
Copyright 2000-2008 Steven Feuerstein - Page 1

Making the Most of

Oracle PL/SQL

Error Management Features

Steven Feuerstein
PL/SQL Evangelist

Quest Software

steven.feuerstein@quest.com

Copyright 2000-2008 Steven Feuerstein - Page 2

So...why listen to me?
 Because I am a programmer obsessed...

And I build production applications....

Copyright 2000-2008 Steven Feuerstein - Page 3

How to benefit most from this session

 Watch, listen, ask questions. Then afterwards....

 Download and use any of my the training materials,
available at my "cyber home" on Toad World, a portal for
Toad Users and PL/SQL developers:

 You have my permission to use all these materials to do
internal trainings and build your own applications.

– But they should not considered production ready.

– You must test them and modify them to fit your needs.

filename_from_demo_zip.sql

 Download and use any of my scripts (examples,
performance scripts, reusable code) from the demo.zip,
available from the same place.

http://www.ToadWorld.com/SF PL/SQL Obsession

Copyright 2000-2008 Steven Feuerstein - Page 4

Manage errors effectively and consistently

 A significant challenge in any programming

environment.

– Ideally, errors are raised, handled, logged and

communicated in a consistent, robust manner

 Some special issues for PL/SQL developers

– The EXCEPTION datatype

– How to find the line on which the error is raised?

– Communication with non-PL/SQL host environments

Copyright 2000-2008 Steven Feuerstein - Page 5

Achieving ideal error management

 Define your requirements clearly

 Understand PL/SQL error management

features and make full use of what PL/SQL

has to offer

 Apply best practices.

– Compensate for PL/SQL weaknesses

– Single point of definition: use reusable components to

ensure consistent, robust error management

Copyright 2000-2008 Steven Feuerstein - Page 6

PL/SQL error management features

 Defining exceptions

 Raising exceptions

 Handing exceptions

 Exceptions and DML

Copyright 2000-2008 Steven Feuerstein - Page 7

Quiz: Test your exception handling know-how

 I create the valerr
package and then
execute the
command below.
What is displayed
on the screen?

SQL> EXECUTE p.l (valerr.get);

PACKAGE valerr
IS
 FUNCTION
 get RETURN VARCHAR2;
END valerr;

PACKAGE BODY valerr
IS
 v VARCHAR2(1) := ‘abc’;
 FUNCTION get RETURN VARCHAR2 IS
 BEGIN
 RETURN v;
 END;
BEGIN
 DBMS_OUTPUT.PUT_LINE (
 'Before I show you v...');
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE (
 ‘Trapped the error!’);
END valerr;

valerr.pkg

valerr2.pkg

 Key to remember:
even if package
initialization fails,
Oracle marks the
package as
initialized.

Copyright 2000-2008 Steven Feuerstein - Page 8

Defining Exceptions

 The EXCEPTION is a limited type of data.

– Has just two attributes: code and message.

– You can RAISE and handle an exception, but it cannot

be passed as an argument in a program.

 Give names to error numbers with the

EXCEPTION_INIT PRAGMA.

CREATE OR REPLACE PROCEDURE upd_for_dept (
 dept_in IN employee.department_id%TYPE
 , newsal_in IN employee.salary%TYPE
)
IS
 bulk_errors EXCEPTION;
 PRAGMA EXCEPTION_INIT (bulk_errors, -24381);

Copyright 2000-2008 Steven Feuerstein - Page 9

Raising Exceptions

 RAISE raises the specified exception by

name.

– RAISE; re-raises current exception. Callable only within

the exception section.

 RAISE_APPLICATION_ERROR

– Communicates an application specific error back to a

non-PL/SQL host environment.

– Error numbers restricted to the -20,999 - -20,000 range.

Copyright 2000-2008 Steven Feuerstein - Page 10

Using RAISE_APPLICATION_ERROR

IF :NEW.birthdate > ADD_MONTHS (SYSDATE, -1 * 18 * 12)
THEN
 RAISE_APPLICATION_ERROR
 (-20070, ‘Employee must be 18.’);
END IF;

 Communicate an error number and message to a

non-PL/SQL host environment.

– The following code from a database triggers shows a typical

(and problematic) usage of RAISE_APPLICATION_ERROR:

RAISE_APPLICATION_ERROR
 (num binary_integer, msg varchar2,
 keeperrorstack boolean default FALSE);

Copyright 2000-2008 Steven Feuerstein - Page 11

Handling Exceptions

 The EXCEPTION section consolidates all error
handling logic in a block.
– But only traps errors raised in the executable section of the block.

 Several useful functions usually come into play:
– SQLCODE and SQLERRM

– DBMS_UTILITY.FORMAT_ERROR_STACK

– DBMS_UTILITY.FORMAT_ERROR_BACKTRACE

 The DBMS_ERRLOG package
– Quick and easy logging of DML errors

 The AFTER SERVERERROR trigger
– Instance-wide error handling

Copyright 2000-2008 Steven Feuerstein - Page 12

DBMS_UTILITY error-related functions

 DBMS_UTILITY.FORMAT_CALL_STACK answers
the question: "How did I get here?"

 Get the full error message with
DBMS_UTILITY.FORMAT_ERROR_STACK
– SQLERRM might truncate the message.

– Use SQLERRM went you want to obtain the message associated
with an error number.

 Find line number on which error was raised with
DBMS_UTILITY.FORMAT_ERROR_BACKTRACE

– Introduced in Oracle10g Release 2, it returns the full stack of errors
with line number information.

– Formerly, this stack was available only if you let the error go
unhandled.

Copyright 2000-2008 Steven Feuerstein - Page 13

More on the BACKTRACE function

 When you re-raise your exception (RAISE;)

or raise a different exception, subsequent

BACKTRACE calls will point to that line.

– So before a re-raise, call BACKTRACE and store that

information to avoid losing the original line number.

 The BACKTRACE does not include the error

message, so you will also want to call the

FORMAT_ERROR_STACK function as well.

backtrace.sql

bt.pkg

Copyright 2000-2008 Steven Feuerstein - Page 14

DBMS_ERRLOG

 Allows DML statements to execute against all rows,
even if an error occurs.
– The LOG ERRORS clause specifies how logging should occur.

– Use the DBMS_ERRLOG package to associate a log table with
DML operations on a base table.

 Much faster than trapping errors, logging, and then
continuing/recovering.

 Consider using LOG ERRORS with FORALL
(instead of SAVE EXCEPTIONS) so that you can
obtain all error information!
– But there are some differences

in behavior.
dbms_errlog.*

dbms_errlog_helper.sql

save_exc_vc_dbms_errlog.sql

cfl_to_bulk7.sql

Copyright 2000-2008 Steven Feuerstein - Page 15

The AFTER SERVERERROR trigger

 Provides a relatively simple way to use a
single table and single procedure for
exception handling in an entire instance.

 Drawbacks:

– Error must go unhandled out of your PL/SQL block for
the trigger to kick in.

– Does not fire for all errors (NO: -600, -1403, -1422...)

 Most useful for non-PL/SQL front ends
executing SQL statements directly.

afterservererror.sql

Copyright 2000-2008 Steven Feuerstein - Page 16

Exceptions and DML

 DML statements generally are not rolled back when an
exception is raised.
– This gives you more control over your transaction.

 Rollbacks occur with...
– Unhandled exception from the outermost PL/SQL block;

– Exit from autonomous transaction without commit/rollback;

– Other serious errors, such as "Rollback segment too small".

 Corollary: error logs should rely on autonomous
transactions to avoid sharing the same transaction as
the application.
– Log information is committed, while leaving the business

transaction unresolved.
log8i.pkg

Copyright 2000-2008 Steven Feuerstein - Page 17

Best practices for error management

 Compensate for PL/SQL weaknesses.

 Avoid hard-coding of error numbers and
messages.

 Application-level code should not contain:
– RAISE_APPLICATION_ERROR: don't leave it to the developer to

decide how to raise.

– PRAGMA EXCEPTION_INIT: avoid duplication of error
definitions.

 Build and use shared components for raising,
handling and logging errors.

Copyright 2000-2008 Steven Feuerstein - Page 18

Compensate for PL/SQL weaknesses

 The EXCEPTION datatype does not allow you
to store the full set of information about an
error.

– What was the context in which the error occurred?

 Difficult to ensure execution of common error
handling logic.

– Usually end up with lots of repetition.

– No "finally" section available in PL/SQL - yet.

 Restrictions on how you can specify the error

– Only 1000 for application-specific errors....

Copyright 2000-2008 Steven Feuerstein - Page 19

Addressing the limitations of EXCEPTION

 When an error occurs....

– Sure, it's nice to know what the error code is.

– But what I care most about is what caused this particular

error to be raised.

 Think in terms of instances of an error.

– What caused this error?

– What were the application-specific values or context in

which the error occurred?

 The challenge becomes: how do I get and

save all that critical application information?

Copyright 2000-2008 Steven Feuerstein - Page 20

Hard to avoid code repetition in handlers

 If everyone writes their own exception handler
code, you end up with an unmanageable situation.

– Different logging mechanisms, no standards for error
message text, inconsistent handling of the same errors,
etc.

WHEN NO_DATA_FOUND THEN
 INSERT INTO errlog
 VALUES (SQLCODE
 , 'No company for id ' || TO_CHAR (v_id)
 , 'fixdebt', SYSDATE, USER);
WHEN OTHERS THEN
 INSERT INTO errlog
 VALUES (SQLCODE, SQLERRM, 'fixdebt', SYSDATE, USER);
 RAISE;
END;

Copyright 2000-2008 Steven Feuerstein - Page 21

"Proof of concept" exception manager package

PACKAGE errpkg
IS
 PROCEDURE raise (err_in IN PLS_INTEGER);
 PROCEDURE raise (err_in in VARCHAR2);

 PROCEDURE record_and_stop (
 err_in IN PLS_INTEGER := SQLCODE
 ,msg_in IN VARCHAR2 := NULL);

 PROCEDURE record_and_continue (
 err_in IN PLS_INTEGER := SQLCODE
 ,msg_in IN VARCHAR2 := NULL);

END errpkg;

Raise the

exception for

you

Record

and Stop

Record

and Continue

errpkg.pkg

Copyright 2000-2008 Steven Feuerstein - Page 22

Invoking standard handlers

 Developers should call only a pre-defined
handler inside an exception section.
– Much easier to write consistent, high-quality code

– They don't have to make decisions about the form of the
log and how the process should be stopped

EXCEPTION
 WHEN NO_DATA_FOUND THEN
 errpkg.record_and_continue (
 SQLCODE,
 ' No company for id ' || TO_CHAR (v_id));

 WHEN OTHERS THEN
 errpkg.record_and_stop;
END;

The developer simply

describes

the desired action.

Copyright 2000-2008 Steven Feuerstein - Page 23

Avoid hard-coding of -20,NNN Errors

 Give your

error numbers

names and

associate

them with

named

exceptions.

PACKAGE errnums
IS
 en_general_error CONSTANT NUMBER := -20000;
 exc_general_error EXCEPTION;
 PRAGMA EXCEPTION_INIT
 (exc_general_error, -20000);

 en_must_be_18 CONSTANT NUMBER := -20001;
 exc_must_be_18 EXCEPTION;
 PRAGMA EXCEPTION_INIT
 (exc_must_be_18, -20001);

 en_sal_too_low CONSTANT NUMBER := -20002;
 exc_sal_too_low EXCEPTION;
 PRAGMA EXCEPTION_INIT
 (exc_sal_too_low , -20002);

 max_error_used CONSTANT NUMBER := -20002;

END errnums; msginfo.pkg

msginfo.fmb/fmx

But don't write this

code manually!

Copyright 2000-2008 Steven Feuerstein - Page 24

Using the standard raise program

 Rather than have individual programmers call
RAISE_APPLICATION_ERROR, simply call the
standard raise program. Benefits:

– Easier to avoid hard-codings of numbers.

– Support positive error numbers!

 Let's revisit that earlier trigger logic using the error
manager and related elements...

PROCEDURE validate_emp (birthdate_in IN DATE) IS
BEGIN
 IF ADD_MONTHS (SYSDATE, 18 * 12 * -1) < birthdate_in
 THEN
 errpkg.raise (errnums.en_too_young);
 END IF;
END;

No more hard-coded

strings or numbers.

Copyright 2000-2008 Steven Feuerstein - Page 25

From proof of concept to real code

 One option: the Quest Error Manager, which

you can download from PL/SQL Obsession.

 Offers a simple API to....

– Raise, handle, log errors

– Traces application execution and enhances

DBMS_OUTPUT.PUT_LINE

– Assert conditions

 Addresses the limitations of EXCEPTION.

Copyright 2000-2008 Steven Feuerstein - Page 26

QEM deals with instances of exceptions

 An error is a row in the error table, with many

more attributes than simply code and

message, including:

– Dynamic message (substitution variables)

– Help message (how to recover from the problem)

 An error instance is one particular

occurrence of an error.

– Associated with it are one or more values that reflect

the context in which the error was raised.

Copyright 2000-2008 Steven Feuerstein - Page 27

The Quest Error Manager API

 High-level API for all error mgt operations:

– REGISTER_ERROR: register the fact that an error has

occurred, retrieve an error instance handle.

– RAISE_ERROR: Register the error, and then re-raise

the exception to stop the calling program from

continuing.

– ADD_CONTEXT: Add unlimited number of name-value

pairs to an error instance.

– GET_ERROR_INFO: Retrieve information about latest

(or specified) error.

qem_demo*.sql

Copyright 2000-2008 Steven Feuerstein - Page 28

Summary on error management in PL/SQL

 Make sure you understand how it all works

– Exception handling is tricky stuff

 Set standards before you start coding
– It's not the kind of thing you can easily add in later

 Use standard infrastructure components
– Everyone and all programs need to handle errors the same way

 Take full advantage of error management features.
– SAVE EXCEPTIONS, DBMS_ERRLOG,

DBMS_UTILITY.FORMAT_ERROR_BACKTRACE...

 Don't accept the limitations of Oracle's current
implementation.
– You can do lots to improve the situation.

