
©OraInternals Riyaj Shamsudeen

Advanced RAC troubleshooting

By
Riyaj Shamsudeen

©OraInternals Riyaj Shamsudeen 2

Who am I?

  18 years using Oracle products/DBA
  OakTable member
  Oracle ACE
  Certified DBA versions 7.0,7.3,8,8i,9i &10g
  Specializes in RAC, performance tuning,

Internals and E-business suite
  Chief DBA with OraInternals
  Email: rshamsud@orainternals.com
  Blog : orainternals.wordpress.com
  URL: www.orainternals.com

©OraInternals Riyaj Shamsudeen 3

Disclaimer

 These slides and materials represent the work and opinions of the author and do
not constitute official positions of my current or past employer or any other
organization. This material has been peer reviewed, but author assume no
responsibility whatsoever for the test cases.

 If you corrupt your databases by running my scripts, you are solely responsible
for that.

This material should not be reproduced or used without the authors' written
permission.

©OraInternals Riyaj Shamsudeen 4

Concepts

©OraInternals Riyaj Shamsudeen 5

Cache coherency

  There are multiple buffer caches in an instance and Oracle RAC
uses shared everything architecture.

  Cache coherency is the method by which consistency of the
database is maintained.

  Only one instance can hold a block in exclusive current mode
and a block can be modified only if the block is held in exclusive
current mode.

  There can be two pending transactions modifying the same
block, but a block can only be held in exclusive mode in an
instance.

©OraInternals Riyaj Shamsudeen 6

Single block read

  If the buffer is not in the Local buffer cache, process identifies
the master node of that block.

  Then the process sends a request to a LMS process running in
the master node over the interconnect.

  While sending the request, it is not known whether the block is in
any instance buffer cache.

  Until LMS responds, User process waits for a place-holder wait
event such as gc cr read, gc current read etc.

  Time is accounted to appropriate events after the response is
received from the LMS process.

Demo: demo_01a.sql

©OraInternals Riyaj Shamsudeen 7

Single block read

Disk files

LMD

LMS

FG

SGA
GRD Buffer

LMD

LMS

FG

SGA
GRD Buffer

LMD

LMS

FG

SGA
GRD Buffer

1

2

3

[0x1ad3][0x7],[BL]

PR mode lock

Directory node for
the resource

FG – Foreground Process
LMD – Lock Manager Daemon

GRD – Global Resource Directory

  Block is not in any buffer cache. LMS grants a PR mode lock on the
resource and asks FG to read from the disk.

©OraInternals Riyaj Shamsudeen 8

Trace lines

  Following trace lines shows that session waited for a 2-way grant,
followed by a disk read.

WAIT #18446741324875049632: nam='gc cr grant 2-way' ela= 499 p1=7 p2=6867 p3=1
obj#=76484 tim=4597940025

WAIT #18446741324875049632: nam='db file sequential read' ela= 758 file#=7 block#=6867

blocks=1 obj#=76484 tim=4597941129

  Lock mode of PR (Protected Read) granted to the instance
before reading the block from the disk.

KJBLNAME KJBLNAME2 KJBLGRANT KJBLROLE KJBLREQUES

-------------------- -------------------- ---------- -------- ----------

[0x1ad3][0x7],[BL][e 6867,7,BL KJUSERPR 0 KJUSERNL

xt 0x0,0x0

©OraInternals Riyaj Shamsudeen 9

Single block transfer

  If the buffer is in the remote instance in a compatible mode,
LMS process grants a lock.

  Remote LMS process transfers the block to the foreground
process.

  Foreground process copies the buffer to the buffer cache.

  Instances with that block may acquire lock on that block (CR
block transfer does not GRD updates).

  You can see gc events, but no disk events following the gc events.

WAIT #18446741324875056000: nam='gc current block 2-way' ela= 1453 p1=7 p2=6852

p3=1 obj#=76483 tim=6688296584

FETCH #18446741324875056000:

Demo: demo_01a.sql and demo_01b.sql

©OraInternals Riyaj Shamsudeen 10

GCS structures

Demo: demo_01a.sql and demo_01b.sql

Resource
[0x1ac4][0x7],[BL]

Shadow
[0x1ac4][0x7],[BL]

Shadow
[0x1ac4][0x7],[BL]

LE

BH Buffer

Instance 2 (directory instance) Instance 1

X$kjbr

X$kjbl

X$le

X$bh

A resource structure created in the directory
instance, a lock created in instance 2

A shadow structure setup in instance
1 to keep track of the resource.

©OraInternals Riyaj Shamsudeen 11

Single block transfer -3 way

Disk files

LMD

LMS

FG

SGA
GRD Buffer

LMD

LMS

FG

SGA
GRD Buffer

LMD

LMS

FG

SGA
GRD Buffer

1

2

3

[0x1ad3][0x7],[BL]

PR mode lock

Directory instance
for the resource

FG – Foreground Process
LMD – Lock Manager Daemon

GRD – Global Resource Directory

  Block is in the buffer cache of instance 3. Instance 2 is the directory
instance of the resource. LMS process transfers the blocks from instance
3 over the interconnect.

[0x1ad3][0x7],[BL]

PR mode lock

©OraInternals Riyaj Shamsudeen 12

GRD

  After the transfer, GRD is updated with ownership changes.
Both instances are the owner of the block.

KJBLNAME KJBLNAME2 KJBLGRANT KJBLROLE KJBLREQUES

-------------------- -------------------- ---------- -------- ----------

[0x1ad3][0x7],[BL][e 6867,7,BL KJUSERPR 0 KJUSERNL

xt 0x0,0x0

  If the block is transferred from one instance to another instance
in PR mode, then the block mode is considered current mode
transfer.

  Subsequently, ‘gc current blocks received’ statistics incremented.

©OraInternals Riyaj Shamsudeen 13

Buffer changes

  Before modifying a buffer, BL lock on that buffer must be
acquired in Exclusive mode (EX).

  Other instances will downgrade or flush that buffer from their
instance, if that buffer is already in their cache.

  Instance acquired the block in EX mode and other instance(s)
flushed the buffer.

KJBLNAME KJBLNAME2 KJBLGRANT KJBLROLE KJBLREQUES

------------------------------ -------------------- ---------- -------- ----------

[0x1ac4][0x7],[BL][ext 0x0,0x0 6852,7,BL KJUSEREX 0 KJUSERNL

Enter value for block: 6852

 STATE MODE_HELD LE_ADDR DBARFIL DBABLK CR_SCN_BAS CR_SCN_WRP CLASS

---------- ---------- ---------------- ---------- ---------- ---------- ---------- ----------

 1 0 000000006D3E3AB0 7 6852 0 0 1

Demo: demo_02a.sql ,demo_02b.sql demo_02c.sql

©OraInternals Riyaj Shamsudeen 14

Busy

  Event gc cr block busy, gc current block busy indicates that those
blocks were “busy”.

  In this case, that block was in EX mode in another instance and
LMS process applied undo blocks to reconstruct a consistent
mode buffer reconstructing a CR mode buffer.

  Excessive *busy events would indicate application affinity is not
in play.

  Application affinity will reduce *busy events as the buffers will be
modified in the same instance.

©OraInternals Riyaj Shamsudeen 15

Gcs log flush sync

  But, if the instances crash right after the block is transferred to
other node, how does RAC maintain consistency?

  Actually, before sending a current mode block LMS process will
request LGWR for a log flush.

  Until LGWR sends a signal back to LMS process, LMS process
will wait on ‘gcs log flush’ event.

  CR block transfer might need log flush if the block was
considered “busy”.

  One of the busy condition is that if the block was constructed by
applying undo records.

©OraInternals Riyaj Shamsudeen 16

CUR mode

  What happens if two instances modify same block, but different
rows?

  Row level locks prevent the same row being updated from two
different instances.

  Before an instance can modify a block, the instance must acquire
EX mode lock on the buffer.

  No two instances can hold the block in EX mode and a
compatible buffer state.

Demo: demo_04a.sql ,demo_04b.sql

©OraInternals Riyaj Shamsudeen 17

CUR mode

  What happens if there are two pending transactions from two
different instances in the same block? No two instances are
allowed to hold XCUR mode buffers with EX mode GCS lock
concurrently.

LMS

EX

LMS FG FG

EX

Buffer cache Buffer cache

PI

©OraInternals Riyaj Shamsudeen 18

RAC Wait Events

©OraInternals Riyaj Shamsudeen 19

Types of packets

  Block oriented packets

  Consistent Read blocks

  Current Read blocks
  Message oriented packets

  Single block grants

  Multi block grants

  Service oriented packets

  SCN generation
  Row cache updates

  GES layer packets

©OraInternals Riyaj Shamsudeen 20

CR Wait events

  Following are the top wait events associated with CR mode
transfers:

 gc cr block 2-way
 gc cr block 3-way

 gc cr multi block request

 gc cr block busy

 gc buffer busy (acquire/release)

 gc cr grant 2-way
 gc cr grant congested

 gc cr block congested
Congestion related

Concurrency related

Multi block read

Transfers without
congestion or concurrency.

Grants

©OraInternals Riyaj Shamsudeen 21

Gc cr block 2/3-way

  Time is accounted for ‘gc cr block 2-way’ if the block owner and
master is an instance.

  If the owner and master instance are different than 3-way wait
events are used.

  Time is accounted to these wait events if there was no need for
additional work such as CR block creation or contention.

nam='gc cr block 2-way' ela= 627 p1=7 p2=6852 p3=1 obj#=76483 tim=37221074057

Dba_objects.object_id or
data_object_id

Demo: demo_gc_cr_2wayb.sql, demo_gc_cr_2waya.sql

©OraInternals Riyaj Shamsudeen 22

Analysis

  These two events ‘gc cr block 2-way’ and ‘gc cr block 3-way’ can
be considered as baseline events to calibrate cache fusion
performance.

  Generally, concurrency or congestion issues are not factored in to
these events.

These events are in the top events consuming
Considerable time.

Histogram of waits indicates that
elapsed time per event wait is high.

Numerous waits for these events,
cumulatively causing slowness.

Differentiate
between these
two cases.

©OraInternals Riyaj Shamsudeen 23

Case 1 Average wait time is higher

  If the time_waited histogram indicated for this event is higher, it
could be due to:

  High CPU usage in the nodes, leading to processes not
getting CPU quick enough.

  Network performance or Network configuration issue.

  Platform issues as SMP scaling or NUMA related.

  Since concurrency or congestion related waits are not factored in
to these waits, these are good baseline indicators for cache fusion
performance.

©OraInternals Riyaj Shamsudeen 24

Diagnostics

  Review the histogram for this event using event_histogram.sql
script.

 INST_ID EVENT WAIT_TIME_MILLI WAIT_COUNT PER

---------- -------------------- --------------- ---------- ----------

 1 gc cr block 2-way 1 3720856 1.11

 1 gc cr block 2-way 2 148016413 44.25

 1 gc cr block 2-way 4 140006974 41.86

 1 gc cr block 2-way 8 40140870 12

 1 gc cr block 2-way 16 2491886 .74

 1 gc cr block 2-way 32 43253 .01

...

 1 gc cr block 2-way 8192 9 0

 1 gc cr block 2-way 16384 24 0

Demo: event_histogram.sql

41% of waits took between 2-4ms in this
example below.

©OraInternals Riyaj Shamsudeen 25

Recommendations

  Keep CPU usage below 80-85%. Above 80% CPU usage,
scheduling inefficiency kicks in and multiplies the cache fusion
performance issues.

  Possibly consider jumbo frames. Jumbo frames reduces assembly
and disassembly of packets, so will reduce CPU usage slightly.

  Review network performance using OS tools.

  Review if cache fusion traffic is using private interconnect.

  Review if the cache fusion traffic is mixed with other network
traffic.

©OraInternals Riyaj Shamsudeen 26

Case 2: Numerous waits for these two events

  If there are numerous waits for this wait event, identify the
object and SQL causing these waits.

  SQL Trace or ASH data can be used to identify the object
associated with these wait events.

  ASH data is a sampled data, so caution should be taken so that
big enough samples are used.

  Object_id from the SQLTrace file can be used to identify the
objects too.

©OraInternals Riyaj Shamsudeen 27

Diagnostics

  Top objects leading to these waits are printed below.

@ash_gcwait_to_obj.sql

Enter value for event_name: gc cr block 2-way

 INST_ID OWNER OBJECT_NAME OBJECT_TYPE CNT

---------- -------------------- -------------------------------- -------------------- ----------

 ...

 1 APPLSYS FND_CONCURRENT_PROCESSES TABLE 118

 1 INV MTL_SERIAL_NUMBERS TABLE 144

 1 INV MTL_TRANSACTIONS_INTERFACE_N1 INDEX 176

 1 APPLSYS FND_CONCURRENT_REQUESTS TABLE 184

 1 INV MTL_MATERIAL_TRANSACTIONS TABLE 211

 1 INV MTL_TRANSACTIONS_INTERFACE TABLE 216

 1 Undo Header/Undo block? 18483

Demo: ash_gcwait_to_obj.sql

For undo header blocks/undo blocks, current_obj# is set to 0
and for undo blocks, curent_obj# is set to -1.

©OraInternals Riyaj Shamsudeen 28

Recommendations

  Consider application affinity. Huge number of blocks transferred
back and forth between the instances are indicating that
application affinity might help.

  SGA size might be smaller for the workload. Try to see if
increasing SGA size is an option.

  Stretch clusters will suffer from longer latencies due to network
latency between the end points.

©OraInternals Riyaj Shamsudeen 29

Gc cr block congested/gc cr grants congested

  These wait events indicate that there were CPU resource
starvation issues.

  For example, sudden spikes in PQ processing can increase CPU
load average leading to CPU starvation.

  Reducing CPU usage by tuning costly SQL statement, scheduling
jobs to run different times, or even adding new nodes is generally
required.

  In a really busy and active environments, there will be few of
these wait events; These events are concerns only if the AWR or
SQLTrace indicates high amount of wait times for these events.

©OraInternals Riyaj Shamsudeen 30

Gc cr grants 2-way

  Time is accounted to this wait event, if the block is not in any of
the buffer cache.

  Trace file will indicate this wait event followed by a disk read.
nam='gc cr grant 2-way' ela= 659 p1=1 p2=88252 p3=1 obj#=77779

nam='db file sequential read' ela= 938 file#=1 block#=88252 blocks=1
obj#=77779

  Typical latency is 1-2ms. Any thing above needs to be reviewed as
these are light-wait events.

  Process sends a request to remote master LMS process and the
LMS process simply responds with ‘read from disk’.

  This is another base line wait event to measure interconnect
response time, as LMS processing is limited.

©OraInternals Riyaj Shamsudeen 31

RAC-Tuning objects

©OraInternals Riyaj Shamsudeen 32

Partitioning

  Partitioning can be used to improve performance and scalability
in RAC instances. Few Guidelines:

  Range Partitioning : For physical segment segregation

  Hash Partitioning Index : To improve insert concurrency

  Hash Partitioning Index : To reduce GC traffic for Select

  Hash Partitioning Table with local indexes: To improve insert
concurrency

  Hash Partitioning Table : To reduce GC traffic for Select

  From Version 10g onwards, partitioned indexes can be created
on non-partitioned tables.

©OraInternals Riyaj Shamsudeen 33

Right hand growth index contention

  Btree indexes store ordered (key, rowid) pair.

  If the key column values are generated using a sequence value or
monotonically increasing values, then those values are stored in
the right most leaf block of the index.

  If many sessions are concurrently inserting into the index, all
those sessions will be trying to insert in to right most leaf block
of the index.

  This leads to contention in right most leaf block and known as
right hand index growth contention.

©OraInternals Riyaj Shamsudeen 34

Non-partitioned indexes

Ses 1 [1000]

Ses 2 [1001]

Ses 3 [1002]

Ses 4[1003]

Ses 5[1004]

Ses 6 [1005]

©OraInternals Riyaj Shamsudeen 35

In RAC…

  Right hand growth indexes will suffer from buffer busy wais
in single instance.

  In RAC, this problem is magnified with enormous waits on
gc buffer busy events and other downstream events.

©OraInternals Riyaj Shamsudeen 36

Hash partitioning

  Hash partitioning is an option to resolve concurrency issues
associated with right hand growth indexes.

  Hashing algorithm uniformly distributes values to various
leaf blocks leading to increased concurrency.

  For example, by converting an unique non-partitioned index
to a partitioned index with 2 partition, concurrency can be
doubled.

  Conversion to 32 partition index will lead to a concurrency
increase of near 32 fold.

  This action may be needed for even non-unique indexes if
the data is almost unique, such as timestamp column.

©OraInternals Riyaj Shamsudeen 37

Hash Partitioned indexes

Ses 1[1000] Ses 2 Ses 3[1002] Ses 4
Ses 5 Ses 6

©OraInternals Riyaj Shamsudeen 38

Partition count

  Keep partition count to be a binary power of 2 as hash
partitioning algorithm uses hashing algorithm.

  Err on caution: Use bigger number of partitions such as 32, 64,
or 128 partitions if the concurrency is higher.

  Of course, this might induce more logical reads, but the effect of
that increase is negligible.

Demo: generate_insert.ksh, generate_insert_setup.sql, generate_insert_setup_hash.sql

©OraInternals Riyaj Shamsudeen 39

Hash partitioning tables

  Another option to resolve right-hand-growth index contention is
to convert the table to partitioned table and create the indexes as
a local indexes.

  Since the algorithm uses hashing techniques, keep the partition
count as binary power of 2.

  Hash partitioning indexes or table is a proven way to scale the
application concurrency in RAC.

  Index Organized Tables also can suffer from this insert
concurrency, if the row is short.

©OraInternals Riyaj Shamsudeen 40

ASSM

  ASSM avoids the need for manual freelist management.

  It is out of scope to go deeper in to ASSM, but in ASSM, L1
bitmaps are keeping the list of free blocks for insert.

  L2 bitmaps points to L1 bitmaps and L3 bitmaps in turn points
to L2 bitmaps. L3 bitmaps is not common though.

  L1 bitmaps are searched to find free blocks.

Demo: generate_ins_freelist.ksh 1 10, freelist_blocks.sql

©OraInternals Riyaj Shamsudeen 41

ASSM & RAC

  Each instance assumes ownership of few L1 bitmaps. Processes
in that instance search L1 bitmaps owned by that instance.

  Essentially, ASSM avoids the need for freelist groups, by
instance-owning L1 bitmaps and second/third level indirect
bitmaps.

  Dbms_space_admin package can be used to dump segment
header information in ASSM tablespace.

 dbms_space_admin.segment_dump(
 c1.tablespace_name,

 c1.relative_fno,

 c1.header_block);

©OraInternals Riyaj Shamsudeen 42

L1 bitmaps

  When Instance 1 processes were inserting
in to the segment, all L1 bitmaps were
owned by that instance.

 L1 Ranges :

 0x01c02470 Free: 1 Inst: 1
 0x01000b08 Free: 1 Inst: 1

 0x01000b28 Free: 1 Inst: 1
 0x01000b48 Free: 1 Inst: 1

 0x01000b60 Free: 1 Inst: 1
 0x01000b78 Free: 1 Inst: 1
 0x01c02588 Free: 1 Inst: 1

 0x01c025b0 Free: 1 Inst: 1
 0x01000b80 Free: 1 Inst: 1

 0x01000b81 Free: 5 Inst: 1

  When both instances were inserting in to
the segment, new L1 bitmaps were owned
by the second instance.

 L1 Ranges :

 0x01c02470 Free: 1 Inst: 1

 0x01000b08 Free: 1 Inst: 1
 0x01000b28 Free: 1 Inst: 1

 0x01000b48 Free: 1 Inst: 1
 0x01000b60 Free: 1 Inst: 1
 0x01000b78 Free: 1 Inst: 1

 0x01c02588 Free: 1 Inst: 1
 0x01c025b0 Free: 1 Inst: 1

 0x01000b80 Free: 1 Inst: 1
 0x01000b81 Free: 1 Inst: 2
 0x01c02600 Free: 1 Inst: 2

 0x01c02601 Free: 1 Inst: 2
 0x01000c80 Free: 5 Inst: 2

 0x01000c81 Free: 5 Inst: 2

©OraInternals Riyaj Shamsudeen 43

Instance ownership

  L1 bitmaps can change ownership too.
 Dump of First Level Bitmap Block

 nbits : 4 nranges: 1 parent dba: 0x01c02471 poffset: 9

 unformatted: 0 total: 64 first useful block: 0

 owning instance : 2

 instance ownership changed at 01/28/2011 22:43:06

 Last successful Search 01/28/2011 22:43:06

 Freeness Status: nf1 0 nf2 0 nf3 0 nf4 0

  Excessive deletes doesn’t lead to ill effects similar to freelist
blocks. Free blocks are correctly accounted to L1 bitmaps and
instance ownership maintained.

  In a nutshell, consider using ASSM in RAC environment.

©OraInternals Riyaj Shamsudeen 44

Sequences

  Incorrect configuration of sequences can be fatal to performance.

  For cached sequences, each instance caches a range of sequence
values.

  Problem is that sessions running from different nodes can get
non-sequential values.

  For example, if the cache is 20, then session #1 in instance 1 will
get a value of 1 and session #2 in instance 2 will retrieve a value
starting at 21.

  In normal operations, there is no loss of values, just possible
gaps.

©OraInternals Riyaj Shamsudeen 45

Sequence operation in RAC

Inst 1 Inst 2

1 First access to sequence
caches values from 10 to 29

2 SEQ$ updated with
last_value as 29

Second access caches
value from 30-49

3

emp_seq
cache 20
start with 10

10-29

4 SEQ$ updated with
last_value as 49

5 Subsequent accesses returns
values until value reaches 29

6 After 29, values will be
in 50-69 range.

SEQ$ updated with
last_value as 69

30-49

7

1. 60 access to sequence
 results in 3 changes to
 block.

2. These changes might not
 result in physical
 reads/writes.

3. Gaps in sequence values.

4. Still, log flush needed for
 cache transfer.

©OraInternals Riyaj Shamsudeen 46

Sequence operation in RAC

Inst 1 Inst 2

1 First access to sequence
returns value 10

2 SEQ$ updated with
last_value as 10

Second access returns
value of 11

3

emp_seq
nocache
start with 10

10

4 SEQ$ updated with
last_value as 11

5 Subsequent accesses returns
value 12

6 Due to nocache values,
there will be no gaps.

SEQ$ updated with
last_value as 12

11

7

1. 3 access to sequence
 results in 3 block changes.

2. No gaps in sequence
 values.

3. But, SEQ$ table blocks
 transferred back and forth.

©OraInternals Riyaj Shamsudeen 47

Sequences

  If ordered values are needed, consider “order, cache” attributes.

  “Order, cache” attribute provides better performance since the
GES layer is used to maintain the order between the instances.

  Still, with “order, cache” it is possible to lose the values in case of
instance crashes.

  You should consider order, nocache only for lightly used
sequences such as control table sequences etc.

©OraInternals Riyaj Shamsudeen 48

Code executions – two nodes (order,cache)
INSERT INTO RS.T_GEN_SEQ_02

VALUES

 (RS.T_GEN_SEQ_02_SEQ.NEXTVAL, LPAD ('Gen',25,'DEADBEEF')

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.01 0 0 0 0

Execute 5001 0.94 12.60 0 910 16440 5001

Fetch 0 0.00 0.00 0 0 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 5002 0.94 12.62 0 910 16440 5001

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 DFS lock handle 359 0.05 0.64

 enq: HW - contention 6 0.03 0.09

 buffer busy waits 130 0.06 0.50

  “Order, cache attribute is implemented using GES layer and
interconnect.

©OraInternals Riyaj Shamsudeen 49

Code executions – two nodes (cache)
INSERT INTO RS.T_GEN_SEQ_02

VALUES

 (RS.T_GEN_SEQ_02_SEQ.NEXTVAL, LPAD ('Gen',25,'DEADBEEF')

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ---------- ---------- ---------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 5001 7.71 282.75 3 333 20670 5001

Fetch 0 0.00 0.00 0 0 0 0

------- ------ -------- ---------- ---------- ---------- ---------- ----------

total 5002 7.71 282.75 3 333 20670 5001

 Event waited on Times Max. Wait Total Waited

 -- Waited ---------- ------------

 row cache lock 4586 0.76 255.01

 Disk file operations I/O 7 0.00 0.00

 db file sequential read 3 0.01 0.03

 gc current block busy 1064 0.46 7.08

 gc current block 2-way 2660 0.05 3.36

  Order,nocache causes excessive row cache lock waits.

©OraInternals Riyaj Shamsudeen 50

Break it down..

Coutesy:npowersoftware.com

©OraInternals Riyaj Shamsudeen 51

LMS Processing (over simplified)

Rx Msg

CR / CUR
block build

Msg to LGWR
(if needed)

Wakeup
Log buffer
processing

Log file write
Signal
LMS

Wake up

Send Block

OS,Network
stack

OS,Network
stack

Copy to SGA
/ PGA

User session
processing

Send GC
Message

OS,Network
stack

User LMSx LGWR

Node 1 Node 2

©OraInternals Riyaj Shamsudeen 52

GC CR latency

  GC CR latency ~=

 Time spent in sending message to LMS +

 LMS processing (building blocks etc) +
 LGWR latency (if any) +

 LMS send time +

 Wire latency

Averages can be misleading. Always review both total time
and average to understand the issue.

©OraInternals Riyaj Shamsudeen 53

Breakdown latency

Wait time Node 1 Node 2 Node 3 Node 4 Total

gc cr block build time 402 199 100 227 1679

Gc cr block flush time 3016 870 978 2247 7111

Gc cr block send time 375 188 87 265 1290

 Avg global cache cr block receive time (ms): 6.2

In this case, LGWR flush time
Need to be reduced to tune latency.

©OraInternals Riyaj Shamsudeen 54

GC CURRENT latency

  GC CUR latency ~=

 Time spent in sending message to LMS +

 LMS processing : (Pin and build block) +
 LGWR latency: Log flush +

 Wire latency

Statistics : gc current block flush time

 gc current block pin time
 gc current block send time

©OraInternals Riyaj Shamsudeen 55

GV$ views

  GV$ and V$ views are implemented with an abstraction layer.

  GV$ views: Fixed views, accessing x$ tables. For example,
gv$database is accessing x$kccdi and x$kccdi2 fixed tables.
 select di.inst_id,di.didbi,di.didbn,

 to_date(di.dicts,'MM/DD/RR HH24:MI:SS', 'NLS_CALENDAR=Gregorian'),

 to_number(di.dirls) ,

 to_date(di.dirlc,'MM/DD/RR HH24:MI:SS','NLS_CALENDAR=Gregor

...

 fl2,64), 64, 'YES', 'NO'),

 decode(di2.di2min_req_capture_scn,0, to_number(null),

 di2.di2min_req_capture_scn) from x$kccdi di, x$kccdi2 di2

  GV_$ views: Traditional views accessing GV$ fixed views.
 create or replace view gv_$database as select * from gv$database;

  Gv$database is a public synonym referring to sys.gv_$ views.
 create or replace public synonym gv$database for gv_$database;

©OraInternals Riyaj Shamsudeen 56

V$ views

  V$ views access gv$ views and filter data specific to current
instance. This is true even in a single instance.

Create or replace v$database as

 select DBID, NAME, CREATED, RESETLOGS_CHANGE#, RESETLOGS_TIME,
PRIOR_RESETLOGS_CHANGE#, PRIOR_RESETLOGS_TIME,LOG_MODE,CHECKPOINT_CHANGE#,

ARCHIVE_CHANGE#, CONTROLFILE_TYPE, CONTROLFILE_CREATED, CONTROLFILE_SEQUENCE#,
CONTROLFILE_CHANGE#,

...

from

GV$DATABASE where inst_id = USERENV('Instance')

;

Demo: demo_gvdef.sql

©OraInternals Riyaj Shamsudeen 57

GV$ implementation

  GV$ views retrieves from all instances and merges them to
produce final output.

  Specialized parallel query slaves are used to retrieve rows from
different instances (10g and above).

Username INST_ID QC/Slave Slave Set SID QC SID Requested DOP Actual DOP

------------ ------- ---------- ---------- ------ ------ ------------- ----------

SYS 1 QC 52 52

 - pz99 2 (Slave) 1 55 52 2 2

 - pz99 1 (Slave) 1 62 52 2 2

Demo: gv_pq.sql , pxslaves_global.sql

  In 9i, normal PQ slaves were used to retrieve rows from remote
instances.

©OraInternals Riyaj Shamsudeen 58

Caution

  Don’t use gv$views to find averages. Use AWR reports or custom
scripts.

  gv$views are aggregated data and persistent from the instance
restart.

  For example this query can be misleading:

 select b1.inst_id, b2.value "RECEIVED",
b1.value "RECEIVE TIME",

((b1.value / b2.value) * 10) "AVG RECEIVE TIME (ms)"
from gv$sysstat b1, gv$sysstat b2
where b1.name = ‘gc cr block receive time' and

b2.name = 'gc cr blocks received' and b1.inst_id = b2.inst_id

©OraInternals Riyaj Shamsudeen 59

gc_traffic_print.sql

  You can use my script to print global cache performance data for
the past minute. Download from scripts archive:
 http://www.orainternals.com/scripts_rac1.php

---------|--------------|---------|----------------|----------|---------------|---------------|-------------|
Inst	CR blocks Rx	CR time	CUR blocks Rx	CUR time	CR blocks Tx	CUR blocks Tx	Tot blocks
1 | 40999| 13.82| 7827| 4.82| 25070| 17855| 91751|
2 | 12471| 5.85| 8389| 5.28| 31269| 9772| 61901|
3 | 28795| 4.11| 18065| 3.97| 28946| 4248| 80054|
4 | 33105| 4.54| 12136| 4.68| 29517| 13645| 88403|
---------|--------------|---------|----------------|----------|---------------|---------------|-------------|

  During the same time frame, output of the script from prior
slide:

 INST_ID RECEIVED RECEIVE TIME AVG RECEIVE TIME (ms)
---------- ---------- ------------ ---------------------
 4 165602481 104243160 6.2947825
 2 123971820 82993393 6.69453695
 3 215681074 103170166 4.7834594
 1 134814176 66663093 4.9448133

Very misleading!

©OraInternals Riyaj Shamsudeen 60

Review all nodes.

  It is important to review performance data from all the nodes.

  It is easy to create AWR reports from all nodes using my script:
Refer awrrpt_all_gen.sql.

  [Don’t forget that access to AWR report needs license]

  Or use my script gc_traffic_processing.sql from my script
archive.

Default collection period is 60 seconds.... Please wait for at least 60 seconds...
---------|-----------|---------|-----------|----------|------------|------------|------------|----------|
Inst	CR blk Tx	CR bld	CR fls tm	CR snd tm	CUR blk TX	CUR pin tm	CUR fls tm	CUR blk TX
2 | 67061| .08| .88| .23| 34909| 1.62| .2| .23|
3 | 38207| .17| 2.19| .26| 28303| .61| .08| .26|
4 | 72820| .06| 1.76| .2| 40578| 1.76| .24| .19|
5 | 84355| .09| 2.42| .23| 30717| 2.69| .44| .25|
--

©OraInternals Riyaj Shamsudeen 61

Place holder events

  Few events are place holder events such as:

  gc cr request

  gc cr multiblock request
  gc current request

…

  Sessions can be seen waiting for these wait events, but will not
show up in AWR / ADDM reports.

  After sending the global cache block request, foreground process
waits on these events.

  On receipt of the response, time is accounted for correct wait
event.

©OraInternals Riyaj Shamsudeen 62

Histogram

  Averages can be misleading. Use v$event_histogram to
understand true performance metrics.

  It is better to take snapshots of this data and compare the
differences.

 INST_ID EVENT WAIT_TIME_MILLI WAIT_COUNT THIS_PER TOTAL_PER

---------- ------------------------- --------------- ---------- ---------- ----------
 1 gc cr block 2-way 1 466345 .92 .92
 1 gc cr block 2-way 2 23863264 47.58 48.51

 1 gc cr block 2-way 4 20543430 40.96 89.47
 1 gc cr block 2-way 8 4921880 9.81 99.29

 1 gc cr block 2-way 16 329769 .65 99.95
 1 gc cr block 2-way 32 17267 .03 99.98
 1 gc cr block 2-way 64 2876 0 99.99

 1 gc cr block 2-way 128 1914 0 99.99
 1 gc cr block 2-way 256 1483 0 99.99

 1 gc cr block 2-way 512 618 0 99.99
 1 gc cr block 2-way 1024 83 0 99.99
 1 gc cr block 2-way 2048 4 0 99.99

 1 gc cr block 2-way 4096 3 0 99.99
 1 gc cr block 2-way 8192 5 0 99.99

 1 gc cr block 2-way 16384 3 0 100

89.4% of these waits are
Under 4ms.

©OraInternals Riyaj Shamsudeen 63

GC event histograms

  Better yet, use my script gc_event_histogram.sql to understand
current performance metrics.

Default collection period is sleep seconds. Please wait..

Enter value for event: gc cr block 2-way
Enter value for sleep: 60
---------|-----------------------|----------------|----------|

Inst id	Event	wait time milli	wait cnt

1 |gc cr block 2-way | 1| 37|
1 |gc cr block 2-way | 2| 4277|
1 |gc cr block 2-way | 4| 5074|

1 |gc cr block 2-way | 8| 1410|
1 |gc cr block 2-way | 16| 89|

1 |gc cr block 2-way | 32| 1|
1 |gc cr block 2-way | 64| 0|
1 |gc cr block 2-way | 128| 0|

1 |gc cr block 2-way | 256| 0|

©OraInternals Riyaj Shamsudeen 64

Gc buffer busy waits

  GC buffer busy waits are usually symptoms. In many instances,
this event can show up the top most waited event.

  GC Buffer busy simply means that buffer is pinned by another
process and waiting for a different global cache event.

  Understand why that ‘buffer pin holder’ is waiting. Resolving that
will resolve global cache buffer busy waits.

  Segment header changes dues to insufficient freelist groups also
can lead to longer ‘gc buffer busy’ waits.

©OraInternals Riyaj Shamsudeen 65

Example analysis

Client had high Global Cache response time waits.

Global Cache and Enqueue Services - Workload Characteristics
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
                     Avg global enqueue get time (ms):      2.5 

          Avg global cache cr block receive time (ms):     18.2 
     Avg global cache current block receive time (ms):     14.6 

            Avg global cache cr block build time (ms):      0.3 
             Avg global cache cr block send time (ms):      0.2 
      Global cache log flushes for cr blocks served %:     25.1 
            Avg global cache cr block flush time (ms):      5.2 

         Avg global cache current block pin time (ms):      0.4 
        Avg global cache current block send time (ms):      0.2 
 Global cache log flushes for current blocks served %:      1.7 
       Avg global cache current block flush time (ms):      5.2 



©OraInternals  Riyaj Shamsudeen 66 

CR latency 

Wait time Node 1  Node 2 Node 3 Node 4 

Avg. CR block receive time 18.2 6.7 20.0 17.3 

Avg CUR block receive time 14.6 5.0 11.6 17.3 

  Three instances are suffering from CR latency, except instance 
2! 

  In RAC, node suffering from chronic issues causes GC 
performance issues in other nodes. With that logic in mind, node 
2 should be suffering from chronic issues. 



©OraInternals  Riyaj Shamsudeen 67 

Breakdown of  latency 

Statistics Node 1  Node 2 Node 3 Node 4 Total 

gc cr block build time 11,392 148,666 5,267 6,632 171,957 

Gc cr block flush time 56,634 75,751 34,406 53,031 219,822 

Gc cr block send time 9,153 7,779 4,018 7,905 28,855 

  Sum of  flush time is higher, but it is comparable across the 
cluster. 

But, notice the build time in node 2. 



©OraInternals  Riyaj Shamsudeen 68 

Consistent reads 

Statistics Node 1  Node 2 Node 3 Node 4 

data blocks consistent  
Reads – undo records 
applied 

2,493,242 86,988,512 3,090,308 7,208,575 

db block changes 6,276,149 43,898,418 20,698,189 14,259,340 

  For CR blocks, time is spent in building blocks, which indicates 
consistent block generation.  

Very high value compared to other nodes. 



©OraInternals  Riyaj Shamsudeen 69 

Time line 

  We wanted to see when this problem started. Surprisingly, 
instance 2 had a pattern of  increasing flush time. 



©OraInternals  Riyaj Shamsudeen 70 

Db block changes 

with  segstats as ( 
       select * from ( 

         select inst_id, owner, object_name, object_type , value , 
                rank() over (partition by  inst_id, statistic_name order by value 

desc ) rnk , statistic_name 
                 from gv$segment_statistics 
          where value >0 

        ) where rnk <11 
       )  , 

sumstats as ( select inst_id, statistic_name, sum(value) sum_value from gv
$segment_statistics group by statistic_name, inst_id) 

 select a.inst_id, a.statistic_name, a.owner, a.object_name, a.object_type,a.value,

(a.value/b.sum_value)*100 perc 
    from segstats a ,   sumstats b 

where a.statistic_name = b.statistic_name 
and a.inst_id=b.inst_id 
and a.statistic_name ='db block changes' 

order by a.statistic_name, a.value desc 
/ 

INST_ID STATISTIC_NAME     OWNER OBJECT_NAME                    TYPE  VALUE        PERC 
------- ------------------ ----- ------------------------------ ----- ------------ ------ 
      2 db block changes   AR    CUSTOM_TABLE                   TABLE 122949282400  81.39 
      4                    INV   MTL_MATERIAL_TRANS_TEMP_N1     INDEX   1348827648  16.59 
      3                    AR    RA_INTERFACE_LINES_N2          INDEX    791733296   9.77 
      3                    AR    RA_CUSTOMER_TRX_LINES_N2       INDEX    715855840   8.83 
      1                    INV   MTL_MATERIAL_TRANS_TEMP_N1     INDEX    652495808  12.44 
... 

Unfortunately, AWR report does not capture 
segments with high ‘db block changes’. 



©OraInternals  Riyaj Shamsudeen 71 

Solution 

  Finally, it boiled down to a custom code bug which was 
updating almost all rows in a table unnecessarily. 

  Unfortunately, number of  rows that fall in to that criteria was 
slowly increasing.  

  So, GC CR response time was slowly creeping up and it 
wasn’t easy to identify the root cause. 

  After the code fix, GC CR time came down to normal range. 



©OraInternals  Riyaj Shamsudeen 72 

Agenda 

  Global cache performance  

  Undo, redo and more 

  RAC background process tuning 

  Interconnect issues, lost packets and network layer 

  Network layer tuning  

  Effective use of  parallel query 

  Troubleshooting locking issues 

  Object re-mastering 



©OraInternals  Riyaj Shamsudeen 73 

  Does an instance access undo blocks allocated to another 
instance? 

Question 



©OraInternals  Riyaj Shamsudeen 74 

CR and undo 

Inst 1 Inst 2 Inst 3 

1 User process in instance 1 requests master for the block in PR mode. 

Select c1 from t1 where n1=:b1; 

1 

2 Current owner (2) holds the block in Exclusive mode. 

2 

3 Instance 2 applies undo to create a version of  the block consistent with SCN 
requested. Then ships the block to instance 1. 

3 

undo 



©OraInternals  Riyaj Shamsudeen 75 

Light-works rule/Fairness downconvert 

  But, if  one instance is a read only instance, then it might 
request another instance to generate CR copies applying 
undo blocks excessively.   

  This is avoided by light-works rule. If  an instance is 
excessively serving a block by applying undo blocks, it will 
downgrade the block mode.  

  Requesting instance then will read from the disk and apply 
undo blocks (if  needed) reducing load on the prior owner. 



©OraInternals  Riyaj Shamsudeen 76 

Undo for CR 

  A query can not read the block image with an SCN later than 
the query environment SCN. 

  If  a block is ahead of  time, then undo blocks are applied to 
create a consistent version of  the block.  

  This can cause excessive cache transfers or excessive physical 
reads for undo blocks. 

  But, if  the block was modified by a different instance, then 
undo blocks may need to be shipped from another instance. 

  Node affinity will be helpful to resolve this. 



©OraInternals  Riyaj Shamsudeen 77 

Commit cleanout 

  ITL entries in the blocks may not be cleaned out immediately. 

  Session reading the block next time will check if  the pending 
transaction is committed or not. 

  This can lead to vicious cycle of  rolling back the transaction 
table accessing undo blocks excessively. 

  If  the transaction table is cycled through, then the session 
will apply undo to find a transaction table version with that 
transaction. 

  In RAC, this problem is magnified, since the transaction(s) 
could be in a different instance. So, transaction table blocks 
and undo blocks from different instance need to be shipped 
from other node or read from the disk.  



©OraInternals  Riyaj Shamsudeen 78 

Redo and LGWR 

  LGWR performance is important for global cache response 
time. 

  Even for CR blocks LGWR must flush if  the block is 
considered busy. 

Statistics Node 1  Node 2 Node 3 Node 4 

Gc cr block flush time 129,970 12,289 11,556 27143 

Statistics Node 1  Node 2 Node 3 Node 4 

Avg. gc cr block rx 
time 

4.2 22.7 21.5 11.0 



©OraInternals  Riyaj Shamsudeen 79 

Agenda 

  Global cache performance  

  Undo, redo and more 

  RAC background process tuning 

  Interconnect issues, lost packets and network layer 

  Network layer tuning  

  Effective use of  parallel query 

  Troubleshooting locking issues 

  Object re-mastering 



©OraInternals  Riyaj Shamsudeen 80 

Global Cache waits 

  Global Cache waits increases due to increase in LMS latency in 
the CPU starved node. 

  Much of  these GC waits are blamed on interconnect interface 
and hardware. 

  In many cases, interconnect is performing fine, it is that GCS 
server processes are introducing latencies. 



©OraInternals  Riyaj Shamsudeen 81 

LMS & 10.2.0.3 

  In 9i, increasing priority of  LMS processes to RT helps (more 
covered later). 

  From Oracle release 10.2.0.3 LMS processes run in Real Time 
priority by default.  

  Two parameters control this behaviour: 

•  _high_priority_processes  
•  _os_sched_high_priority 



©OraInternals  Riyaj Shamsudeen 82 

Parameters in 10gR2 

  _high_priority_processes:  

Default value: LMS*|VKTM* 
This parameter controls what background processes should get 
Real time priority. Default is all LMS processes and VKTM 
process. 

  _os_sched_high_priority : 
   Default value: 1 

   This is a switch. If  set to 0, no background process will run in         

   high priority. 



©OraInternals  Riyaj Shamsudeen 83 

oradism 

  Of  course, bumping priority needs higher privileges such as root 
in UNIX. 

  Oradism utility is used to increase the priority class of  these 
critical background process in UNIX. 

  Verify that LMS processes are using Real time priority in UNIX 
and if  not, oradism might not have been configured properly. 

  In Windows, oradism service is used to increase the priority. 



©OraInternals  Riyaj Shamsudeen 84 

More LMS processes? 

  Typical response is to increase number of  LMS processes 
adjusting _lm_lms (9i) or gcs_server_processes(10g). 

  Increase in LMS processes without enough need increases xcalls/
migrates/tlb-misses in massive servers. 

  Further, LMS process runs in RT CPU priority and so, CPU 
usage will increase. 



©OraInternals  Riyaj Shamsudeen 85 

LMS & CPU usage 

  In huge servers, by default, number of  LMS processes might be 
quite high. It is possible to get up to 26 LMS processes by 
default. 

  Typically, same number of  LMS processes as interconnect or 
remote nodes is a good starting point. 

  If  there is enormous amount of  interconnect traffic, then 
configure LMS processes to be twice the interconnect. 



©OraInternals  Riyaj Shamsudeen 86 

LGWR and CPU priority 

  LGWR performance is akin to Global cache performance. 

  If  LGWR suffers from performance issues, it will reflect on 
Global cache performance. 

  For example, If  LGWR suffers from CPU latency issues, then 
LMS will have longer waits for ‘gcs log flush sync’ event 

  This leads to poor GC performance in other nodes. 



©OraInternals  Riyaj Shamsudeen 87 

LGWR priority 

  Method to increase priority for LGWR and LMS in 9i (Example 
for Solaris)‏. If  you don’t want to increase priority to RT for 
LGWR, at least, consider FX priority.  

priocntl -e -c class -m userlimit -p priority 

priocntl -e -c RT -p 59 `pgrep -f  ora_lgwr_${ORACLE_SID}` 

priocntl -e -c FX -m 60 -p 60 `pgrep -f  ora_lms[0-9]*_${ORACLE_SID}` 
  In 10g, parameter _high_priority_processes can be used (needs 

database restart though) 
alter system set "_high_priority_processes"="LMS*|LGWR*" scope=spfile sid='*'; 

alter system set "_high_priority_processes"="LMS*|VKTM*|LGWR*" scope=spfile 
sid='*'; (11g) 

  See note 759082.1 for HP-UX : hpux_sched_noage and other 
issues. 



©OraInternals  Riyaj Shamsudeen 88 

Pitfalls of  RT mode 

  Of  course, there are few! RT is kernel preemptive. 

  LMS process can continuously consume CPU and can introduce 
CPU starvation in servers with few CPUs. 

  A bug was opened to make LMS process sleep intermittently, but 
that causes LMS to be less active and can cause GC latency. 

  Another undocumented parameter 
_high_priority_process_num_yields_before_sleep was 
introduced as a tunable. But, hardly a need to alter this parameter.  

  So, LMS might wait for LGWR. If  LGWR is not running in RT, 
then LMS can preempt LGWR leading to not-so-optimal wait 
graph. But, LGWR can block interrupt which LGWR might 
need! 



©OraInternals  Riyaj Shamsudeen 89 

Binding.. 

  Another option is to bind LGWR/LMS to specific 
processors or processor sets. 

  Still, interrupts can pre-empt LMS processors and 
LGWR. So, binding LMS to processor set without 
interrupts helps (see psradm in solaris). 

  But, of  course, processor binding is useful in servers with higher 
number of  CPUs such as E25K / M9000 platforms. 



©OraInternals  Riyaj Shamsudeen 90 

CSSD/CRSD 

  CSSD is a critical process. Few CSSD processes must be 
running with RT priority. 

  crsctl set css priority 4 
  CPU starvation in the server can lead to missed 

network or disk heart beat. This can lead to node 
reboots. 

  It is important to have good and consistent I/O 
performance to ORA_CRS_HOME directories. 

  If  CSSD can’t access those directories efficiently (i.e. 
due to NFS or other file system issues), then that can 
lead to node reboots too. 



©OraInternals  Riyaj Shamsudeen 91 

Summary 

  In summary,  
•  Use optimal # of  LMS processes 
•  Use RT or FX high  priority for LMS and LGWR 
processes. 
•  Configure decent hardware for online redo log files. 
•  Tune LGWR writes and Of  course, avoid double 
buffering and double copy using optimal file systems. 
•  Of  course, tune SQL statement to reduce logical 
reads and reduce redo size. 



©OraInternals  Riyaj Shamsudeen 92 

Agenda 

  Global cache performance  

  Few important RAC wait events and statistics 

  RAC background process tuning 

  Interconnect issues, lost packets and network layer 

  Effective use of  parallel query 

  Troubleshooting locking issues 

  Object re-mastering 



©OraInternals  Riyaj Shamsudeen 93 

gc blocks lost 

  Probably, the most direct statistics indicating interconnect issues. 

  Consistent high amount of  ‘gc blocks lost’ is an indication of  
problem with underlying network infrastructure. (Hardware, 
firmware,setup etc). 

  Need to understand which specific component is an issue. 
Usually, this is an inter-disciplinary analysis. 

  Ideal value is near zero. But, only worry about this, if  there are 
consistently higher values.  



©OraInternals  Riyaj Shamsudeen 94 

Effects of  lost blocks 

  Higher number of  block loss can lead to timeouts in GC traffic 
wait events. Many processes will be waiting for place-holder 
events.  

  Use total_timeouts column in v$system_event to see if  the 
timeouts are increasing. 

  Percent of  total_timeouts should be very small. 



©OraInternals  Riyaj Shamsudeen 95 

Network layers 

Socket layer 

User Process 

protocol layer 
(UDP) 

Interface layer 

switch 

Interface layer 

protocol layer 
(UDP) 

Socket layer 

LMSx 

IP queue IP queue 

Socket 
queues 

Source: [8,Richard Stevens] 

Udp_xmit_hiwat 
Udp_recv_hiwat 
Udp_max_buf  
Net.core.rmem_max 

Fragmentation and 
Assembly 

MTU 



©OraInternals  Riyaj Shamsudeen 96 

UDP buffer space 

  UDP Tx/Rx buffers are allocated per process. 

  When the process executes CPU, it drains the UDP buffers. If  
the buffer is full, then incoming packets to that process are 
dropped. 

  Default values for the UDP buffers are small for the bursty 
nature of  interconnect traffic. Increase UDP buffer space to 
128KB or 256KB. 

  UDP is a “send-and-forget” type protocol. Sending process does 
not get any acknowledgement.  

Demo: wireshark in node2, tc_one_row  



©OraInternals  Riyaj Shamsudeen 97 

CPU latency and UDP 

  This can lead to buffer full conditions and lost packets. 

  It is essential to keep CPU usage under 80% to avoid latencies 
and lost packets. 

  Due to CPU latency, process might not be able to acquire CPU 
quick enough. 



©OraInternals  Riyaj Shamsudeen 98 

Agenda 

  Global cache performance  

  Few important RAC wait events and statistics 

  RAC background process tuning 

  Interconnect issues, lost packets and network layer 

  Effective use of  parallel query 

  Troubleshooting locking issues 

  Object re-mastering 



©OraInternals  Riyaj Shamsudeen 99 

Parallel Query Setup 

  It is imperative that PQ messages are transmitted between 
producers and consumers. 

  Insufficient network bandwidth with PQ storm can cause higher 
GC latency and possible packet loss. 

  Parallel Query slaves can be allocated from multiple instances for 
a query. 



©OraInternals  Riyaj Shamsudeen 100 

PQ Optimization  

QC 

P1 

Inst 2 

P2 P3 P8 P1 

Inst 1 

P2 P3 P8 … … 

P9 P10 P11 P16 … P9 P10 P11 P16 … 

Producers 

Consumers 

Communication between producers/consumers are 
Not limited to one node. Gigabytes of  data flew  
Between node 1 and node 2. 



©OraInternals  Riyaj Shamsudeen 101 

Optimizations in 10g/11g 

  Oracle code tries to allocate all PQ slaves in one node, if  
possible. This minimizes PQ induced interconnect traffic. 

  If  it not possible to allocate all slaves from a node, then the least 
loaded node(s) are chosen for PQ slave allocation. 

  PQ algorithms are optimized in Oracle versions 10g and 11g. 
Only few discussed here. 

  In 11g, interconnect traffic due to PQ is also reported in the 
AWR reports. 



©OraInternals  Riyaj Shamsudeen 102 

Partition-wise joins           …2 

  Interconnect traffic is kept minimal as the equivalent partitions 
are joined by a PQ process and final result is derived by Query 
Co-ordinator. 

P1 P2 P3 P4 P5 P6 

P1 P2 P3 P4 P5 P6 Table T1 

Table T2 

Inst 1 Inst 2 Inst 3 

QC 

P1 P2 P3 P4 P5 P6 

Demo: pq_query_range 



©OraInternals  Riyaj Shamsudeen 103 

PQ-Summary 

  Inter instance parallelism need to be carefully considered and 
measured.  

  For partition based processing, when processing for a set of  
partitions is contained within a node, performance will be better. 

  Excessive inter instance parallelism will increase interconnect 
traffic leading to performance issues.  

  http://www.oracle.com/technology/products/bi/db/11g/pdf/

twp_bidw_parallel_execution_11gr1.pdf   

   “..inter-node parallel execution will not scale with an undersized interconnect” 



©OraInternals  Riyaj Shamsudeen 104 

Agenda 

  Global cache performance  

  Few important RAC wait events and statistics 

  RAC background process tuning 

  Interconnect issues, lost packets and network layer 

  Effective use of  parallel query 

  Troubleshooting locking issues 

  Object re-mastering 



©OraInternals  Riyaj Shamsudeen 105 

Globalization 

  GES layer locks are externalized through x$kjirft and x$kjilkft 
tables.  

Resource 
TM, 18988, 0 

Lock 

Single Instance 

Lock 

Lock 

Lock 

x$ksqrs 

x$ksqeq 

Owners Waiters 

Resource 
[18988][0],[TM] 

Lock Lock 

Lock 
Converting_q 

x$kjilkft 

x$kjirft 

GES portion of  GRD 

granted_q 



©OraInternals  Riyaj Shamsudeen 106 

Demo:1 row update 

  Updating 1 row creates a local transaction. 

   INST_ID        SID TY        ID1        ID2      CTIME LMODE REQUEST      BLOCK 

---------- ---------- -- ---------- ---------- ---------- ----- ------- ---------- 

         1         48 TM      76483          0         55     3       0          2 

         1         48 TX    3866640         49         55     6       0          2 

  But, TX resource and lock is not globalized. 
@ges_resource_tx.sql 

------------------- 

Resource details... 

------------------- 

------------------- 

Lock details... 

------------------- 



©OraInternals  Riyaj Shamsudeen 107 

Demo:1 row update            …2 

  Updating the same row in another instance, globalised the TX 
resource and created lock structures in the master instance. 

------------------- 

Resource details... 

------------------- 

Resource name [0x470001][0x159],[TX][ext 0x2, Master 0,Instance 1 

Resource name [0x470001][0x159],[TX][ext 0x2, Master 0,Instance 2 

------------------- 

Lock details... 

------------------- 

Res name [0x470001][0x159],[TX][ext 0x2, owner 0 

...Transaction_id0 2097153,Level KJUSEREX ,State GRANTED 

...blocked 0,1 

Res name [0x470001][0x159],[TX][ext 0x2, owner 1 

...Transaction_id0 0,Level KJUSERNL ,State GRANTED 

...blocked 0,0 

Res name [0x470001][0x159],[TX][ext 0x2, owner 1 

...Transaction_id0 2228226,Level KJUSERNL ,State OPENING , Req. lvl KJUSEREX 

Waiting session 

Demo: demo_enq_tx_a.sql  demo_enq_tx_b.sql 

For TX resource, instance 
creating the transaction is the 
master instance, starts with 0. 



©OraInternals  Riyaj Shamsudeen 108 

Agenda 

  Global cache performance  

  Few important RAC wait events and statistics 

  RAC background process tuning 

  Interconnect issues, lost packets and network layer 

  Effective use of  parallel query 

  Troubleshooting locking issues 

  Object re-mastering 



©OraInternals  Riyaj Shamsudeen 109 

Object re-mastering 

  Before reading the block, an user process must request master 
node of  the block to access that block. 

  Typically, a batch process will access few objects aggressively. 

  If  an object is accessed excessively from a node then re-
mastering the object to that node reduces Global cache grants. 

  Local grants (affinity locks) are very efficient compared to remote 
grants avoiding global cache messaging traffic. 



©OraInternals  Riyaj Shamsudeen 110 

Object based in 10gR2 

  Dynamic remastering is file based in 10gR1. If  a block need to be 
remastered, then every block in that data file must be remastered 
to an instance. 

  In 10gR2, remastering is object based. If  a block to be 
remastered, then all blocks associated with that object is 
remastered to an instance. 

  Three background processes work together to implement 
dynamic remastering functionality. 



©OraInternals  Riyaj Shamsudeen 111 

High level overview 10gR2 

  LCK0 process maintains object level statistics and determines if  
remastering must be triggered. 

  If  an object is chosen, a request is queued. LMD0 reads the 
request queue and initiates GES freeze. LMD0 trace file 

*** 2010-01-08 19:41:26.726 

* kjdrchkdrm: found an RM request in the request queue 
  Dissolve pkey 6984390 
*** 2010-01-08 19:41:26.727 

Begin DRM(189) - dissolve pkey 6984390 from 2 oscan 1.1 
 ftd received from node 1 (8/0.30.0) 

 ftd received from node 0 (8/0.30.0) 
 ftd received from node 3 (8/0.30.0) 
 all ftds received 
  LMON performs reconfiguration. 
*** 2010-01-08 19:41:26.793 
Begin DRM(189) 
 sent syncr inc 8 lvl 5577 to 0 (8,0/31/0) 

 synca inc 8 lvl 5577 rcvd (8.0) 



©OraInternals  Riyaj Shamsudeen 112 

Parameters 10gR2 

Three parameters control the behavior: 

  _gc_affinity_limit 

  _gc_affinity_time  
  _gc_affinity_minimum 

  _gc_affinity_limit default value is 50. Not documented well, but, 
it is number of  times a node should open an object more than 
other nodes. 

  _gc_affinity_time default value is 10. Frequency in seconds to 
check if  remastering to be triggered or not. 

  _gc_affinity_minimum determines minimum activity per minute 
to trigger remastering default to 2400.  



©OraInternals  Riyaj Shamsudeen 113 

Defaults 

  Default for these parameters may be too low in a very busy, high-
end instances. 

  If  your database have higher waits for ‘gc remaster’ and ‘gcs drm 
server freeze’ then don’t disable this feature completely. Instead 
tune it.  

  Some good starting points (for a very busy environment) are:  
  [ YMMV] 

  _gc_affinity_limit to 250 

  _gc_affinity_minimum to 2500. 



©OraInternals  Riyaj Shamsudeen 114 

11g 

  In 11g, these are few changes. 

  Three new parameters are introduced: 
  _gc_affinity_locking 

  _gc_affinity_locks 

  _gc_affinity_ratio 

  Two parameters are renamed: 

  _gc_policy_minimum ( default 1500 per minute) 
  _gc_policy_time  (default 10 minutes) 



©OraInternals  Riyaj Shamsudeen 115 

An example 

Top 5 Timed Events                                         Avg %Total 
~~~~~~~~~~~~~~~~~~                                        wait   Call 

Event Waits Time (s) (ms) Time Wait Class
------------------------------ ------------ ----------- ------ ------ ----------
gc buffer busy 1,826,073 152,415 83 62.0 Cluster

CPU time 30,192 12.3
enq: TX - index contention 34,332 15,535 453 6.3 Concurrenc

gcs drm freeze in enter server 22,789 11,279 495 4.6 Other

enq: TX - row lock contention 46,926 4,493 96 1.8 Applicatio

Global Cache and Enqueue Services - Workload Characteristics
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                     Avg global enqueue get time (ms):     16.8 

          Avg global cache cr block receive time (ms):     17.1 
     Avg global cache current block receive time (ms):     14.9 



©OraInternals  Riyaj Shamsudeen 116 

Views 

  View v$gcspfmaster_info provides remastering details. For 
example, you can identify the object with high remastering count. 

   FILE_ID  OBJECT_ID CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT 
---------- ---------- -------------- --------------- ------------ 
         0    6983606              0           32767            1 
         0    5384799              2               1            2 
         0    6561032              3               2            2 
         0    5734002              0               2            2 
         0    6944892              2               0            2 
         0    5734007              2               0            4 
         0    6944891              2               0            5 
         0    6795604              2               0            5 
         0    6944894              2               0            5 
         0    6795648              2               0            6 
         0    5734006              2               0            6 
         0    4023250              2               0            6 
         0    5734003              0               2            7 



©OraInternals  Riyaj Shamsudeen 117 

Views 

  View x$object_object_affinity_statistics provides current object 
affinity statistics. 

select * from  x$object_affinity_statistics  order by opens 
ADDR                   INDX    INST_ID     OBJECT       NODE      OPENS 
---------------- ---------- ---------- ---------- ---------- ---------- 
… 
FFFFFFFF7C04CB40          8          3    4740170          1        113 
FFFFFFFF7C04CB40        109          3    1297745          1        127 
FFFFFFFF7C04CB40         21          3    1341531          1        128 
FFFFFFFF7C04CB40          2          3    2177393          1        135 
FFFFFFFF7C04CB40        153          3    6942171          2        174 
FFFFFFFF7C04CB40        108          3    1297724          1        237 
FFFFFFFF7C04CB40          3          3    2177593          1        239 
FFFFFFFF7C04CB40        106          3    1297685          1        337 
FFFFFFFF7C04CB40         53          3    6984154          3       1162 



©OraInternals  Riyaj Shamsudeen 118 

Oradebug  

  This enqueues an object remaster request. LMD0 and LMON 
completes this request 

*** 2010-01-08 23:25:54.948 
* received DRM start msg from 1 (cnt 1, last 1, rmno 191) 
Rcvd DRM(191) Transfer pkey 6984154 from 0 to 1 oscan 0.0 
 ftd received from node 1 (8/0.30.0) 
 ftd received from node 0 (8/0.30.0) 
 ftd received from node 3 (8/0.30.0) 

  You can manually remaster an object with oradebug command 

 oradebug lkdebug -m pkey <object_id> 



©OraInternals  Riyaj Shamsudeen 119 

Oradebug  

  You can manually remaster an object with oradebug command. 
Current_master starts from 0.  

 1* select * from v$gcspfmaster_info where object_id=6984154 
SQL> / 

   FILE_ID  OBJECT_ID CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT 
---------- ---------- -------------- --------------- ------------ 
         0    6984154              1               0            2 

SQL> oradebug lkdebug -m pkey 6984154 
Statement processed. 
SQL>  select * from v$gcspfmaster_info where object_id=6984154 
  2  / 

   FILE_ID  OBJECT_ID CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT 
---------- ---------- -------------- --------------- ------------ 
         0    6984154              2               1            3 



©OraInternals  Riyaj Shamsudeen 120 

Contact info: 

Email: rshamsud@gmail.com 

Blog : orainternals.wordpress.com 

URL : www.orainternals.com 

Thank you for attending! 

If  you like this presentation, you will love our 
upcoming intensive RAC webinar in August ‘11. 

Watch for updates in: 
www.tanelpoder.com 

orainternals.wordpress.com 



©OraInternals  Riyaj Shamsudeen 121 

References 

1. Oracle support site. Metalink.oracle.com. Various documents 
2. Internal’s guru Steve Adam’s website 

www.ixora.com.au 
3. Jonathan Lewis’ website 
www.jlcomp.daemon.co.uk 
4. Julian Dyke’s website 
www.julian-dyke.com  

5. ‘Oracle8i Internal Services for Waits, Latches, Locks, and Memory’  
by Steve Adams 
6. Randolf  Geist : http://oracle-randolf.blogspot.com 
7. Tom Kyte’s website 
Asktom.oracle.com 

8. Richard Stevens, Gary R Wright: TCP/IP Illustrated 


