
www.nocoug.org 1 NoCOUG Fall 2010

... AND UIX BEGAT ADF FACES:
HOW RICH IS ADF FACES RICH CLIENT?
Peter Koletzke, Quovera

1 In the beginning Oracle created E-Business Suite (EBS).
2 And E-Business Suite was with Forms but void of lightweight client.
3 And heaviness was upon the face of the browser.
4 And Oracle said, “Let there be User Interface XML (UIX)”: and there was UIX.
5 And Oracle used UIX to build E-Business Suite.
6 And the JavaServer Faces (JSF) standard divided UIX from industry-accepted development.
7 And Oracle said unto its Development Wing, “Make UIX fruitful and multiply it.”
8 And the Development Wing brought forth JSF-standard components and increased them in number.
9 And Oracle called it “ADF Faces.” Thus UIX begat ADF Faces.

10 And it was good.
11 And ADF Faces begat Trinidad; and ADF Faces also begat ADF Faces Rich Client.
12 And Oracle said, “Let ADF Faces Rich Client have dominion over the Fusion Applications.”
13 And Oracle said unto its customers, “Behold, we have given you ADF Faces Rich Client; to you it shall be a tool.”
14 And, behold, it was very good.

This white paper explains the features of the Application Development Framework (ADF) framework ADF Faces Rich
Client (ADF Faces RC). It demonstrates basic functionality and standard techniques for working with some of the ADF
Faces RC components. In answering the question posed in the white paper’s title and so— interpreting rich in this context as
“highly-interactive,” “flexible,” and “easy to use”—this handful of questions arises:

• What is ADF Faces and where did it come from?
• How does partial page rendering work?
• How can I achieve the perfect layout?
• What kinds of atomic components are available?
• How can I change the default ADF Faces appearance?
• How will I ever learn about all these components?

Answering these questions should give you a picture of some of the features of ADF Faces RC so you can come to a
conclusion about how rich (highly-interactive, flexible, and easy to use) it really is. Although descriptions and illustrations
can help in understanding the answers to these questions, another key method for understanding is “doing.” Therefore, the
white paper also provides some short, hands-on practices so you can try out in JDeveloper 11g to get tastes of ADF Faces
features and components.

Note
The screenshots and practices in this white paper were
developed with JDeveloper, version 11.1.1.1.0 (build 5407). If
you use a later release, the exact appearance may be
different and you may need to adjust steps to changes
introduced with that later release. However, the principles
and steps should remain the same regardless of the version.

We didn’t need dialogue.
We had faces.

—Norma Desmond, Sunset Boulevard (1950)

How Rich is ADF Faces? Koletzke

www.nocoug.org 2 NoCOUG Fall 2010

What Is ADF Faces and Where Did It Come From?
ADF Faces is a JSF component set that provides a group of rich user interface controls for developing JSP pages with JSF
components. ADF Faces is well integrated with JDeveloper, and the developer’s experience using ADF Faces can be mostly
declarative and visual. In addition, as mentioned before, ADF Faces is one of the technologies Oracle uses to build the
Fusion Applications.

ADF Faces consists of class libraries and tag libraries of several categories. This white paper focuses on these two main
categories that you will use to build JSF pages:

• Atomic components, which display a single object such as a text field with its prompt (af:inputText) or a
pulldown (af:selectOneChoice).

• Layout containers, which surround atomic components and other layout containers and offer automatic layout
features such as field alignment (af:panelFormLayout).

One of the last runtime processing steps for a JSF page is to pass the components through a render kit, a translation layer that
converts the raw representation of the components into markup tags specific to the client display device.

HTML Render Kit
When the target client device is a web browser, ADF Faces uses the HTML render kit to form the component hierarchy into
HTML tags that the web browser can display. Therefore for a web browser target device, an ADF Faces component such as
af:panelGroupLayout will create an HTML table structure using tags such as <table> and <tr>. An ADF Faces text
field component such as af:inputText will render as an HTML input tag, for example, <input type="text" />.

As a visual example of this translation, the first hands-on practice in this white paper creates the small form shown here in
the JDeveloper visual editor:

The tag hierarchy that represents this form is shown next in the Structure window:

At runtime, the web page is created with standard HTML tags that would display in the JDeveloper visual editor as shown
next. Notice the use of nested HTML table elements.

How Rich is ADF Faces? Koletzke

www.nocoug.org 3 NoCOUG Fall 2010

Note
ADF Faces tags use the “af” prefix to refer to the tag library.
The tags are represented with a friendlier name in the
Component Palette. For example, the af:inputText tag is
labeled as “Input Text” in the Component Palette. This white
paper uses both types of names interchangeably.

A Bit More on the History Side
Oracle E-Business Suite (EBS) applications were first developed using Oracle Forms. Although currently Oracle Forms
applications are run in a rich-client, web browser environment, Oracle saw the need for a lightweight, Java EE–oriented
runtime environment and met the need in subsequent versions of EBS (up through and including R12) by developing and
using UIX (formerly an expansion for “User Interface XML”).

UIX is a framework consisting of components used to build user interfaces. UIX files are coded in XML (as the name
implies), and the files run in a standard Java EE web client environment. UIX files are interpreted by the UIX Servlet process
running in a standard Java EE web container. The servlet constructs an HTML page (for web browser clients) and that page
returns to the client browser. JDeveloper 9i was the first release to offer development tools support for UIX; with the
introduction of ADF in JDeveloper 10g, the framework was renamed to ADF UIX and support in JDeveloper continued
through release 2 (10.1.2). This support was set aside in JDeveloper 10.1.3 to make way for JSF support.

The major benefit of UIX over other HTML-rendered alternatives available at the time was its high interactivity features.
Unlike component sets that preceded it, UIX components in a web application could rapidly return feedback to the user in a
way rivaling thick client applications. This type of rich, highly-interactive interface is now known as the main user-facing
aspect of Web 2.0.

After Oracle had released EBS applications that successfully used UIX, the industry adopted JSF technology as a Java EE
standard. Oracle also rewrote the proprietary ADF UIX tag library to be completely compliant with the JSF standard and
called this new framework “ADF Faces.” ADF Faces, therefore, is a JSF-compliant UI component set that is based on the
JSF API. It is most commonly used to output HTML for web browsers, but it is capable of output to any type of display
device, with native support for wireless devices. This multi-faced output style is defined in the JSF standards but is rarely
implemented.

In JDeveloper 10g, Release 3 (10.1.3), tools support for ADF UIX was phased out in favor of support for ADF Faces 10g.
JDeveloper 11g introduces ADF Faces Rich Client (ADF Faces RC, referred to in this white paper as just “ADF Faces”) as a
further evolution on and improvement of ADF Faces 10g.

Trinidad
Early in 2006, Oracle donated ADF Faces 10g to the open-source Apache MyFaces Project (myfaces.apache.org). Although
Oracle continued to enhance and support ADF Faces for its customers, the larger Java community also contributed to the
functionality of the donated version. The part of the MyFaces project based on ADF Faces 10g is called Trinidad. ADF
Faces RC is a separate code base, which is at the moment maintained only by Oracle. The Trinidad library is also supported
in JDeveloper 11g, and ADF Faces RC is built on top of it.

ADF Faces Is Better
Since “better” is a relative word, the first question is, “What is ADF Faces better than?” The short answer is that it is the
latest step in an evolution, and therefore better than any of its predecessors (UIX, ADF UIX, and ADF Faces 10g). ADF
Faces is arguably better than other JSF component sets because of its long-term evolution (few competing frameworks have
such a long heritage) and its native features that make declarative and visual development of highly-functional user interfaces
faster and easier. To further answer the question, it is helpful to know more about its features, which will be explored in this
white. One such feature is partial page rendering.

How Does Partial Page Rendering Work?
Of all ADF features, partial page rendering (PPR) is one of the most powerful because it offers the developer a declarative
way to create highly-interactive web pages. PPR uses JavaScript and XML to submit and update only some fields or data on

How Rich is ADF Faces? Koletzke

www.nocoug.org 4 NoCOUG Fall 2010

a page. The concept behind PPR (and the use of JavaScript in general) is to achieve a more user-friendly interface by
mitigating or completely removing the wait a user experiences when a full page is submitted to the server and rerendered
after processing occurs.

You are no doubt familiar with web pages that rely on the full-page submit technique. You also may share the frustration that
your experience with an application or website is interrupted by waiting for a server to return and redraw a web page. One of
the tenets of Web 2.0 is that user interfaces are highly interactive and wait times as well as the ensuing frustrations are
reduced.

PPR was one of the strengths of the early releases of ADF UIX and provided this high interactivity to Oracle EBS
applications. Subsequently, the Java community evolved the core ideas behind PPR, and the technique that emerged is now
called “Asynchronous JavaScript and XML” (AJAX). AJAX outlines a strategy for combining these two technologies to
provide a user interface that responds faster than pages built without AJAX.

ADF Faces offers the PPR capability but works within the guidelines of the popular industry technology AJAX. Unlike
typical AJAX development, where you need to write custom JavaScript code, define JavaScript events, and create custom
Java servlet code to handle the requests, using PPR in ADF Faces is completely declarative. It could even be called
“declarative AJAX.”

You can think of PPR in simple terms as a process outside the normal page submit and full page rendering whereby a source
component’s change in value (or a user event such as a button click) triggers a target component to be rerendered. As the
target component is rerendered, its property values are read and, in the case of EL expressions, reevaluated. The source
component needs to be marked so that it automatically submits its value for processing; the target component needs to be
marked so that it watches (listens) for a partial submit from one or more source components. You use the following
properties to mark the source and target components:

• AutoSubmit Set this property to “true” on all source components that will initiate the partial page submission.

• PartialTriggers Set this property on the target component or components to listen for a change in the source
component. The value of this property is a space-delimited list of IDs for the components that will trigger the PPR
rerendering of the target component.

In addition, the PartialSubmit property of command components, such as af:commandButton and af:commandLink,
declares whether that command component will initiate a PPR event. For example, you could declare a button and set its
PartialSubmit property to “true” so that when the user clicks the button, any components declared with AutoSubmit as “true”
will be rerendered. You can also use components called listeners to trigger partial submits on non-standard component
actions, such as right-click, selection, or rollover.

You might want a taste of PPR concepts now. If so, follow these (abbreviated) steps in JDeveloper 11g.

Note
As an additional reminder, you need to run ADF Faces RC
applications in a compatible browser, for example, Internet
Explorer 7.0 or later, Mozilla Firefox 2.0 or later, or Safari 3.0.

Hands-on Practice: Demonstrate Basic PPR
This hands-on practice shows how you can declare AJAX (PPR) functionality using the ADF Faces components. (The
practices in this white paper assume you have a familiarity with basic operations in JDeveloper 11g such as creating an
application.) The application you will build is a three-field form with a Calc button and Salary, Raise, and New Salary fields.
The New Salary field will automatically update when the value of the Salary or Raise field changes.

You will be building a form that appears as follows at runtime:

How Rich is ADF Faces? Koletzke

www.nocoug.org 5 NoCOUG Fall 2010

For simplicity, this practice uses a backing bean (managed bean) to provide a source for binding the user interface fields.

1. If any applications are running, stop them as well as the Default Server (using the Terminate button).

2. Create an application called “ADFFacesTest” using the “Fusion Web Application (ADF)” application template. Specify
an application prefix of “demo.” This template will create two projects, although you will not use the Model project in
this practice.

Caution
Remember to avoid typing the ending period or comma for
property values we enclose inside quotes unless otherwise
specified.

3. In the ViewController project, create a JSF page as an XML document with the name “testPPR.jspx.” (Start this process
from the New Gallery.) In the Page Implementation section of the Create JSF Page dialog, specify that the components
will be exposed in a new managed bean.

Additional Information: Automatically exposing UI components in a managed bean is something you will rarely do
in a Fusion application, but we show it here to demonstrate how you can interact with managed beans using EL.

4. From the Component Palette, drop a Panel Form Layout component (from the Layout panel) onto the page.

Additional Information: The af:panelFormLayout component provides automatic alignment for fields it contains.
You will drop in some fields next.

5. Drop an Input Text component (Common Components) onto the af:panelFormLayout node in the Structure window.
In the Property Inspector, set Label as “Salary” and Value as “0.”

Additional Information: The Value property supplies a default value that will be overridden by input from the user.

6. Drop another Input Text component onto the af:panelFormLayout and set Label as “Raise” and Value as “0.”

Tip
Dropping a component onto a layout container such as
af:panelFormLayout adds it under the other components
within that container. You can reorder components within a
container most easily using drag-and-drop operations in the
Structure window.

7. Drop an Output Text component onto the af:panelFormLayout.

Additional Information: This read-only field will show the results of the calculation.

8. For the Value property, click the down arrow next to the field and select Expression Builder. Remove the existing
expression. Enter or select nodes in the Expression Builder navigator to form the following expression (all on one line):
#{backingBeanScope.backing_testPPR.it1.value +
 backingBeanScope.backing_testPPR.it2.value}

Additional Information: Open nodes under ADF Managed Beans\backingBeanScope to find the inputText (“it”) items.
The name of your backing bean and text item IDs may vary a bit. This expression adds the values of the two fields and
assigns the value to the Output Text item after the page is submitted.

9. Now you need to add a label for the read-only field. Notice that the af:panelFormLayout container left aligns the
af:outputText field with the existing fields, but af:outputText has no Label property so the line looks incomplete.
Fortunately, there is an easy solution—the Panel Label and Message component.

10. On the af:outputText component in the visual editor or Structure window, select Surround With from the right-
click menu. Select “Panel Label and Message” and click OK. Set Label for af:panelLabelAndMessage as “New
Salary.”

Additional Information: This embeds the af:outputText component within the af:PanelLabelAndMessage
component, which supplies the label. Now the fields and labels line up properly.

How Rich is ADF Faces? Koletzke

www.nocoug.org 6 NoCOUG Fall 2010

11. Drop a Button onto the footer facet of the af:panelFormLayout. Set Text as “Calc.”

Additional Information: This button will submit the values to the server (Model layer of code, which for this
application is included with the ViewController code). The addition specified in the New Salary Value expression will
fill in when the user clicks this button and the page is refreshed with updated values from the server. The Structure
window should display the following nodes:

12. Run the page. Fill in Salary as 1000 and Raise as “200”; press TAB. The New Salary field value will not change. Click

Calc. The New Salary field will display “1,200.”

Additional Information: This is the default behavior of a JSF page. No processing will occur unless the user actively
submits the page, in this case, using a submit button. Now it is time to set up PPR so that the New Salary value will be
refreshed automatically.

13. Close the browser.

14. On both Salary and Raise components, set AutoSubmit (Behavior section) as “true.” This will trigger PPR when either of
the component values change.

15. On the New Salary af:panelLabelAndMessage component, click the Edit selection in the pulldown to the right
of PartialTriggers and move the names of the other two items to the Selected area as shown here:

16. Click OK and the property will fill in with the names of the items separated by a space.

How Rich is ADF Faces? Koletzke

www.nocoug.org 7 NoCOUG Fall 2010

17. Click Save All. Run the page. Fill in Salary as “1000” and press TAB. The New Salary field will fill in with “1000.” Fill
in Raise as “200” and press TAB. The New Salary field will change to “1,200.”

Additional Information: You do not need to click Calc to cause the server to update the calculated field. PPR submits
the values automatically when you navigate out of a changed field.

18. Close the browser. Stop the application.

What Did You Just Do?
You created a JSF page containing input fields and a submit button. The page used a backing bean that provided access to
values with Expression Language expressions. Without PPR, you needed to submit the page so that the entire page, including
the calculated value, would refresh. You then set up PPR by verifying that the input fields were assigned ID values, setting
AutoSubmit on the input fields, and setting PartialTriggers on the read-only field. With PPR declared in this way, when you
changed a value in an input field and navigated out of the field, the calculation was performed and the read-only field value
changed accordingly, without having to submit the entire page.

This practice also demonstrated several commonly used ADF Faces atomic components (af:inputText and
af:outputText) and layout containers (af:panelFormLayout and af:panelLabelAndMessage).

Caution
If you use PPR to set the Rendered property of a component
to display or hide dynamically, you need to set the Partial
Triggers property on a parent object such as an
af:panelGroupLayout component that surrounds the
component. Setting Partial Triggers on the component you
are displaying or hiding will have no effect. This limitation
applies only to the Rendered property.

How Can I Achieve the Perfect Layout?
Success in laying out a page that uses ADF Faces components requires at least a modest comfort level with the concept of
using layout containers. While you are in the process of attaining that comfort level, it helps to allocate some design time to
planning how you will use the layout containers in your application. Several tools will help you achieve the layout you
require.

Facets
Layout containers offer facets, components into which you place other components. If the facet is responsible for a visual
effect, at runtime, the facets maintain relative positioning of their contents. For example, the af:panelFormLayout layout
container offers a footer facet that appears under all fields and is not bound by the alignment rules of the main area of the
container. Facets is one tool you can use in achieving the perfect layout.

Note
Facets can contain only one component. However, the one
component in a facet could be a layout container, which, in
turn, can hold more than one component. JDeveloper leads
by example in this case—if you drop a second component
into a facet, instead of raising an error, JDeveloper will
automatically add an af:group container around the two
components. An af:group container component is just used
to group related components into a single unit but it offers no
visual properties of its own.

How Rich is ADF Faces? Koletzke

www.nocoug.org 8 NoCOUG Fall 2010

Knowledge of Layout Containers
The main tool you need to master for achieving the perfect layout is a knowledge of the layout
containers. Fortunately, the list of layout containers is small at the moment as shown in the
illustration on the right, from the Layout panel of the ADF Faces Component Palette page,
where you can access most of the layout containers.

• af:panelFormLayout As the PPR hands-on practice in this paper demonstrated,
this container allows you to lay out fields in columns without requiring any other
embedded containers. The fields are left-aligned, and their prompts are right-aligned.
All fields are stacked on top of one another, but you can specify the number of
columns and rows for a columnar arrangement. This provides a familiar appearance
for data entry needs. The fields are rendered down one column and then down the next
column. This ordering implements a tab order (the order in which the cursor navigates
fields when the TAB key is pressed) of down and across. (The section “Nesting Layout
Containers” later in this white paper discusses tab order.) The PPR hands-on practice
shows screenshots of the effect of this layout container on its child components.

• af:panelHeaderLayout This container provides a title to denote a grouping of
elements on the page. It offers properties for Size to set the height of the heading text,
MessageType to automatically add an icon (information or warning, for example) to
the left of the heading text, Text for the heading text, and others. Nesting components
within this container will stack them vertically on the page as shown next. The
InlineStyle property has been set to “border-color:Black; border-style:dotted; border-
width:thin;” to make the edges of the container visible.

Tip
Setting the background color as well as the border style of
layout containers in this way is a useful debugging technique
because it allows you to see the edges of each layout
container.

• af:panelGroupLayout This container lays out components in a single row (horizontal layout) or column
(vertical layout). The Layout property sets the orientation by which components in the container will be arranged:
horizontal, vertical, or scroll (vertical with scrollbars). The following illustration shows a af:panelGroupLayout
component with a Layout of “horizontal” and under it, another with the same components but with a Layout of
“vertical.” As with the preceding illustration, InlineStyle defines a dotted line to show the edge of the containers.

Tip
af:panelGroupLayout works best when you explicitly
assign a Layout property value other than “default” rather than
relying on the default.

How Rich is ADF Faces? Koletzke

www.nocoug.org 9 NoCOUG Fall 2010

• af:panelSplitter This container divides an area horizontally or vertically into two panels and optionally
allows the user to move the dividing line between the panels to change the relative sizes of the panels. If the
Disabled property is set to “true,” the user will not be able to move the splitter bar. You drop components into the
first and second facets in this container to assign them to one panel or the other. For example, if you define a
horizontal splitter, the user can move the splitter bar (divider) between panels to the left or right to make the first
panel narrower or wider. The following illustration shows this effect as the splitter bar is in motion (the mouse
cursor is the double-headed arrow):

The user can click the arrow icon on the splitter bar (not shown when the splitter bar is in motion, as it is in the
preceding illustration) to collapse the first panel completely. Notice that the components in this display are
truncated. To help you solve layout issues such as this, JDeveloper offers a pulldown menu in the top-right corner
of the component after selecting it in the visual editor as shown here:

Selecting Design This Container opens an editor area that allows you to resize the component borders so that you
could achieve a layout such as the following, where all components fit within the panels.

Note
This editor just sets InlineStyle and SplitterPositions, but it
allows you to control the size visually instead of by
experimenting with property values.

• af:panelBorderLayout This layout container provides facets such as top, bottom, start, and end. Components
dropped into one of these facets will maintain their relative positions at runtime. You can use this layout container
for pages that require a logo in the header area (top facet) and copyright and informational text in the footer area
(bottom facet). The facets are easiest to see in the visual editor as shown in the next screenshot.

How Rich is ADF Faces? Koletzke

www.nocoug.org 10 NoCOUG Fall 2010

• af:panelStretchLayout This container also offers facets for bottom, start, top, and end. It also provides a

center area, which stretches the contained component to fill the available width. You would use this container if
another container cuts off the display of a layout container or atomic component. The following illustration shows
this container with StartWidth, EndWidth, TopWidth, and BottomWidth properties set to “30.” Each facet contains
an af:panelGroupLayout component with a background color of “Silver” and dotted border to better display the
facet areas. The center area contains a button with no properties set except Text (the label). Notice how the center
facet stretches the button to fill the available space.

The “Design This Container” editor described earlier allows you to set the size of the facets surrounding the center facet of
the af:panelStretchLayout component as well its overall size.

Tip
The af:panelGroupLayout component is only as large as
its child components. Therefore, if you have trouble aligning
components within this layout container, it could be because
the af:panelGroupLayout component is not wide enough.
Try surrounding it with an af:panelStretchLayout
component, which will expand the af:panelGroupLayout
component and align its child components properly.

As a short demonstration of layout container properties and alignment capabilities, open the PPR application you created
earlier in the white paper. Navigate to the Property Inspector for the af:panelFormLayout component and set
MaxColumns (in the Common region) as “2” and Rows as “2.” Notice that the New Salary field moved into the second
column because the tab (cursor navigation) order for an af:panelFormLayout layout container is across and down. The
button retained its position at the bottom of the layout because it is placed in the footer facet.

How Rich is ADF Faces? Koletzke

www.nocoug.org 11 NoCOUG Fall 2010

Tip
If you try to copy and paste components in the Structure
window but JDeveloper copies and pastes property values or
other components instead, click a window such as the Log
window to hide the Property Inspector. Then try the copy and
paste operation in the Structure window again.

On the Salary field, set the Columns property (Appearance region) as “10” to set the width of the field. Notice that the New
Salary field retains its horizontal position as shown here:

This alignment occurs because the New Salary field is in the second column, which is sized according to the widest field in
the first column (Raise).

Other Layout Containers
Although most of the layout containers are available in the Layout panel of the Component Palette displayed earlier, you will
find some additional layout containers in the Common Components panel as in the following examples:

• af:form This container renders a submit form (in HTML, <form>) used to pass content to the server for
processing. It is technically not a layout container because it does not provide layout characteristics, but it is a
container that holds other components.

• af:menuBar This component provides an area into which you place pulldown menu components. This
component is called “Panel Menu Bar” in the Component Palette.

• af:menu This component displays a pulldown menu and can be placed into a popup or menubar.

• af:popup This container has no visual aspect; it displays whatever you place in it on top of the page.

• af:dialog This component displays a window containing a border, one or more buttons, and a content area.
This component must be placed inside an af:popup component.

• af:toolbar This component displays an area into which you place command components such as buttons. This
component is usually placed inside another layout container—af:toolbox (in the Layout panel), which contains
toolbars and menubars.

• af:panelLabelAndMessage As demonstrated in the PPR practice, this layout container supplies a label to its
contents. For example, the af:outputText component does not have a Label property. If you want to use that
component to display read-only data values in a form, you can surround the component with
af:panelLabelAndMessage and set the layout container’s Label property. Since you can place more than one
component in a container, you could remove the labels on employee First Name and Last Name fields, surround
those fields with af:panelLabelAndMessage, and fill in the container’s Label as “Employee Name” as shown
here:

If the Employee Name structure is contained in an af:panelFormLayout, the container will treat it as a single field and
apply the label and field layout alignments as shown next. The af:panelFormLayout is assigned a dotted border for
visibility in this illustration.

How Rich is ADF Faces? Koletzke

www.nocoug.org 12 NoCOUG Fall 2010

Tip
Set Simple as “true” for af:inputText field components
inside the af:panelLabelAndMessage container so that the
field labels are not displayed. This setting also causes the
fields to lay out horizontally as shown in the preceding
illustration.

Visual Component Guide
The JDeveloper help system contains a visual representation of ADF Faces container (as well as all other) components. Enter
“enhanced tag doc” in the help search field and click the link with the same name in the search results. Alternatively,
navigate in the Contents tree to Javadoc and Tag Library Reference\JDeveloper Tag Library Reference\Oracle ADF Faces
Tag Library Overview.

Nesting Layout Containers
As with other tag languages, such as HTML, you can embed layout containers within layout containers to take advantage of
more than one type of arrangement. This is a useful and necessary tool for achieving the perfect layout. For example, the
next illustration shows an af:panelGroupLayout container (defined with Layout as “vertical”) that surrounds three more
af:panelGroupLayout components (defined with Layout as “horizontal”), each of which contains two af:inputText
components. The Columns properties of the fields have been set differently to show the somewhat ragged alignment that will
result.

Tip
Use the af:spacer component to add a fixed horizontal or
vertical space between components. Enter values in the
af:spacer properties “Width” and “Height” to designate a
pixel width or height for the spacer, for example, “10px.”

The tab order for an af:panelGroupLayout with Layout set to “horizontal” is across. The tab order for an
af:panelGroupLayout set to “vertical” is down. Therefore, the preceding arrangement implements a tab order of across
and down—within a inner horizontal af:panelGroupLayout component and between inner horizontal
af:panelGroupLayout components. This type of layout provides an alternative to the af:panelFormLayout tab order of
down and across. Techniques for implementing a tab order of across and down are explored in the following hands-on
practice.

Hands-on Practice: Implement an Across and Down Tab Order
If you wanted to emulate the alignment characteristics of a af:panelFormLayout layout container in addition to
implementing an across-and-down tab order, you could use these two alternative techniques:

I. Use spacers to align the fields

II. Use container properties to align the fields

This hands-on practice demonstrates both of these alternative techniques and mentions some of the benefits and drawbacks
of each.

I. Use Spacers to Align the Fields
This technique consists of adding af:spacer components before and between fields to achieve the following layout:

This arrangement looks similar to the arrangement of components within an af:panelFormLayout container. It has a more
complicated setup (finding the widths required for each spacer takes experimentation) but allows you to provide a tab order
that some users prefer.

How Rich is ADF Faces? Koletzke

www.nocoug.org 13 NoCOUG Fall 2010

1. In the ADFFacesTest application you used for the earlier hands-on practice, create a JSF page called tabOrder1.jspx.
Specify that JDeveloper will not create a backing bean file.

2. Drop a Panel Group Layout component into the af:form. Set Layout to “vertical.” Drop three more Panel Group
Layout components on top of the first af:panelGroupLayout and set Layout for the three components to “horizontal.”
This will result in three rows inside the outer layout container.

3. In the first row, drag a Spacer component on top of the af:panelGroupLayout and set its Width property to “22”; then
add an Input Text component and set Columns to “35”; add a Spacer and set its Width to “25”; and add a final Input Text
and set Columns to “10.”

Repeat this process (using copy and paste if you want to) for the other two rows using the settings in the following table.

Row Field (Columns) or Spacer (Width)

2 Spacer (11); Input Text (10); Spacer (150); Input Text (10)

3 Spacer (10); Input Text (20); Spacer (65); Input Text (5)

Additional Information: The Structure window should appear as follows (although the Structure window labels for
your fields may be different at this point). Notice that the af:spacer nodes show the Height property (all defaulting to
10), not the Width property that you set. The Columns property represents character columns, not pixels.

4. Set the field labels as shown in the preceding illustration. The layout editor will not show the final runtime alignment

although the Preview in Browser right-click menu option will.

5. Run the file to test the field alignments. Proper alignment will depend upon the skin you are using (discussed in the
section “Working with Skins” later on). If needed, so adjust the properties so the field alignment matches the earlier
illustration. Resize the window width to test variations on the window size.

Additional Information: Since the field labels are single words, the alignment will be maintained. If you change the
labels to multiple words, they would wrap if the window width became too small; this would disrupt the field alignment.
Since the field labels are used to maintain field alignment, if the field labels need to be changed dynamically based on
the user’s language, the work required for this technique becomes nearly unmanageable.

6. Close the browser.

How Rich is ADF Faces? Koletzke

www.nocoug.org 14 NoCOUG Fall 2010

What Did You Just Do?
You set up nested layout containers with specific alignments to implement an across and down tab order. The problem with
this layout arrangement is that it requires experimentation to find the correct size for the spacers. Another problem mentioned
before is the dependency on the width of field labels, which may change based on the user’s language and which are subject
to wrapping if the window is narrowed sufficiently.

Caution
This alignment technique may not produce consistent results
on all versions of all browsers. It is always a good idea to try
your application with different browsers to verify the visual
effects.

II. Use Container Properties to Align the Fields
An alternative technique for implementing an across and down tab order, but still maintaining the alignment of fields
between rows, is to use multiple af:panelFormLayout components, each of which displays a single row. If you set each
row’s layout container with the same space allocated to the field width and label width, you can achieve the vertical
alignment of fields, even if the fields and field labels are different widths. The following steps use this technique to create the
layout shown in Figure 1.

Figure 1. af:panelFormLayout component tab order demonstration

Caution
This is not a complete functional equivalent to the single
af:panelFormLayout solution. We explain the drawbacks of
this technique after the hands-on practice.

1. Create a JSF page called tabOrder2.jspx (no managed bean). You will be adding components to create the structure
shown in the Structure window snippet in Figure 2.

2. Drop a Panel Header on the page and set Text to “Multiple Panel Form Layouts.”

3. Drop a Panel Group Layout into af:panelHeader and set Layout as “vertical.” This component will supply the
mechanism to stack rows of fields.

4. Drop a Panel Form Layout component onto the af:panelGroupLayout component and set MaxColumns as “2” and
Rows as “1.”

5. Select the af:panelHeader and copy it. Paste it onto the af:form component to create another region. Change Text of
the copy to “Single Panel Form Layout.”

6. In the Multiple Panel Form Layouts region, drop two Input Text components into the af:panelFormLayout
component.

How Rich is ADF Faces? Koletzke

www.nocoug.org 15 NoCOUG Fall 2010

Figure 2. Structure window view of the tab order demonstration
7. Copy the af:panelFormLayout component and paste on top of the af:panelGroupLayout component to create the

second row of fields.

8. Repeat the preceding step to create the third row of fields.

9. Group the three af:panelFormLayout components and set the following properties:
 FieldWidth as “300px”
 LabelWidth as “100px”
 Inline Style as “width:800.0px;”

Additional Information: The FieldWidth property designates how much space is available for each input item in the
layout container. The LabelWidth property sets a fixed space for each input item’s prompt. The Inline Style width sets
the available space for the entire layout container. The amount of space allocated to each column is half of that
(400 pixels in this example) because we are specifying two columns.

10. Change the af:inputText Label properties to match those shown in Figure 1.

11. Group the two components with “Narrow” labels (using CTRL-click) and set Columns as “10.”

12. Group the two components with “Medium” labels and set Columns as “25.”

13. Group the two components with “Wide” labels and set Columns as “50.”

14. Under the the Single Panel Form Layout af:panelGroupLayout, set the af:panelFormLayout Rows as “3.”

Additional Information: MaxColumns is the important setting, but it is good practice to set Rows as well. Rows will
be formed by the layout container placing the MaxColumns number of items on each line. If the number of items
exceeds MaxColumns times Rows, the number of rows will be extended.

How Rich is ADF Faces? Koletzke

www.nocoug.org 16 NoCOUG Fall 2010

Note
Be sure the FieldWidth, LabelWidth and InlineStyle properties
are blank for the Single Panel Form Layout
af:panelFormLayout component.

15. Group all six fields from the three af:panelFormLayout components in the multiple panel region above and copy
them, then paste them onto the af:panelFormLayout in the Single Panel Form Layout region. Compare your Structure
window nodes with the illustration shown in Step 1.

16. Click Save All. Run the page.

17. Click in the first field and tab through the six fields in the top region to verify that the tab order is across and down.

18. Continue tabbing through the fields in the bottom region to verify that the tab order is down and across.

19. Resize the window width. Notice that the fields in the top region maintain their relative positions but they do not move
based on the window width. The fields in the bottom region react to the window resizing and relocate so that more of the
content is visible.

20. Close the browser. Stop the application.

What Did You Just Do?
You created a tab across-and-down region and a tab down-and-across region each with six fields. The former layout
technique uses multiple af:panelGroupLayout and af:panelFormLayout components to emulate the alignment effect
of a single af:panelFormLayout component. The resulting layout is not as fragile as the technique demonstrated in the
preceding practice and it does not require as much experimentation. However, it has some limitations: mainly that the
container widths need to be set explicitly. This takes a small amount of calculation and experimentation. Also, if the user
increases the browser font size or uses a different skin, the width of one of the fields may exceed the width allotted and one
or more rows may lose their alignment with the other rows. A summary of the differences in features between the single
af:panelFormLayout component technique and the multiple af:panelFormLayout technique appears in Table 1.

Feature Single Multiple

Tab order Down and across Across and down

Fields left-align and labels right-align Yes Yes

Width of the browser window determines width of the container Yes No

Width of a column within the container is based on the width of the
widest field in that column

Yes No

Calculations and experimentation are needed to assign widths No Yes

Technique is immune to the user increasing the browser font size Yes No

Table 1. Comparison of Features for Single Panel Form Layout and Multiple Panel Form Layout
Containers

Should you decide to use this technique, you will need to experiment with setting the FieldWidth property (in pixels) to
accommodate the widest field. Fields are sized in character columns, which does not translate to pixels, and this is why you
need to experiment a bit. Remember that you need to multiply the sum of the largest field width plus a reasonable label width
by the number of fields per line to reach the InlineStyle width for the af:panelFormLayout component. In other words, the
formula to use (after finding the optimal field width and label width) follows (all widths use the unit pixels):

(FieldWidth + LabelWidth) = (Inline Style:Width / Number of Fields per Line)

How Rich is ADF Faces? Koletzke

www.nocoug.org 17 NoCOUG Fall 2010

Quick Start Layouts
One way to shortcut work with layout containers is to create the page using Quick Start Layouts. Quick Start Layouts are
pre-built sets of layout containers that are designed for specific functionality. You access this feature from the Create JSF
Page dialog (started from the New Gallery’s JSF Page item). Selecting Click Start Layout in the dialog and then clicking
Browse will open a dialog such as that shown in Figure 3.

Figure 3. Quick Start Layout Component Gallery window
Selecting a category in the Categories panel and a type in the Types panel will display a number of options in the Layouts
panel. Clicking a layout will display a short description about its layout. After selecting a layout, you click OK. JDeveloper
will create the JSF page with a set of layout containers based on the layout you selected. For example, selecting “Two
Column Left, Partial Split Header, Fixed Footer (Split, Stretched)” will preload the following structure onto the new JSF
page:

You then drop components into the pre-built layout containers.

Becoming familiar with this feature can save you some time in laying out the proper layout containers. If you study the
resulting layout from a Quick Start Layout selection, you are likely to learn a bit about how to properly nest layout
containers.

What Types of Atomic Components Are Available?
In addition to the layout container components, ADF Faces supplies a large number of atomic components that render as user
interface elements such as input fields, selection lists, date and color pickers, menus, trees, tables, shuttle controls, and
buttons. Figure 4 shows the Component Palette window with the Common Components panel (split into four columns to

How Rich is ADF Faces? Koletzke

www.nocoug.org 18 NoCOUG Fall 2010

save space, although the Component Palette is actually a single column). Most of the components in this list are atomic
components, although, as mentioned, some are layout containers.

Figure 4. ADF Faces Component Palette page, Common Components panel
Describing all of these components would not only take more pages than are allocated for this white paper, but it would also
repeat a lot of good information available elsewhere, for example, the tag library visual overview mentioned in the earlier tip.
However, it is useful to get a taste for the some of these components. The visual representation of the components described
is shown in Figure 5.

Figure 5. Some ADF Faces atomic components at runtime

• af:inputText This component is a standard text item that includes a label (prompt) property. Another of its
many properties is Required; if this property is set to “true,” the framework will validate that a value is entered
when the page is submitted. As shown in Figure 5, it will also display an asterisk (“*”) before the label as a hint to
the user that this field value is mandatory. If the user submits the page without a value, a message such as the
following appears:

How Rich is ADF Faces? Koletzke

www.nocoug.org 19 NoCOUG Fall 2010

You can customize the message using the RequiredMessageDetail property. For example, suppose
RequiredMessageDetail is set to “You must enter a value for {0}.” The following will appear if the page is
submitted. (The item label fills in for the “{0}” placeholder.)

• af:outputText This component displays a read-only field and is handy for text that the user will never be able

to edit. The component does not offer a Label property, but you can embed it inside an
af:panelLabelAndMessage layout container and set the Label property of the layout container if needed. If you
will allow users to enter data into the field conditionally (for example, based on the user’s role or other values), use
an af:inputText component instead and set that component’s Disabled property conditionally.

• af:inputDate This component displays a text item with a graphical LOV button as shown in the next
illustration. When the user clicks this button, a calendar window will appear as in the illustration on the right. The
user can select a date from this calendar window, and the selected date will be returned into the associated text item.

• af:selectOneChoice This component displays a standard pulldown item. After dropping an

af:selectOneChoice component on the page, you will be prompted to define the source of the data in the
pulldown. In some cases, your application might base the list on a database query, but you can also create a static
list that will be embedded into the component tag as shown in this example:

<af:selectOneChoice label="af:selectOneChoice" id="soc1">
 <af:selectItem label="Choice1" value="1" id="si2"/>
 <af:selectItem label="Choice2" value="2" id="si1"/>
</af:selectOneChoice>

• af:selectManyShuttle This component displays a shuttle control—two text areas that allow the user to
select more than one value for a single field. All headings, graphics buttons, and text areas are built into this
component. Child components of this component define the values that appear in the available (left-hand) list.

• af:separator This component renders a horizontal line to divide a page horizontally. (The af:separator
label in Figure 5 is an af:outputText item, not part of the af:separator.)

• af:commandButton This component displays an action button. When the user clicks this item, an event is
triggered defined in the Action or ActionListener properties. For example, you define a navigation case from page1
to page2 in the faces-config.xml file and name the outcome “openPage2.” You can then set the Action property for a
button on page1 as “openPage2” so that when the user clicks the button, page2 will open.

How Rich is ADF Faces? Koletzke

www.nocoug.org 20 NoCOUG Fall 2010

Other Atomic Components
The most commonly used atomic components appear on the Common Components panel of the
ADF Faces Component Palette (shown in Figure 4). The Component Palette also provides an
Operations panel (shown on the right) that lists more atomic components, most of which are not
visual in nature but are used in conjunction with other atomic components.

The online help system’s visual tag library page contains links that navigate to the tag
documentation for each component. Components are organized into three categories in this help
page: converters, validators, and miscellaneous. As mentioned, you can access the tag library
help page using the Contents tree Designing and Developing Applications\Developing Oracle
ADF Applications\Oracle ADF Faces Tag Library Overview node. This page shows and briefly
describes the ADF Faces tags (over 130 at last count).

Converters
These components nest under data value components such as af:inputText. They transform
the inherently string data type for HTML text fields to a number (af:convertNumber), date
(af:convertDateTime), or color (af:convertColor, for red-green-blue value
combinations). You use the Pattern property of the converter tag to specify the format mask.

Hands-on Practice: Test Converters
As an example, try these steps in JDeveloper in the ADFFacesTest application:

1. Create a JSF page called “operationsDemo.jspx.” In the Page Implementations area, specify
that no managed bean will be created. Drop two Input Text items onto the page. Drop a
Button under the second field (so that you can submit the page in a later step). Set the
af:commandButton Text property as “Test.” Run the page.

2. Enter a mixture of numbers and characters in the first field and tab to the second field. No validation occurs. Leave the
browser open.

3. In JDeveloper, from the Operations panel, drop a Convert Number component on top of the first field in the Structure
window. Repeat the drop operation for the second field.

4. With the second field’s af:convertNumber node selected in the Structure window, set Pattern as “###,###.##”
without quotes (the Java-style format mask for this converter). This format will be validated on the server when the
value is submitted.

Additional Information: The Javadoc for the java.text.DecimalFormat class contains details about the available
number format mask characters.

5. Click Save All. Refresh the browser.

6. Enter alphabetic characters in the first field and press TAB. The field border will change to red, indicating a value error,
and the hint will appear for the second field to indicate the proper format as shown next.

Additional Information: You can change this and other messages by setting properties on the converters and
validators (explained in the following sections).

7. Enter alphabetic characters in the second field and click TAB. The cursor will move to the button, but the second field’s
border will not indicate a value error. Click Test. The cursor will move to the first field and the following error message
will appear:

How Rich is ADF Faces? Koletzke

www.nocoug.org 21 NoCOUG Fall 2010

Additional Information: The validation for the second field occurs on the server side (after you submit the page)
because the Pattern property is not supported on the client side.

8. Change the value in the first field to a number and click Test again. The following message will appear:

Note
Notice that the number value in the first field is right-aligned,
whereas when you typed an alphabetic string, the value was
left-aligned. This type of alignment is usually preferred so that
stacked number fields can be more easily compared.

9. Change the second field’s value to a number and click Test. The error state will be cleared and no messages will appear.

10. Close the browser.

Tip
Set the IntegerOnly property of af:convertNumber to “true”
if the value must be an integer. This property is validated on
the client side.

Validators
Validator components check component values for different aspects: range (af:validateDateTimeRange,
af:validateDoubleRange, and af:validateLongRange); length (af:validateByteLength and af:validateLength); date
characteristics (af:validateDateRestriction); and regular expression (af:validateRegExp).

Hands-on Practice: Test Validators
Try these steps on the page you just used to test the number converter:

1. In the operationsDemo.jspx page, drop an Input Date component above the button. Drop a Validate Date Restriction
(Operations) component on top of that component.

2. Set InvalidDaysOfWeek as “sat sun” and press ENTER. Click Save All.

3. In the Log window’s Running tab, one of the messages in the last section will start with “Target URL.” Click the HTTP
link next to that label. The browser will reopen and the page will load. The new date field should be displayed.

Additional Information: Since you changed the page and saved the changes, the timestamp of the file was updated.
The server determined that the servlet already created for that page was older than the source JSP code and therefore
recompiled it before running it. If you do not see the date field, stop the application and try this step again.

4. Move the cursor into the date field. A hint will appear indicating that a date other than Saturday and Sunday should be
entered. Type in a Saturday or Sunday date and press TAB. A client-side error message such as the following should
appear:

How Rich is ADF Faces? Koletzke

www.nocoug.org 22 NoCOUG Fall 2010

Additional Information: Clear the value, and then click the calendar icon to the right of the field. The calendar (date
picker) popup will appear. Selecting a Saturday or Sunday date from the calendar will cause the error message just
displayed to appear without your having to press TAB.

5. Close the browser.

Tip
Another operations component, af:validateRegExp, uses
the power of regular expressions to validate the format of the
value. It is useful for enforcing the format of string values, for
example, Social Security Number, telephone number, or
postal codes such as the six-digit codes used in Canada (for
example, “K1S 4W7”). The af:validateLength component
can help validate a postal code such as the base five-digit zip
code in the United States that can be left-padded with zeros.

Miscellaneous
This category of the Operations panel in the ADF Faces Component Palette page includes components with varied
functionality, for example:

• af:forEach This component supplies iterative logic within the JSF page. It replaces the JSTL equivalent tag for
ADF Faces work.

• af:pageTemplateDef This component serves as the root component in a page template. The Create JSF Page
Template dialog creates a page containing this tag, but you can create templates manually if needed by dragging this
tag from the Component Palette.

• af:showPopupBehavior This component displays a popup (named in the PopupId property).

• Drag and drop components When declaring drag-and-drop behavior, you use Operations tags such as
af:attributeDragSource, af:attributeDropTarget, af:clientAttribute, af:collectionDragSource,
af:collectionDropTarget, af:componentDragSource, and af:dropTarget. The next section steps through setting up
drag-and-drop behavior in an ADF Faces application.

Hands-on Practice: Set Up Drag and Drop Behavior
The Operations tab includes tags you can use to set up drag-and-drop actions in your application. This allows users to assign
values to items based on values of other items. The following brief set of steps demonstrates how to use three drag-and-drop
components.

1. Create a JSF page called dragDropDemo.jspx and for Page Implementation, specify that a managed bean will be created.

2. Drop in a Panel Group Layout. Into the af:panelGroupLayout component, drop the following components in this
order, setting their properties as indicated:
 Input Text (Label as “Drag Source” and Value as “2000”)
 Button (Text as “Submit”)
 Separator
 Spacer (Height as “50”)
 Input Text (Label as “Drop Target”)

Additional Information: The Submit button is required because the value you type into the Drag Source field must be
submitted to the server so that it can be used to set the value of the drop target. The initial value of the Drag Source item
(“2000”) can be used right after the form starts because it is already set as the component value on the server side.

Note
The Common and the Appearance sections of the Property
Inspector display the same Text property.

How Rich is ADF Faces? Koletzke

www.nocoug.org 23 NoCOUG Fall 2010

3. Run the page. Try dragging the Drag Source field. It will not move because you have not added drag-and-drop
operations yet. Leave the browser open.

4. Drag an Attribute Drag Source from the Operations panel onto the Drag Source field. Set Attribute as value. Click OK.

Additional Information: This af:attributeDragSource component defines the Input Item as the origin of a drag-
and-drop operation.

5. Drag an Attribute Drop Target from the Operations panel onto the Drop Target field. Set Attribute as “value.” This
attribute specifies which property of the Drop Target field will be filled in by the drag-and-drop operation. Click OK.

Additional Information: The af:attributeDropTarget component defines the destination for a drag-and-drop
operation.

6. Click Save All. Refresh the browser. Grab the Drag Source field and drop it onto the Drop Target field as shown here:

Additional Information: The value will be copied to the Drop Target field.

7. Modify the Drag Source value and drop it onto the Drop Target again. The value will not change. Click Submit and try
the drag-and-drop operation again. This time the value will change because the new value has been submitted to the
server and has updated the component’s value.

8. Close the browser.

Data Visualization Tools (DVT)
Another class of atomic components raises the bar on high interactivity—the Data Visualization Tools (DVT) tag library.
DVT consists of components that you can use to display data visually such as the following:

• Gantt chart This component is used to track project work.

• Gauge This component displays minimum and maximum values for a data range and places a data point within
that range.

• Geographic map This component displays a map and allows you to place data on the map. The user can use zoom
and pan operations to access different views of the map.

• Graph This component allows you to represent the relations between sets of data in nearly any style, for example,
area, bar, bubble, funnel, line, pareto (single-series bar graph), pie, radar, scatter/polar, and stock.

• Hierarchy viewer This DVT component displays parent-child relationships between data elements and allows the
user to pan and zoom in the display. The data elements can support drill-down operations so that double clicking a
node can open a window or dialog with more information.

• Pivot table This element displays an interactive spreadsheet that allows the user to drag and drop data to create
summaries or sorts dynamically. This type of component is useful for multi-dimensional data or data used primarily
for analysis.

How Rich is ADF Faces? Koletzke

www.nocoug.org 24 NoCOUG Fall 2010

The illustration on the right shows the ADF Data Visualizations page of the Component Palette
with the Graph panel partially expanded to show the major graph components. Each panel
contains one or more major component and a number of child components that you place into
the major component.

You can try out the following hands-on practice to get a taste of how to work with the DVTs.

Hands-on Practice: Build a Bar Graph
In this practice, you will create a simple bar chart that shows the sum and average salaries in
each department. You will modify several default properties to see how to work with the graph
DVT component. In this practice, notice that when you drop a data collection from the Data
Control panel, you will see options for several DVT style components as shown here:

1. Create an application, called “DVTGraph” using the Fusion Web Application (ADF) template.

2. On the Model project node select New from the right-click menu. Double click the View Object item in the ADF
Business Components category.

3. The Initialize Business Components Project dialog will appear. Create a connection or use an existing connection to the
HR schema. Click OK.

Caution
If you receive an error that the connection cannot be created,
click Save All, restart JDeveloper, and continue from this
point.

4. In the Create View Object Wizard, enter Name as “DepartmentSalary.” Select “Read-only access through SQL query”
and click Next.

5. Fill Query Statement as follows:
SELECT SUM(emp.salary) AS sum_salary,
 AVG(emp.salary) AS avg_salary,
 dept.department_id, dept.department_name
FROM departments dept, employees emp
WHERE dept.department_id = emp.department_id
GROUP BY dept.department_id, dept.department_name

6. Fill Order By as “department_name.” Click Next, Next, and Finish.

7. On the demo.model node of the Model project select New Application Module. Fill in the wizard fields to create an
application module called “HRService” and add an instance of DepartmentSalary to the data model.

Additional Information: On the Step 2 page, move DepartmentSalary to the Data Model area and click Finish. Click
Save All.

How Rich is ADF Faces? Koletzke

www.nocoug.org 25 NoCOUG Fall 2010

8. In the ViewController project node, create a JSF page called “deptSalaryGraph.jspx.” For the Page Implementation
section, specify that no managed bean will be created.

9. Find the Data Controls panel in the Application Navigator window. If the Application Navigator window does not
appear, select it in the View menu. Drop DepartmentSalary1 from the Data Controls panel onto the page and select
Graphs. (Select View | Refresh or collapse and expand the Data Controls panel if the Data Controls panel is empty.)
The following dialog will appear:

10. Select “Bar” in the Categories list and select “Bar” (the default) in Graph Types. Select the first selection in the Quick

Start Layouts area (the default). Click OK.

11. Click the Add Attribute (green plus “+”) button next to the Bars field and select “SumSalary.” Click the same button and
select “AvgSalary” to add that attribute to the Bars list. These two query columns will appear as bars in the graph.

12. In the Attribute Labels area, change the SumSalary label to “Total of All Salaries.” Change the AvgSalary attribute label
to “Average Salary.”

13. Click Add Attribute next to the X-Axis field and select “DepartmentName.” This declares that the department name will
show as labels on the horizontal axis. The dialog should appear as in Figure 6.

14. Click the Preview tab to see how the graph will appear. Click OK to dismiss the dialog.

15. Click Save All. Run the page. Move the mouse over a bar to view a popup with the data details.

16. Leave the browser open and return to JDeveloper.

How Rich is ADF Faces? Koletzke

www.nocoug.org 26 NoCOUG Fall 2010

Figure 6. Selecting bars and x-axis in the Create Bar Graph dialog
17. In the Design tab of the editor, click the graph component to select it. In the Property Inspector, Graph Data section,

notice that the Value expression refers to a graphModel binding (“#{bindings.DepartmentSalary1.graphModel}”).
Navigate to the Page Binding file (in the editor window, select Go to Page Definition from the right-click menu in the
editor) and notice in the Source tab that the binding DepartmentSalary1 is defined as a graph binding (<graph />).

18. In the deptSalaryGraph.jspx editor, select the graph component again. In the Appearance section of the Property
Inspector, change the following properties and notice the changes in the visual editor along the way:
 Style as “Southwest”
 Title as “Department Salaries”
 ImageHeight as “400”
 ImageWidth as “600”
 3D Effect to “true”

19. Click Save All. Refresh the browser to view the changes (press the SHIFT key while refreshing to force a full refresh).
The graph should now appear as follows:

20. Close the browser. Stop the application.

How Rich is ADF Faces? Koletzke

www.nocoug.org 27 NoCOUG Fall 2010

What Did You Just Do?
You sampled the development experience when working with a DVT component. You created a read-only view object as a
SELECT statement to retrieve the total salaries for each department. You also created an application module to expose the
view object to the View layer code. Then, you defined a bar graph based on the view object and changed some properties of
that graph.

What Could You Do Next?
To continue the experiment with the graph component, you can set up a master-detail drill-down feature using the following
abbreviated steps. The effect will be that clicking a department bar in the graph will display a table of employee records for
that department.

1. Create an entity object definition, Employees, based on the EMPLOYEES table and specify a default view object,
EmployeeDetails. This will serve as the data source for the detail table.

2. Create a view link definition from DepartmentSalary (source) to
EmployeeDetails (destination) based on DepartmentId. Open the HRService
application module and add a detail instance of EmployeeDetails naming it
“EmployeesInDepartment” as shown here.

3. In the Application Navigator, refresh the Data Controls panel (View | Refresh after selecting a node). Select the
deptGraphSalary.jspx document tab and drop the EmployeesInDepartment nested data collection on the af:form node
of the Structure window. Select the Tables | ADF Read-only Table option. In the Edit Table Columns dialog, delete all
but the EmployeeId, FirstName, LastName, Salary, and DepartmentId columns. Click OK.

Additional Information: The DepartmentId column is included only for testing so that you can see that the same
DepartmentId is retrieved for the click on a bar. You now need to set two properties to cause the table to refresh when a
department bar is clicked.

4. Select the af:table node in the Structure window, and set PartialTriggers as “::barGraph1” (the bar graph).

Note
The fully qualified name of a component refers to its relative
path in the component hierarchy with each node delimited by
a colon (“:”). In this example, you need to refer to the ID of
the top-level component “barGraph1” in a PartialTriggers
property, so refer to it as “::barGraph1.” References to sibling
components (components on the same level) do not need the
path prefix.

5. On the graph component, set ClickListener (Behavior section) to
“#{bindings.DepartmentSalary1.graphModel.processClick}.” (You may need to type in this value if the Expression
Builder is not available for this property.) The method processClick() is automatically available to graphs.

6. Click Save All. Run the page. The employee table will appear under the graph. Click a bar in the graph and the
employee table will refresh with the related employee records.

Additional Information: The table appears truncated on the right side. The reason is that the table component does not
automatically fill the available space. The solution is to surround the table with an af:panelStretchLayout, whose
purpose is to cause its child components to fill the available space.

7. Leave the browser open and return to JDeveloper. In the Structure window, drop a Panel Stretch Layout component onto
the af:form component so that it appears under the table. Then drag the existing af:table into that container’s center
facet. Click Save All and refresh the page. The table should better fill the screen.

8. Close the browser and stop the application.

How Rich is ADF Faces? Koletzke

www.nocoug.org 28 NoCOUG Fall 2010

How Can I Change the Default ADF Faces Appearance?
Although developers are often impressed (regardless of whether they acknowledge it) with ADF Faces’ rich features and
extensive set of components, one of their first reactions (after being impressed) is to question how to change the appearance
of the components. ADF Faces components are bound to a default set of Cascading Style Sheets (CSS) files and a resource
bundle that defines an extensive set of selectors. These style sheets provide a consistent, well-designed, common look and
feel to all components by default. This means that every af:inputText component that you use in an application will share
the same visual characteristics.

The problem is that the default may not agree with the standards set up for your applications. The easiest way to solve this
inconsistency is by changing your standards to match the ADF Faces defaults. This is the “WYSIWYG-IWYGIWYW”
principle: What you see is what you get if what you get is what you want. That is, the default ADF Faces look-and-feel
standards will serve you perfectly if your standards match the ADF Faces standards.

Naturally, that principle is easy to state, and although it seems a bit flippant, it is worth considering. However, many
organizations do not have the freedom to change standards based on a technology choice. Fortunately, you have options; the
first is to override the default CSS files using an ADF Faces feature called “skins”; the second is to make changes to the style
properties for a specific component.

Working with Skins
An ADF skin offers a relatively easy way to make changes to the application. Instead of attaching CSS files to each page,
ADF Faces defines a skin on an application level. An ADF Faces skin is a set of cascading style sheets containing selectors
that define how each type of component will appear in an application. For example, a CSS selector is defined for the
af:inputText component. Each time that component is rendered, it automatically uses that selector for its appearance. You
do not need to apply the selector unless you want to override the default for a specific instance of a component.

Once a different skin is applied to the application, all components will then take on the characteristics defined in the new
skin. Moreover, this change can be dynamic; that is, you can offer users the ability to change at runtime the skin that is being
used to display the application. This ability has obvious benefits to users who are interested in specific color and font
schemes for personal aesthetic reasons. It also has practical benefits for helping serve those who are visually disabled and
whose interaction with the application could be easier with nonstandard fonts and colors.

You programmatically change from one skin to another by modifying a single application-level property. In the
ADFFacesTest application you have used in this white paper, open trinidad-config.xml in the WEB-INF directory. You will
see something like the following:

<?xml version="1.0" encoding="windows-1252"?>
<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">
 <skin-family>blafplus-rich</skin-family>
</trinidad-config>

The skin-family setting defines the skin. Change the “blafplus-rich” (or “fusion”) skin family value to “simple,” click Save
All, and open a JSF page (for example, dragDropDemo.jspx) in the JDeveloper visual editor. (You may need to close the
editor window and reopen the page for the changes to take effect.)

ADF Faces ships with three skins; the default skin “blafplus-rich” is modeled using the Oracle Browser Look and Feel
(BLAF) standards; the effect of applying this skin and the other two skins—blafplus-medium and simple—to a simple JSF
page with various components is shown in Figure 7. No changes were made to the page between screen shots; only the skin
was changed. You will notice the minor difference between the blafplus-rich skin and the blafplus-medium skin—only the
tabs look different in this set of components. However, the difference between the simple skin and the blafplus-medium skin
is much more dramatic.

How Rich is ADF Faces? Koletzke

www.nocoug.org 29 NoCOUG Fall 2010

Figure 7. Different skins applied to the same page
If you want to try applying different skins and rerunning this same JSF page, drop components into a new JSF file called
“skinsDemo.jspx” (no managed bean) so that they form the following arrangement in the Structure window. Nodes that are
not expanded are empty. No properties were changed on any component after dropping them onto the page except the
af:spacer, whose Height was set to “50.” Remember that af:menuBar appears as “Panel Menu Bar.”

Note
The screenshots in this white paper match the first full
production version of JDeveloper 11g (build 5407) but in later
releases of ADF Faces, the default look-and-feel (skin) may
change slightly. This small difference is not important to your
work while learning about ADF Faces.

Oracle Browser Look and Feel (BLAF)
If you need to create a skin, it is helpful to take inspiration from a fully developed look and feel. The Oracle Browser Look
and Feel (BLAF) is backed by an extensive set of standards for designing the appearance and workings of the user interface
layer of an application. Oracle develops and maintains these standards primarily to support the Oracle EBS modules that
present web browser interfaces. BLAF standards are exhaustively documented in hundreds of pages of public web files
(www.oracle.com/technology/tech/blaf).

Tip
Even if you do not use BLAF standards, it is worthwhile using
them for ideas about what type of look-and-feel standards to
create and how the standards for different elements must
complement each other.

Getting Started Defining Custom Skins
If you decide not to use the default ADF Faces skins, you can develop your own skin. The process is well documented in the
JDeveloper help system. Enter “skins” in the help system search field and find the topic “Customizing the Appearance Using
Styles and Skins.” This topic will guide you through the steps you need to perform to create a custom skin. The first step is to
prepare by reviewing details of the work, and to budget time for this work. Creating a skin entails working primarily with
style sheets; the work is not difficult but can be time-consuming if you want to be thorough. Another preliminary step is
defining a complete graphical design that you wish to implement. It will not be productive to make extensive changes to the
design while coding the skin. Other major steps follow:

 blafplus-rich blafplus-medium simple

How Rich is ADF Faces? Koletzke

www.nocoug.org 30 NoCOUG Fall 2010

1. Starting with the simple skin, define property values for specially named CSS selectors (styles). This process will
override the default look and feel that ADF Faces components use. Working with the CSS selectors will take the bulk of
your skin development time.

Tip
You can extend an existing skin with your own skin, which
means you can avoid writing an entire skin and, therefore,
save time and effort.

2. Register the skin in a file called “trinidad-skins.xml” in the WEB-INF directory so that it is available to the skin-family
property in the trinidad-config.xml file.

3. Activate the new skin by changing the skin-family property as described before.

4. Deploy the custom skin in a JAR file so that it can be more easily shared between applications.

Working with Component-Level Styles
A general development best practice is to take advantage of reuse and inheritance as much as possible so that maintenance
and enhancements are easier; also, reuse theoretically means that you are taking advantage of pre-built and pre-tested code so
fewer software defects should result. The ADF Faces use of skins falls into the category of reuse and inheritance because an
application applies a consistent and tested appearance to each component.

However, there are always exceptions to any rule, so it is useful to know how to override the styles set by the skin you are
using. It turns out that each ADF Faces visual component offers a number of properties that you can use to alter the default
appearance of a component without having to modify a style sheet. You have used some of these already, so the following is
intended as a refresher.

Tip
If you find yourself overriding the same visual properties in
the same way on most uses of the same component type,
you need to consider making that change permanent in a
skin.

Inline Styles
The Inline Style property appears in the Style section of the Property Inspector for most visible ADF Faces components
(including layout containers). The property value can consist of a number of attributes and values delimited with semicolons
(“;”). JDeveloper provides an editor under the Inline Style property that allows you to enter values for the Inline Style
properties. The values and property names are dynamically loaded from the editor into the Inline Style property as shown
here:

How Rich is ADF Faces? Koletzke

www.nocoug.org 31 NoCOUG Fall 2010

Modifying Inline Style properties uses the same techniques as other Property Inspector properties—a combination of typing
values, selecting from a pulldown, interacting with a dedicated property editor (the Edit selection of the pulldown), or using
the Expression Builder.

Caution
Although JDeveloper displays all Inline Style properties for all
visual components, not all of these properties are appropriate
for all component types. Rather than issuing an error
message if an inappropriate property is set, ADF Faces just
ignores the property. For example, a border setting is not
applicable to an anchor (<a>) tag.

The properties in the Inline Style editor are divided into tabs for Text, Background, Box (for the area taken up by the
component, most appropriate for layout containers), and Classification (for lists).

Tip
Be judicious when setting Inline Style properties, especially
for nested layout containers, because a setting on a parent
layout component can affect child components. If a
component is not being arranged the way you expect, it could
be due to an Inline Style property setting on a parent
component.

Content Style
The Content Style property (shown in the preceding illustration) is available on components with data and other types of
display such as af:inputText, af:inputDate, and af:selectOneChoice. For example, Content Style for the
af:inputText component affects the way data in the field is displayed. If you set a Content Style width for an Input Text
component, that width will override the Columns property of that field. The Content Style expression is the same format as
the Inline Style expression.

Tip
You can use the Inline Style editor (tabbed property list in the
Style section) to create an expression that you can cut and
paste into the Content Style property. This editor makes it
easy to create correctly formatted style expressions.

Style Class
The Style Class property (also shown in the preceding illustration) allows you to assign one or more preexisting style sheet
selectors to the component. Selecting Edit in this property’s pulldown displays the Edit Property: StyleClass dialog shown
here:

How Rich is ADF Faces? Koletzke

www.nocoug.org 32 NoCOUG Fall 2010

When you move one or more selector classes to the Selected Classes area and click OK, the property value will be populated
with the selected names. Selecting more than one class will apply attributes from all classes to the component.

You can enable ADF component styles to appear in a Style Class property pulldown by selecting the ADF Faces Extension
checkbox in the Preferences dialog (Tools | Preferences) CSS Editor page. Then, when you select an ADF Faces
component, the Style Class property will display a pulldown from which you can choose a selector specific to that
component as shown here:

How Will I Ever Learn about All These Components?
Now that you’ve gotten a taste for some of the commonly used components and features, you may be a feeling a bit
overwhelmed because in addition to the ADF Faces techniques and components that this white paper introduces, you have
gotten the sense that there are many more.

The key principle for further study is the same as always and is best expressed by Samuel Johnson (1820–1784) who said,
“Knowledge is of two kinds: we know a subject ourselves, or we know where we can find information upon it.” The
following list several useful sources for finding the ADF Faces information you do not know yourself.

• The JDeveloper Help Center Mentioned before in this white paper is a single topic you can access by searching
for “enhanced tag doc.” This topic shows all visual components and provides links to detailed information about
each component. Since this source is the closest to your work in JDeveloper, it might also be your first resort.

• ADF Faces RC website This Oracle Technology Network (OTN) page (www.oracle.com/technology/products/
adf/adffaces) is the jumping off point for many resources related to ADF Faces. Many of the following Oracle
Technology Network (OTN) pages are accessible from links on the first resource.

• The Web UI Developer’s Guide for Oracle ADF This document (over 1200 PDF pages) is available in a
downloadable PDF format from a link at the ADF Faces RC website just mentioned. This book is also part of the
JDeveloper help system. Look for it under the Contents tree node Designing and Developing
Applications\Developing Oracle ADF Applications. The website version may be more up-to-date than the version in
the JDeveloper help system.

• Tutorials, demos, and downloads The ADF Faces RC website contains links to these information sources.

• Cheat sheets Look for the “ADF Faces Cheat Sheets” link on the ADF Faces RC website. The cheat sheets are
intended to assist you selecting the correct ADF Faces component; they also provide details about some of the
features for various components.

• ADF Faces Rich Client Demonstration This application is available from a link (“ADF Faces Rich Client
Components Hosted Demo”) at the ADF Faces RC website. You can run it on an Oracle-hosted server or download
the application and run it locally. This demonstration contains a demonstration of all ADF Faces components; a
separate demo application exists for DVT components. It also contains tips and advice on using ADF Faces
components.

• rea.oracle.com The Rich Enterprise Applications (REA) website is available from the ADF Faces RC website.
Look for the link called “Oracle REA.” This website contains the hosted demo just described (click Explore Now,
then expand Sandbox, and click Rich Client) as well as much more information about developing highly-interactive
applications with products like Oracle Web Center.

How Rich is ADF Faces? Koletzke

www.nocoug.org 33 NoCOUG Fall 2010

• AMIS ADF Blog This consulting company, based in The Netherlands, is a frequent contributor to the ADF
knowledgebase. Start searching for a topic at their ADF & JHeadstart home page (technology.amis.nl/blog/category/
oracle/adf-jheadstart).

• ADF EMG The ADF Enterprise Methodology Group (groups.google.com/group/adf-methodology) discusses best
practices for techniques and methodologies related to ADF. The prerequisite of experts contributing to this effort is
that they know what “ADF” stands for.

Tip
After you drop a component onto a page, press F1 to display
the tag help page for that component. This reference page is
helpful for learning more about the component because it
explains the purpose of the tag as well as its properties. For
layout containers, it also lists the supported facets.

Summary
This white paper has introduced ADF Faces Rich Client and attempted to answer how rich (highly-interactive, flexible, and
easy to use) it is by explaining the evolution of ADF Faces from UIX and early attempts to use AJAX-technologies to make
the user interfaces more responsive and productive. The white paper also explained PPR—one of the main features that
places ADF Faces RC on the top of the scale of interactive component sets. It also offered demonstrations in the form of
hands-on practices for exploring features such as layout components, atomic components including the DVT, and skins.
Lastly, it gave some direction for further study. These introductions and practices guides should help you be as productive as
possible when developing your own richly interactive applications using ADF Faces RC.

The rich are different from you and me.
They have more money.

—F. Scott Fitzgerald (1896–1940), author,
and Mary McGuire Colum (1884–1957), critic

About the Author
Note: This white paper is based on material written by the author for the book Oracle JDeveloper 11g Handbook, Oracle
Press, McGraw-Hill/Osborne (2009).

Peter Koletzke is technical director and principal instructor for the Enterprise e-Commerce Solutions practice at Quovera, in
Mountain View, California, and has 26 years of industry experience. Peter has presented at various Oracle users group
conferences more than 270 times and has won awards such as Pinnacle Publishing's Technical Achievement, Oracle
Development Tools Users Group (ODTUG) Editor's Choice (twice), ODTUG Best Speaker, ECO/SEOUC Oracle Designer
Award, ODTUG Volunteer of the Year, and NYOUG Editor’s Choice (twice). He is an Oracle Certified Master, Oracle ACE
Director, and coauthor of eight Oracle Press Books about Oracle development tools the latest of which are: Oracle
JDeveloper 11g Handbook (with Duncan Mills and Avrom Roy-Faderman) and Oracle JDeveloper 10g for Forms &
PL/SQL Developers (with Duncan).

