1328887857.822784 1328887857.823108 0.000324 10.124.62.89:56523

 16 1328887857.826182 1328887857.826419 0.000237 10.124.62.89:56520

 19 1328887857.827202 1328887857.827438 0.000236 10.124.62.101:57780

 20 1328887857.827348 1328887857.827661 0.000313 10.124.62.106:54368

 12 1328887857.821355 1328887857.821611 0.000256 10.124.62.101:57779

About The Following Graphs

• The following plots are from several samples

• They range from ~10s to ~2m in duration

• Application load was low to moderate

• The application is a Ruby On Rails e-commerce site

• The database has a mixed workload (not just RoR)

Black-Box Performance Analysis

Step 1: Plot on a Time-Series Chart

What do the Anomalies Mean?

Stalls Explained

• The points are plotted in order of completion.
• They complete in the order their dependencies are met.
• That's why the spikes slope to the right slightly.

The Stalls are SELECT FOR UPDATE.

• I actually captured 4096 bytes of the packet, not 384

• I used pt-query-digest to inspect the queries in the protocol
• The dependencies are caused by explicit locking

• Completions cluster together when they are all waiting for
the same lock

Can Completion Times Reveal More?

• Maybe we can compare completion counts -vs- arrivals?

• The following charts show counts per 5ms.

Subtraction and Coarser Aggregation

• 5ms is too fine-grained

• It's too hard to compare scatter plots

• Subtract arrivals from completions, 200ms at a time

Why Does This Work?

• On average, arrivals ~= completions in any interval
• When a stall occurs on an interval boundary,

o The first interval gets many arrivals that don't complete

o The second interval gets more completions

o The graph dips, then spikes

Detecting Performance Variations

• Most statistics (max, quantile, avg, stdev) are unhelpful
• Variance-to-mean ratio (index of dispersion) is very useful.

Variance

Mean

• Normalized measure of the dispersion of response times.

Plotting the Index of Dispersion

A spike means response times
are widely dispersed.

Interpreting Index of Dispersion

• Highly variable == highly optimizable

• Uniform, consistent performance is preferable

All the Plots Together

In the Real World

In the Real World

Part 2:
Forecasting Scalability and

Performance

Defining Scalability

• Scalability is a mathematical function (equation)
• The X-axis is the number of worker units

• The Y-axis is throughput

The Scalability Function

Linear Scalability

Also Linear Scalability

Not Linear Scalability

What Causes Non-Linearity?

Factor #1: Serialization

• Amdahl's Law: if not all work can be parallelized, speedup is
limited to the reciprocal of the serialized portion.

Factor #1: Serialization

• Amdahl's Law: if not all work can be parallelized, speedup is
limited to the reciprocal of the serialized portion.

Factor #2: Crosstalk

• Universal Scalability Law: scalability degrades in proportion
to the number of crosstalk channels, which is O(n^2).

Degradation of Throughput

• Most systems have both serialization and crosstalk.

Scalability Modeling Algorithm

• Measure throughput and concurrency

• Perform a regression against the Universal Scalability Law

o This determines the sigma and kappa coefficients

• ????

• Profit!

What Inputs Do We Need?

• Throughput is easy (queries per second)
• Concurrency is a little more subtle:

o Sort the arrivals and departures by timestamp

o Each arrival increments concurrency

o Each departure decrements it
• Compute the average concurrency per time interval

The Concurrency Calculation

Using pt-tcp-model

You can compute these metrics with pt-tcp-model.

sort -n -k1,1 requests.txt > sorted.txt
pt-tcp-model --type=requests sorted.txt > sliced.txt

Determine Kappa and Sigma

• Use R, gnuplot or other tools to fit the model to the data and
derive:
o Coefficient of serialization (sigma)
o Coefficient of crosstalk (kappa)

Results on a Partial Dataset

Results on the Full Dataset

How to Approach the USL

• The USL can be useful as a best-case or worst-case model

How to Approach the USL

• The USL can be useful as a best-case or worst-case model
• Worst-Case Bounds

o The USL models worst-case scalability

o Your system should scale better than that
o Use it as a point of reference for "we can improve this"

How to Approach the USL

• The USL can be useful as a best-case or worst-case model
• Worst-Case Bounds

o The USL models worst-case scalability

o Your system should scale better than that
o Use it as a point of reference for "we can improve this"

• Best-Case Bounds

o Many systems don't scale as well as they should

o When forecasting past observable limits, be pessimistic

o "I expect this system to scale worse than predicted"

How to Approach the USL

• The USL can be useful as a best-case or worst-case model
• Worst-Case Bounds

o The USL models worst-case scalability

o Your system should scale better than that
o Use it as a point of reference for "we can improve this"

• Best-Case Bounds

o Many systems don't scale as well as they should

o When forecasting past observable limits, be pessimistic

o "I expect this system to scale worse than predicted"
• The USL is a model.

Forecasting Performance

• Performance = Response Time

• Little's Law: N = XR

o concurrency = throughput * response time

• Thus R = N/X. You can model this just like scalability, with
the same caveats.

Validate Your Input

• The USL works best on a well-behaved data set
• You may need to remove outliers

• You may need to select well-behaved windows of time

• Beware of mixed or variable workloads

• "Black box" plotting is a good place to start

Resources

• Percona Toolkit
o http://www.percona.com/software/

• Neil J. Gunther's book

o Guerrilla Capacity Planning

• Percona White Papers

o "MySQL Performance Analysis..."
o "Forecasting MySQL Scalability..."
o http://www.percona.com/about-us/mysql-white-papers

• These slides

o http://goo.gl/kUQNz

http://www.percona.com/software/
http://www.percona.com/about-us/mysql-white-papers
http://www.percona.com/about-us/mysql-white-papers
http://www.percona.com/about-us/mysql-white-papers
http://www.percona.com/about-us/mysql-white-papers
http://www.percona.com/about-us/mysql-white-papers
http://www.percona.com/about-us/mysql-white-papers
http://www.percona.com/about-us/mysql-white-papers
http://goo.gl/kUQNz

baron@percona.com

@xaprb

