
<Insert Picture Here>

Edition-based redefinition:

the key to online application upgrade

Bryn Llewellyn

Product Manager, Database Server Technologies, Oracle HQ

The following is intended to outline our general

product direction. It is intended for information

purposes only, and may not be incorporated into any

contract. It is not a commitment to deliver any

material, code, or functionality, and should not be

relied upon in making purchasing decisions.

The development, release, and timing of any

features or functionality described for Oracle’s

products remain at the sole discretion of Oracle.

By the way, it’s free!

• Not to keep you in suspense…

• EBR is not a priced option

• Nor is it even restricted to just the Enterprise Edition

• Any customer who licenses any edition of

Oracle Database 11g Release 2, or later,

is entitled to use EBR

Online Application Upgrade

– the final piece of the HA jigsaw puzzle

High Availability

Online Application Upgrade

– the final piece of the HA jigsaw puzzle

High Availability

Survive
hardware failure

Online Application Upgrade

– the final piece of the HA jigsaw puzzle

High Availability

Survive
hardware failure

Make planned
changes to software

Online Application Upgrade

– the final piece of the HA jigsaw puzzle

High Availability

Survive
hardware failure

Make planned
changes to software

Change infrastructure:
Operating system
Oracle Database

Online Application Upgrade

– the final piece of the HA jigsaw puzzle

High Availability

Survive
hardware failure

Make planned
changes to software

Change infrastructure:
Operating system
Oracle Database

Change application’s
database objects

Online Application Upgrade

– the final piece of the HA jigsaw puzzle

High Availability

Survive
hardware failure

Make planned
changes to software

Change infrastructure:
Operating system
Oracle Database

Change application’s
database objects

Change objects’
physical characteristics

Online Application Upgrade

– the final piece of the HA jigsaw puzzle

High Availability

Survive
hardware failure

Make planned
changes to software

Change infrastructure:
Operating system
Oracle Database

Change application’s
database objects

Change objects’
physical characteristics

Online Application Upgrade

– the final piece of the HA jigsaw puzzle

High Availability

Survive
hardware failure

Make planned
changes to software

Change infrastructure:
Operating system
Oracle Database

Change application’s
database objects

Change objects’
physical characteristics

Change objects’
meaning:

patching and upgrading

Agenda

• Scope of this presentation

• The challenge and the solution stated

• Case study stated

• Explanation of the edition

• Explanation of the editioning view

• Explanation of the crossedition trigger

• Case study explained

• EBR exercise vs offline upgrade: incremental extra

effort

• Conclusion / Q&A

Scope

• This presentation explains new capabilities in Oracle

Database 11g Release 2 that support online upgrade

of the database tier of an application

• The online upgrade of other tiers of the application will

need their own specific solutions – not discussed in

this presentation

• The take-away from this presentation is that Oracle

Database offers both an isolation mechanism to allow

pre- and post-upgrade schemas to co-exist, and a

way for client code to choose the particular isolated

environment that it wants

Agenda

• Scope of this presentation

• The challenge and the solution stated

• Case study stated

• Explanation of the edition

• Explanation of the editioning view

• Explanation of the crossedition trigger

• Case study explained

• EBR exercise vs offline upgrade: incremental extra

effort

• Conclusion / Q&A

Online Application Upgrade

• Supporting online application upgrade means
maintaining uninterrupted availability of the
application

• But end-user sessions can last tens of minutes or
longer

• Users of the old app don’t want to abandon an ongoing
session

• Users wanting to start a session must use the new app,
but cannot wait until no-one is using the old app

• This implies that it must be possible to use the
pre-upgrade application and the post-upgrade
application at the same time – a.k.a. hot rollover

The challenge

• The installation of the upgrade into the production

database must not perturb live users of the

pre-upgrade application

• Many objects must be changed in concert. The changes must

be made in privacy

• Transactions done by the users of the pre-upgrade

application must by reflected in the post-upgrade

application

• For hot rollover, we also need the reverse of this:

• Transactions done by the users of the post-upgrade

application must by reflected in the pre-upgrade application

The solution: edition-based redefinition

• 11.2 brings these revolutionary new features: the

edition, the editioning view, and the crossedition

trigger

• Code changes are installed in the privacy of a new edition

• Data changes are made safely by writing only to new columns

or new tables not seen by the old edition

• An editioning view exposes a different projection of a table

into each edition to allow each to see just its own columns

• A crossedition trigger propagates data changes made by

the old edition into the new edition’s columns, or (in hot-

rollover) vice-versa

Agenda

• Scope of this presentation

• The challenge and the solution stated

• Case study stated

• Explanation of the edition

• Explanation of the editioning view

• Explanation of the crossedition trigger

• Case study explained

• EBR exercise vs offline upgrade: incremental extra

effort

• Conclusion / Q&A

Case study

• The HR sample schema, that ships with Oracle

Database, represents phone numbers in a single

column:

• Diana Lorentz 590.423.5567

• John Russell 011.44.1344.429268

• Users now need to ring phone numbers from any

country in the world

• So we want a uniform representation with two

columns: Country Code; and Number Within Country.

Case study

Agenda

• Scope of this presentation

• The challenge and the solution stated

• Case study stated

• Explanation of the edition

• Explanation of the editioning view

• Explanation of the crossedition trigger

• Case study explained

• EBR exercise vs offline upgrade: incremental extra

effort

• Conclusion / Q&A

Application versioning: the challenge

• Scenario

• The application has 1,000 mutually dependent tables,

synonyms, views, PL/SQL units, and other objects

• There’s more than one schema

• They refer to each other by name – and often by schema-

qualified name

• The upgrade needs to change 10 of these

Application versioning: the challenge

1,000 v1 objects

990 unchanged v1 objects
+

10 changed v2 objects

Pre-upgrade app

Post-upgrade app

Application versioning: the challenge

• Of course, you can’t change the 10 objects in place
because this would change the pre-upgrade app

• How can an old and a new occurrence of the “same”
object co-exist?

• Through 11.1, the only dimensions that determine
which object you mean, when one object refers to
another, are its name and its owner

• In short, the naming mechanisms through 11.1 are
not rich enough to support online application upgrade

The solution: editions

• 11.2 introduces the new nonschema object type,

edition – each edition can have its own private

occurrence of “the same” object

• A database must have at least one edition

• You create a new edition as the child of an existing

edition – and an edition can’t have more than one

child

• A database session specifies which edition to use

(of course, the database has a default edition)

The solution: editions

• Through 11.1, an object is identified by its name and

its owner

• From 11.2, an editioned object is identified by its

name, its owner, and the edition where it was created

• However, when you identify it you can mention only

its name and owner. This reference is interpreted in

the context of a current edition

• live SQL

• the text of a stored object

Editions: mental model

• When you create a new edition, every editioned

object in the parent edition is copied into the new

edition

Editions: implementation model

Object_4

Object_3

Object_2

Object_1

Pre-upgrade
edition

Editions: implementation model

Object_4

Object_3

Object_2

Object_1

Object_2

Object_1

Pre-upgrade
edition

Post-upgrade
edition

is child of

(inherited)

(inherited)

(inherited)

(inherited)

Object_4

Object_3

Editions: implementation model

Object_4

Object_3

Object_2

Object_1

Object_4*

Object_3*

Object_2

Object_1

Pre-upgrade
edition

Post-upgrade
edition

is child of

(actual)

(actual)

(inherited)

(inherited)

Editions: implementation model

Object_4

Object_3

Object_2

Object_1

(Object_4*)

Object_2

Object_1

Pre-upgrade
edition

Post-upgrade
edition

is child of

(dropped)

(actual)

(inherited)

(inherited)

Object_3*

Editions

• If your upgrade needs only to change synonyms,

views, or PL/SQL units, you now have all the tools

you need

Agenda

• Scope of this presentation

• The challenge and the solution stated

• Case study stated

• Explanation of the edition

• Explanation of the editioning view

• Explanation of the crossedition trigger

• Case study explained

• EBR exercise vs offline upgrade: incremental extra

effort

• Conclusion / Q&A

Editionable and noneditionable

object types

• Not all object types are editionable

• Synonyms, views, and PL/SQL units of all kinds (including,

therefore, triggers and libraries), and are editionable

• Objects of all other object types – for example tables – are

noneditionable

• You version the structure of a table manually

• Instead of changing a column, you add a replacement column

• Then you rely on the fact that a view is editionable

The solution: editioning views

• An editioning view may only project and rename

columns

Editioning views

• Think of it like a noneditioned physical table body with

an editioned logical table spec

• So, of course, you can’t have more than one

editioning view for a particular table

in a particular edition

• The EV must be owned by the table’s owner

• Application code should refer only to the logical world

• You can create table-style triggers (before or after

statement or each row) on an editioning view using

the “logical” column names

• A SQL optimizer hint can request an index on the

physical table by specifying the “logical” column

names

Editioning views

• If you can tolerate only read access to the underlying

data for an editioning view that the upgrade will

change*, you now have all the tools you need

• Like all views, an editioning view can be read-only

• Ordinary SQL updates can be used safely to install

values in the replacement columns – there’s no DML

that might be missed because of SQL’s read-

consistency

* Think of “configuration data”

plus… it’s probably acceptable to freeze the catalog of wares

for a store’s online shopping site

Editioned and noneditioned objects

– slight return

• An object whose type is noneditionable is never

editioned

• An object whose type is editionable is editioned only

when its owner is editions-enabled

• Theorem: a noneditioned object cannot depend

on an editioned object

• For example, a table cannot depend on an editioned type

• If you want to use a type as the datatype for a column,

its owner must not be editions enabled

Agenda

• Scope of this presentation

• The challenge and the solution stated

• Case study stated

• Explanation of the edition

• Explanation of the editioning view

• Explanation of the crossedition trigger

• Case study explained

• EBR exercise vs offline upgrade: incremental extra

effort

• Conclusion / Q&A

What if DML cannot stop during upgrade?

• If the upgrade needs to change the structure that

stores transactional data – like the orders customers

make using an online shopping site – then the

installation of values into the replacement columns

must keep pace with these changes

• Triggers have the ideal properties to do this safely

• Each trigger must fire appropriately to propagate

changes to pre-upgrade columns into the post-

upgrade columns – and vice versa

The solution: crossedition triggers

• Crossedition triggers directly access the table.

• The new crossedition trigger has special firing rules

• You create crossedition triggers in the Post_Upgrade

edition

• The paradigm is: don’t interfere with the Pre_Upgrade edition

• The firing rules rules assume that

• Pre-upgrade columns are changed – by ordinary application

code – only by sessions using the Pre_Upgrade edition

• Post-upgrade columns are changed only by sessions using

the Post_Upgrade edition

The solution: crossedition triggers

• A forward crossedition trigger is fired by application

DML issued by sessions using the Pre_Upgrade

edition

• A reverse crossedition trigger is fired by application

DML issued by sessions using the Post_Upgrade

edition

• The SQL that a crossedition trigger issues always

executes in the edition that owns it:

the Post_Upgrade edition

(even though, for a forward crossedition trigger, the session is

using the Pre_Upgrade edition)

Why such a long name?

• DDL stands for data definition language

• “create or replace” and “alter” re-define an existing

object

• These bare commands are in-place redefinition

• Online table redefinition (there’s that word again)

creates a secret copy, keeps it in step, and then does

the twizzle. Similar for online index rebuild

• This is copy-based redefinition

• Edition-based redefinition lets you redefine many

objects in concert

Agenda

• Scope of this presentation

• The challenge and the solution stated

• Case study stated

• Explanation of the edition

• Explanation of the editioning view

• Explanation of the crossedition trigger

• Case study explained

• EBR exercise vs offline upgrade: incremental extra

effort

• Conclusion / Q&A

Case study

Pre-11.2 design

• Application code accesses tables directly, in the

ordinary way

Readying the application for editions

• “Slide in” an editioning view in front of every table

• Rename each table to an obscure but related name (e.g. an

exotic name that ends with underscore)

• Create an editioning view for each table that has the same

name that the table originally had

• “Move” triggers to the editioning views … (next slide)

• Revoke privileges from the tables and grant them to the

editioning views

• Move VPD policies to the editioning views

• There may be a need for schema reorganization to

accommodate the rule that a noneditioned object

cannot depend on an editioned object

Readying the application for editions

• Of course,

• All indexes on the original Employees remain valid but

User_Ind_Columns now shows the new values for

Table_Name and Column_Name

• All constraints (foreign key and so on) on the original

Employees remain in force for Employees_

• However,

• Triggers don’t fully “follow” the rename – and anyway that’s

not what you want

• Rather, just drop the trigger and re-run the original create

trigger statement to “move” the trigger onto the editioning

view

<Insert Picture Here>

Case study –

The edition-based redefinition

exercise proper

Maintain_EmpsEmployees

Pre_Upgrade

ID Ph. …

Employees_

Starting point.
Pre-upgrade app in normal use.

edition

editioning view

table

PL/SQL package

Maintain_EmpsEmployees

Pre_Upgrade

ID Ph. …

Employees_

Starting point.
Pre-upgrade app in normal use.

Post_Upgrade

Pre_Upgrade

Employees Maintain_Emps

Start the edition-based
redefinition exercise.

Create the new edition as the
child of the existing one.

This is fast because initially all
the editioned objects are just
inherited.

ID Ph. …

Employees_

Maintain_EmpsEmployees

Pre_Upgrade

ID Ph. …

Employees_

Cntry #

Create the replacement
columns in the underlying
table.

The editioning view shields
the app from this change.

Post_Upgrade

Employees Maintain_Emps

Maintain_EmpsEmployees

Post_Upgrade

Pre_Upgrade

Maintain_EmpsEmployees

ID Ph. …

Employees_

Cntry #

Change Employees to select
the new columns.

Change Show_Employees to
implement the new behavior.

Maintain_EmpsEmployees

ID Ph. …

Employees_

Cntry #

Post_Upgrade

Pre_Upgrade

Maintain_EmpsEmployees

Fwd Xed

Create the forward crossedition
trigger.

Maintain_EmpsEmployees

crossedition trigger

ID Ph. …

Employees_

Cntry #

Post_Upgrade

Pre_Upgrade

Maintain_EmpsEmployees

Fwd Xed

Rvrs Xed

Create the reverse crossedition
trigger.

Maintain_EmpsEmployees

Rvrs Xed

ID Ph. …

Employees_

Cntry #

Post_Upgrade

Pre_Upgrade

Maintain_EmpsEmployees

Fwd Xed

Apply the transform to the data
for the new app to use

Maintain_EmpsEmployees

Post_Upgrade

Pre_Upgrade

Maintain_EmpsEmployees

Fwd Xed

Rvrs Xed

ID Ph. …

Employees_

Cntry #

Hot rollover period.

Maintain_EmpsEmployees

Maintain_EmpsEmployees

Post_Upgrade

Pre_Upgrade

Maintain_EmpsEmployees

ID Ph. …

Employees_

Cntry #

The Pre_Upgrade edition
is retired.

The edition-based redefinition
exercise is complete.

<Insert Picture Here>

Case study – continued

Rolling back the upgrade

Rolling back an online app upgrade

• Rolling back an application upgrade that’s been

installed classically is easy until you go live with the

post-upgrade application

• Presumably you took a backup at the start of the offline period

and you just restore to that

• But once you go live with the post-upgrade

application, you can’t rollback to the pre-upgrade one

• If you did this, you’d lose transactions made during the live

use of the post-upgrade application

• It’s just the same with online application upgrade

• Your grace-period ends when you go live with the post-

upgrade application

Rolling back an online app upgrade

• If you haven’t gone live with the post-upgrade

application

• Drop the Post_Upgrade edition (cascade)

• Set any new replacement columns you created unused

• At a convenient later time, recoup the space

Post_Upgrade

Pre_Upgrade

Maintain_EmpsEmployees

Fwd Xed

Rvrs Xed

ID Ph. …

Employees_

Cntry #

The hot rollover period
never started !

Maintain_EmpsEmployees

Post_Upgrade

Pre_Upgrade

Maintain_EmpsEmployees

Fwd Xed

Rvrs Xed

ID Ph. …

Employees_

Cntry #

The pristine Pre_Upgrade
is intact !

Maintain_EmpsEmployees

Agenda
• Scope of this presentation

• The challenge and the solution stated

• Case study stated

• Explanation of the edition

• Explanation of the editioning view

• Explanation of the crossedition trigger

• Case study explained

• EBR exercise vs offline upgrade:
incremental extra effort

• Conclusion / Q&A

EBR exercise vs offline upgrade:
incremental extra effort

?%

e
d
itio

n
s

e
d

itio
n

in
g

 v
ie

w
s

fo
rw

a
rd

 c
ro

s
s
e
d
itio

n
 trig

g
e
rs

re
v
e
rs

e
 c

ro
s
s
e
d
itio

n
 trig

g
e
rs

P
ro

p
o

rtio
n

a
l o

c
c
u

rre
n

c
e

PChange only editioned objects

P PMake only additive table changes?%

Change only non-transaction tables P P?%

P P PChange the structure of transaction tables non-additively?%

P P P PSupport hot rollovern/a

Agenda

• Scope of this presentation

• The challenge and the solution stated

• Case study stated

• Explanation of the edition

• Explanation of the editioning view

• Explanation of the crossedition trigger

• Case study explained

• EBR exercise vs offline upgrade: incremental extra

effort

• Conclusion / Q&A

Edition-based redefinition

• 11.2 brings the edition, the editioning view, and the

crossedition trigger

• Code changes are installed in the privacy of a new edition

• Data changes are made safely by writing only to new columns

or new tables not seen by the old edition

• An editioning view exposes a different projection of a table

into each edition to allow each to see just its own columns

• A crossedition trigger propagates data changes made by

the old edition into the new edition’s columns, or (in hot-

rollover) vice-versa

Evolutionary capability improvements

• Some table DDLs that used to fail if another session

had outstanding DML now always succeed

• Others, that cannot succeed while there’s outstanding

DML, are now governed by a timeout parameter

• Online index creation and rebuild now never cause

other sessions to wait

• The dependency model is now fine-grained:

e.g. adding a new column to a table, or a new

subprogram to a package spec, no longer invalidates

the dependants

Nota bene

• Online application upgrade is a high availability

subgoal

• Traditionally, HA goals are met by features that the

administrator can choose to use at the site of the

deployed application

• independently of the design of the application

• without the knowledge of the application “vendor”

• The features for online application upgrade are used

by the application “vendor”

• when preparing the application for EBR

• when implementing an EBR exercise

• Site administrators, of course, will need to understand

the features

Online Application Upgrade

• Large, mission critical applications can now be

continuously available while a patch or an upgrade is

installed

• The pre-upgrade application and the post-upgrade

application can be used at the same time

• End-user sessions therefore enjoy hot rollover

• The pre-upgrade application is retired only when no

sessions any longer are using it

Edition-based redefinition

• Operates within the single database that implements

the back end of the application

• Data synchronization is “ordinarily” transactional:

potential conflicting changes, and violations of

business rules, are detected and prevented before

they can be committed

• Ordinary application code – and especially all

application components implemented outside of the

database – need no change in order to accommodate

EBR

Next steps…

• Read the edition-based redefinition chapter

in the Oracle Database

Advanced Application Developers’ Guide, 11.2

• Read my whitepaper:

published on the High Availability subpage

under the Database page on OTN

• Internet search for edition-based redefinition

<Insert Picture Here>

AQ&

