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Fractals What is a Fractal?

Fractals in Space
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Fractals What is a Fractal?

Fractals are Described by Power Laws
Zipf’s law
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Figure 4.2.1 (b). Pox plot of R/S for sequence AUG89.MB. The plot tightly clusters around a straight line whose

asymptotic slope clearly lies between the slopes 0.5 (lower dotted line) and 1.0 (upper dotted line) and is readily

estimated (using the "brushed" points) to be about 0.79.
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Fractals How It Works

Calibrating a Circumference

Approximating circumference by regular polygons with successively
shorter sides. Polygon represents measurement device or ruler

Double-log plot of the estimated circumference (y-axis)
vs. the length of the polygon side (x-axis). As the sides
get shorter the perimeter of the polygon approaches
the actual circumference.
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Estimated perimeter vs. length of polygon sides

Euclidean geometry of the circle

Greeks knew (irrational) ratio of diameter D to circumference C: π = C/D

Successive measurements converge to fixed value: C

Speed of convergence is clearly seen on logarithmic axes.
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Fractals How It Works

Crinkly Coastlines

What about highly irregular shapes like coastline of Britain?

Greeks would never consider such imperfect non-Euclidean geometry.

Successively smaller ruler size (S) produces longer coastline estimate (L)!

Why? Smaller ruler gets into more coastal nooks and crannies.
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Fractals How It Works

Borders and Wars

Figure 3

Plot border length (L) against ruler size (S) on log-log axes1

Why do border lengths fall on straight lines in log-log plot?

Any crazy country shape is then characterized by a single number: its slope!
Reason remained obscure until Mandelbrot resurrected it as geometry of fractals2

1
Lewis F. Richardson (1961) “The problem of contiguity: An appendix to Statistic of Deadly Quarrels.”

2
B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, New York (1983)
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Fractals How It Works

The Power of Power Laws
Straight lines on log-log plot have form:

Y = mX + c

But Y ≡ ln(L) and X ≡ ln(S) with negative slope:

ln(L) = −α ln(S) + ln(k)

= ln(k S−α)

Taking antilogs of both sides reveals general power law form:

L = k S−α

L =
k

Sα
(1)

Reverse this logic
If your data looks “linear” on a log-log plot

Assume it signals presence of a power law like (1)

Find the slope to characterize it

Exponent α is the “power” in power law
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Fractals How It Works

The Shape of Power Laws

Α = 1.0
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General shape of power law eqn.(1) is a hyperbola
Blue curve is an exponential function
Other curves are power laws with increasing α exponents (slopes)

Big powers
Large α power laws are indistinguishable from an exponential
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Fractals How It Works

The Tale is in the Tail
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Power laws differ from standard statistical distributions

Power laws carry most of the information in their tail

Fatter tail corresponds to stronger correlations than “normal”

Mass of tail measured by cumulative distribution function (CDF)

Log-log fitting
On a log-log plot we are trying to fit right-hand side data, not left side
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Fractals Internet Traffic

Internet Congestion

Internet performance collapsed c.1986

Bellcore c.1990 impact of ISDN broadband

Packet tracing measurements at Bellcore

Surprise: large packet trains

Surprise: Service times file-size dependent

Surprise: Packet arrivals not always Poisson

Surprise: Queueing models break down

How to do CaP for future Internet?

Why is it happening?

Part of the answer is power laws

Netflix uses 33% of USA Internet BW
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Fractals Internet Traffic

Strangeness in the Interpipes
DRAFT
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Figure 3.1 (a) - (e). "Pictorial" proof of self-similarity: Ethernet traffic (packets per time unit) on 5 different time

scales. (Different gray levels are used to identify the same segments of traffic on the different time scales.)

37

Read bottom to top, left to right
Variance persists over 5 decades of time

c© 2012 Performance Dynamics Oracle Meets Fractals February 22, 2012 11 / 44



Fractals Internet Traffic

Traces on Log-Log Axes
DRAFT
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Figure 4.2.1 (b). Pox plot of R/S for sequence AUG89.MB. The plot tightly clusters around a straight line whose

asymptotic slope clearly lies between the slopes 0.5 (lower dotted line) and 1.0 (upper dotted line) and is readily

estimated (using the "brushed" points) to be about 0.79.

39

Y = (max −min)/std dev (“rescaled range”)

X = sample size (in trace file
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Fractals Internet Traffic

Fractals in Time
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Bellcore packet data shows fractal
behavior in time (5 decades)

Diffusion model of Brownian
motion

Solution is a normal distribution
which evolves in time (t)

∂t f (x , t) = σ2∂2
x f (x , t)

f (x , t) =
1

√
4πσ2t

exp
(
−(x − µ)2

4σ2t

)

L2 = 4σ2t

Diffusion length L =
√

4σ2t

L ∼ t
1
2

Generalization L ∼ t
1
2 → tH (Brownian→ Levy)

What happens if H = 1
2 becomes 1

2 < H < 1?
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Fractals Internet Traffic

Router Occupancy
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Q: queue length or buffer occupancy

ρ = λS: router utilization

H: power law exponent (Hurst parameter)

Q =
ρ

1
2(1−H)

(1− ρ)
1

1−H

H = 0.5 is identical to M/M/1 queue

H = 0.9 Internet empirical Hurst exponent

Buffer overflow can occur at lower loads

Router model
x<-c(1:100)
rho<-x/100
qlen<-function(r,H){rˆ(1/(2*(1-H))) / ((1-r)ˆ(H/(1-H)))}
plot(rho,qlen(rho,0.5),type="l",xlab="Router utilization",ylab="Buffer occupancy",ylim=c(0,10))
lines(rho,qlen(rho,0.75),col="blue")
lines(rho,qlen(rho,0.90),col="red")
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Applications Word Fractals

Data Source — Corpus (Body of Words)

Data (already ranked) is 1000 most common wordforms in UK English based on 29
works of literature by 18 authors (4.6× 106 words)

Wordform: english word

Abs: absolute frequency (total number of occurrences)

r: range (number of texts in which the word occurs)

mod: modified frequency as defined by Rosengren (1972)

Read data file
> dir<-setwd("˜/../GDAT Scripts/Power Laws/")
> td<-read.table("zipf1000.txt",header=TRUE)
> head(td)

Rank Wordform Abs r mod
1 1 the 225300 29 223066.9
2 2 and 157486 29 156214.4
3 3 to 134478 29 134044.8
4 4 of 126523 29 125510.2
5 5 a 100200 29 99871.2
6 6 I 91584 29 86645.5
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Applications Word Fractals

Linear Visualization
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Linear plot of data
> plot(td$Rank, td$Abs, type="p", main="Ranked 1000 UK English Words",
xlab="Ranked words (W)", ylab="Frequency of occurrence (F)",
xaxt="n",log="xy",cex=0.5)
> ticks.at<-seq(min(td$Rank), max(td$Rank),10)
> ticks.lab<-as.character(td$Wordform[ticks.at])
> Axis(td$Rank, at=ticks.at, las=1, side=1,labels=ticks.lab, cex.axis=0.75)
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Applications Word Fractals

Double-Log Visualization
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Data on log-log axes
> plot(td$Rank, td$Abs, type="p", main="Ranked 1000 UK English Words",
xlab="Ranked words (W)", ylab="Frequency of occurrence (F)",
xaxt="n",log="xy",cex=0.5)
> ticks.at<-seq(min(td$Rank), max(td$Rank),10)
> ticks.lab<-as.character(td$Wordform[ticks.at])
> Axis(td$Rank, at=ticks.at, las=1, side=1,labels=ticks.lab, cex.axis=0.75)
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Applications Word Fractals

Regression Fit
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Regression fit to logarithmic data
# regression model of Y=log(y) and X=log(x)
> z.fit <- lm(log(td$Abs) ˜ log(td$Rank))
# Must transform back to log scaled coords in plot
> ly <- exp( (coef(z.fit)[2])*log(td$Rank) + coef(z.fit)[1] )
> lines(td$Rank, ly, col="blue",lty="solid",lwd=2)
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Applications Word Fractals

Summary of Regression Statistics

Regression summary
> summary(z.fit)

Call:
lm(formula = log(td$Abs) ˜ log(td$Rank))

Residuals:
Min 1Q Median 3Q Max

-1.47144 -0.06902 -0.01477 0.05757 0.81894

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 13.796627 0.024210 569.9 <2e-16 ***
log(td$Rank) -1.131084 0.004039 -280.0 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.1258 on 998 degrees of freedom
Multiple R-squared: 0.9874, Adjusted R-squared: 0.9874
F-statistic: 7.841e+04 on 1 and 998 DF, p-value: < 2.2e-16
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Applications Fractal Query Times

Interpreting Time Histogram

SQL Queries

Elapse time
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Histogram of measured SQL
query times

x-axis is elapsed time in
seconds

y -axis is number of queries
with that time

What distribution profile is it?

Exponential, log-normal,...

Can’t tell by just staring at it
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Applications Fractal Query Times

Data Source

Original question: Craig Shallahamer’s blog

Attempted solution: Dave Abercrombie’s blog

My solution: My blog

Read data file
> dir<-setwd("˜/Desktop/GDAT Dev 2011/GDAT Scripts/Power Laws/")
> orad<-read.table("orasql-data.txt",header=FALSE)
# Add column names
> colnames(orad) <- c(

"SQLid", "sample", "execns", "dkReads", "buffGets", "CPUtime", "Elapstime"
)
> head(orad)

SQLid sample execns dkReads buffGets CPUtime Elapstime
1 8qtkxy0g5d1p3,2282376281 1 1 0 3 0.100 0.100
2 8qtkxy0g5d1p3,2282376281 2 1 0 3 0.106 0.106
3 8qtkxy0g5d1p3,2282376281 3 1 0 3 0.101 0.101
4 8qtkxy0g5d1p3,2282376281 4 1 0 3 0.098 0.098
5 8qtkxy0g5d1p3,2282376281 5 1 6 118 0.000 33.575
6 8qtkxy0g5d1p3,2282376281 6 1 8 137 10.000 31.004
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Applications Fractal Query Times

Visualize Raw Data
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Linear plot of unranked data
> plot(orad$Elapstime, type="h")

Like Zipf’s law, data must be ranked by frequency of occurrence
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Applications Fractal Query Times

Visualize Ranked Data
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Linear plot of ranked data
> otr <- sort(orad$Elapstime, decreasing=TRUE)
> plot(otr,type="h",main="Ranked SQL Times")
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Applications Fractal Query Times

Double-Log Visualization
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Log-log plot of ranked data
> plot(otr,log="xy",main="Log-Log SQL Times")

Clearly this profile is not power law overall
But the first 100 queries do appear to be power law
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Applications Fractal Query Times

Data Regions
This suggests breaking data across 3 regions as follows:

Windowed plots
# Define data windows of ranked data
etA<-otr[1:100]
etB<-otr[100:270]
# gap...
etC<-otr[420:500]
plot(etA,type="p",log="xy",main="Log-Log of SQL-A Times")
plot(etB,type="p",log="y", main="Log-Lin of SQL-B Times")
plot(etC,type="p",log="y", main="Log-Lin of SQL-C Times")
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Applications Fractal Query Times

Data Region A Fit

1 2 5 10 20 50 100

10
0

20
0

30
0

40
0

50
0

Log-Log SQL A-Times

Index

et
A

Regression analysis for Window A
> xA<-seq(1:length(etA))
> zA.fit<-lm(log(etA) ˜ log(xA))
> EyA<-exp(coef(zA.fit)[2]*log(xA) + coef(zA.fit)[1])
> plot(etA,log="xy",main="Log-Log SQL A-Times")
> lines(xA,EyA,col="blue",lwd=2)
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Applications Fractal Query Times

Data Region B Fit
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Regression analysis for Window B
> xB<-seq(1:length(etB))
> zB.fit<-lm(log(etB) ˜ xB)
> EyB<-exp(coef(zB.fit)[2]*xB + coef(zB.fit)[1])
> plot(etB,log="y",main="Log-Lin SQL B-Times")
> lines(xB,EyB,col="blue",lwd=2)

c© 2012 Performance Dynamics Oracle Meets Fractals February 22, 2012 27 / 44



Applications Fractal Query Times

Data Region C Fit
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Regression analysis for Window C
> xC<-seq(1:length(etC))
> zC.fit<-lm(log(etC) ˜ xC)
> EyC<-exp(coef(zC.fit)[2]*xC + coef(zC.fit)[1])
> plot(etC,log="y",main="Log-Lin SQL C-Times")
> lines(xC,EyC,col="blue",lwd=2)
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Regression Models
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yA ∼ x−0.4632 power law

yB ∼ e−0.0074x exponential decay

yC ∼ e−0.0028x exponential decay

Regression coefficients
> coef(zA.fit)
(Intercept) log(xA)

6.6055308 -0.4632485
> coef(zB.fit)
(Intercept) xB
4.416070310 -0.007438368

> coef(zC.fit)
(Intercept) xC

-2.198802043 -0.002782828
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Slope Analysis
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From coef(zA.fit) know
log(xA) = -0.4632485

Empirical slope γ = 0.46 to
two significant decimal digits

About half Zipfian slope
γ = 1.0± 0.5

Correlations are stronger than
for Zipf

Hypothesis
Shorter query times (window A) may be associated with dictionary lookups or other structured
data. That structure provides correlations. Longer queries in windows B and C are not structured
(ad hoc?) and are therefore more randomized. The lack of strong correlations shows up as
different exponential decay rates.
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The Perfect Storm
A Power Law Storm
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Before the Storm

All businesses are required to register with the Australian Tax Office (ATO) for an
Australian Business Number (ABN) to claim an income tax refund. The ABN was
introduced in Y2K.

Data from website hosting initial ABN registrations.

Period covers March 27 to September 19, 2000

Post-advertising traffic 1 March to 30 May , 2000

Deadline spike on 31 May, 2000

Smaller traffic peaks from 1 June to 30 June, 2000

Post deadline period from 1 July to 19 Sept, 2000

Full details can be found in my CMG-A paper cmga-p10167.pdf included in your
GDAT class materials.
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Full Data Profile
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Question: Could the “11th hour” spike have been predicted?

Answer: Yes, but quite involved.

How: Using a power law. What else!?
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Log-Linear Plot
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y -axis is the number of Oracle RDBMS connections
Here, the y -axis is log scaled
Peak growth preceding spike looks linear on semi-log plot
x-axis index (not shown) is “days from the start of data window”
time series index range t = 0 to t = 38 days
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Semi-Log Regression on Peaks
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Linear peak-growth on semi-log
axes

Curve must be an exponential
function

Use Exp as regression model

ŷ(t) = A exp(Bt)

Model parameters
Origin: A = 114128

Curvature: B= 0.0175

Doubling period: T2 =
ln(2)

B
∼ 6 months
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Trend Overview
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Revert to linear axes to review the trend

Exponential forecast up to the crosshairs looks valid

But significantly underestimates onset of the “11th hour” peak

As well as rapid drop off on RHS of the peak
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Power Law Fit

20 40 60 80 100 120
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Power law has a critical point tc

Equation: ŷ(t) = k |t − tc |−γ

See far LHS curve with tc = 40
(blue)

Estimate ŷ(t)→∞ at t = tc

Translate ŷ(t) rightward until lower
part of curve matches Exp
function (red)

Critical point also moves to
tc = 61 (31 May, 2000)

Critical point
New element is the appearance of a critical point at tc

Power law goes infinite and spikes at tc = 61 with γ = 0.6421
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Comparison of Models

Exp growth

Power law
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Exponential trend is consistent with data through April 2000
Completely underestimates onset of the “11th hour” spike
Completely overestimates decay of traffic load beyond spike
Data is already exceeding Exp model during April-May period
Power law model predicts all these effects quite well
Critical point is inclusion of critical point tc
Use Exp model to baseline a power law model
The “11th hour” spike could be explained by social networking correlations
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Look-ahead Tools

Could we have seen the spike coming without knowing tc ?

2 weeks from data start
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H = 0.714

1.5 months from data start
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H = 0.687

Estimate H = 1
2 (1− β) from the slope β of ln[S(f )] vs ln[f ] in frequency domain:

H ∈ [ 1
2 , 1) persistent autocorrelations (increase/decrease typically followed by increase/decrease)

H = 1
2 statistically independent random fluctuations

H ∈ (0, 1
2 ] antipersistent autocorrelations (increase/decrease typically followed by decrease/increase)
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Conclusions

Review

Power laws are ubiquitous (but usually hidden)

Need to transform your data (correctly) to see them

Power laws are not like standard statistical distributions

Power laws have fatter tails that carry the bulk of information

Power laws are often easy to demonstrate with log-log plot

Looked at 3 examples:

Zipf’s law for word frequencies
ORA SQL query elapsed times
ORA ABN time-series spike

Need to explain persistent correlations

Might need more data but that’s exactly how it should be
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Conclusions

Wanna Learn More?

Chapter 10 Internet Planning
Bellcore traces
Fractals and Self-Similarity
Short-range Dependence
Long-range Dependence
(LRD)
Ethernet Packetization
LRD and Flicker Noise
Guerrilla training classes
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Conclusions

Why You Should Care

Power laws are ubiquitous

Hard to see them in raw performance data

Must transform your data to see them

Ranked data appears linear on double-log axes

More persistent response degradation than usual

Can seriously impact overall database performance
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Conclusions

Thank you for attending!

Performance Dynamics Company
Castro Valley, California
www.perfdynamics.com
perfdynamics.blogspot.com
twitter.com/DrQz
facebook.com/Performance-Dynamics-Company
info@perfdynamics.com
+1-510-537-5758
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