
© 2009 Convio, Inc.

Reading Oracle SQL 
Execution Plans
Dave Abercrombie
Principal Database Architect, Convio
http://aberdave.blogspot.com/
NoCOUG Spring Conference, May 20 2010

1

Presenter
Presentation Notes
http://www.convio.com
dabercrombie@convio.com

http://aberdave.blogspot.com/


© 2010 Convio, Inc.

Agenda
■ DBMS_XPLAN and Cardinality Feedback
■ Parent – Child  relationships
■ Three types of operations
■ Blocking vs. Non-blocking
■ Examples of each type

■ NOT: operation details
■ NOT: tuning

2



© 2010 Convio, Inc.

Troubleshooting Oracle Performance
By Christian Antognini
ISBN13: 978-1-59059-917-4
ISBN10: 1-59059-917-9
616 pp.
Published Jun 2008
http://apress.com/

Part 3, Chapter 6

Apress Errata
Antognini Errata

3

http://apress.com/book/view/1590599179
http://apress.com/book/errata/761
http://antognini.ch/top/addenda-and-errata/


© 2010 Convio, Inc.

Cardinality Feedback – two components
■ 1) Put session into special mode

Gathers execution details for each step

■ 2) Use DBMS_XPLAN to get these details
Compare optimizer estimates to actual performance

alter session set STATISTICS_LEVEL = ALL;

@your-query-here.sql

select * from table 
(dbms_xplan.DISPLAY_CURSOR(null, null, 'ALLSTATS'));

alter session set STATISTICS_LEVEL = TYPICAL;

4



© 2010 Convio, Inc.

Cardinality Feedback
■ Requires that query actually be run

On representative data and stats, right?!

■ Eliminates (most guesswork)
Shows where to focus investigation

■ DBMS_XPLAN is very useful even without 
cardinality feedback (real plan, details, AWR)

5



© 2010 Convio, Inc.

DBMS_XPLAN methods

Method Use Data source

DISPLAY Explain plan Plan table

DISPLAY_CURSOR Real plan Cursor in SGA

DISPLAY_AWR History AWR Repository

DISPLAY_SQLSET SQL Tuning sets SQLSET views

■ Pipelined function (aka table function):

select * from table(dbms_xplan….);

6



© 2010 Convio, Inc.

DBMS_XPLAN.DISPLAY_CURSOR
■ Three arguments

sql_id
child_number
format

■ Useful even without Cardinality Feedback
Gets the real plan

7



© 2010 Convio, Inc.

SQL_ID, argument #1
■ Like a hash of SQL text
■ NULL argument defaults to pervious SQL

But only with set serveroutput off
■ Or, find your SQL_ID

select sql_id, executions, 
buffer_gets, sql_text
from v$sql
where sql_text like '%&unique_string%'

■ Use V$SQLSTATS in production
■ Distinctive string in SQL

In comment, or as column name
■ Change as needed – to force a reparse

8



© 2010 Convio, Inc.

CHILD_NUMBER, argument #2
■ Parent cursor: SQL text

v$sqlarea

■ Child Cursor: Execution plan and environment
v$sql

■ NULL usually fine

9



© 2010 Convio, Inc.

FORMAT, argument #3
■ ALLSTATS

Required by the Cardinality Feedback method
■ LAST

Limits to most recent execution
■ PEEKED_BINDS

Bind variables used at parse
■ Single string, 

concatenated with space and plus sign
Example: 'typical +peeked_binds'

■ See Oracle docs for more options

10

http://download.oracle.com/docs/cd/B19306_01/appdev.102/b14258/d_xplan.htm#i998364


© 2010 Convio, Inc.

Gathering all stats
■ Required by the Cardinality Feedback method

■ Session level:
alter session set STATISTICS_LEVEL = ALL;

■ SQL level (hint):
select /*+ gather_plan_statistics */ ...

■ Adds overhead, so set back to normal
About 2,000 gets

alter session set STATISTICS_LEVEL = TYPICAL;

11



© 2010 Convio, Inc.

Cardinality Feedback Recipe

12

spool using-your-favorite-convention.txt
alter session set STATISTICS_LEVEL = ALL;
set serveroutput off
@your-query-here.sql
select * from table 

(dbms_xplan.DISPLAY_CURSOR(null, null, 'ALLSTATS'));
alter session set STATISTICS_LEVEL = TYPICAL;
spool off

■ Change SQL text to force re-parse between 
tests

■ Add comments to SQL text or spool file
■ Look for actual/estimated rows > ~100



© 2010 Convio, Inc.

Example 1

-------------------------------------------------------------------------------------------------
|Id | Operation                     | Name              | Starts | E-Rows | A-Rows |   A-Time   |
-------------------------------------------------------------------------------------------------
| 1 |  SORT ORDER BY                |                   |      1 |   1256 |  10387 |00:01:40.89 |
| 2 |   HASH JOIN SEMI              |                   |      1 |   1256 |  10387 |00:01:40.88 |
| 3 |    TABLE ACCESS BY INDEX ROWID| CONSTITUENT       |      1 |   1256 |    117K|00:01:40.47 |
| 4 |     INDEX RANGE SCAN          | ITOPS_BZ41319_CUS |      1 |    102 |    117K|00:00:00.73 |
| 5 |    INLIST ITERATOR            |                   |      1 |        |  24269 |00:00:00.05 |
| 6 |     INDEX RANGE SCAN          | GROUP_USER_INDEX  |      2 |  40875 |  24269 |00:00:00.02 |
-------------------------------------------------------------------------------------------------

■ Operation ID #5 expected 102 rows, but got 
117,000 – investigate this optimizer confusion

13



© 2010 Convio, Inc.

Parent – Child relationships
■ A parent has one or more children

■ A child has a single parent

■ Only one root without a parent

■ Children indented relative to parent

■ Parent right before children (lower ID)

■ v$sql_plan_statistics_all.parent_id

14



© 2010 Convio, Inc.

Parent – Child Example
----------------------------------------
|  ID | Operation                      |
----------------------------------------
|   1 |  UPDATE                        |
|   2 |   NESTED LOOPS                 |
| * 3 |    TABLE ACCES FULL            |
| * 4 |    INDEX UNIQUE SCAN           |
|   5 |   SORT AGGREGATE               |
|   6 |    TABLE ACCESS BY INDEX ROWID |
| * 7 |     INDEX RANGE SCAN           |
|   8 |   TABLE ACCESS BY INDEX ROWID  |
| * 9 |    INDEX UNIQUE SCAN           |
----------------------------------------

15

Presenter
Presentation Notes
Figure 6-2, location 2716



© 2010 Convio, Inc.

Parent – Child (tree hierarchy)

1

2
3
4

5 6 7
8 9

16

----------------------------------------
|  ID | Operation                      |
----------------------------------------
|   1 |  UPDATE                        |
|   2 |   NESTED LOOPS                 |
| * 3 |    TABLE ACCES FULL            |
| * 4 |    INDEX UNIQUE SCAN           |
|   5 |   SORT AGGREGATE               |
|   6 |    TABLE ACCESS BY INDEX ROWID |
| * 7 |     INDEX RANGE SCAN           |
|   8 |   TABLE ACCESS BY INDEX ROWID  |
| * 9 |    INDEX UNIQUE SCAN           |
----------------------------------------



© 2010 Convio, Inc.

Three Types of Operations
■ About 200 exist, of these three types:

Stand-alone

Unrelated-Combine

Related-Combine

Note: these terms invented by Christian Antognini, and are generally 
not used elsewhere

17



© 2010 Convio, Inc.

Blocking vs. non-blocking

■ Blocking operations
Process data in sets
Example: SORT – the first row might be anywhere in set

■ Non-blocking operations
Process data one row at a time
Example: FILTER – each row evaluated independently

Note: these names are a little counterintuitive. Think of “blocking” as 
“sets” or “blocks” of data, rather than as “interfering” or “obstructing”.

18



© 2010 Convio, Inc.

Type 1: Stand-alone Operations
■ Definition: all operations having at most one child

■ Vast majority are this type (~180 out of ~200)

■ Rules:

Child executed before parent
(with two important exceptions)

Child executed at most once

Child “feeds” rows to its parent

19



© 2010 Convio, Inc.

Stand-alone example (start)

1 2 3

■ All are stand-alone

■ 1 and 2 have children, so 
they cannot execute first

■ Execution must therefore start 
with 3

20

Select deptno, count(*) from emp where job = 'CLERK’' and sal < 1200  group by deptno;

---------------------------------------------------------------------
|  ID | Operation                     | Name      | Starts | A-rows |
---------------------------------------------------------------------
|   1 |  HASH GROUP BY                |           | 1      | 2      |
| * 2 |   TABLE ACCESS BY INDEX ROWID | EMP       | 1      | 3      |
| * 3 |    INDEX RANGE SCAN           | EMP_JOB_I | 1      | 4      |
---------------------------------------------------------------------

2 – filter("SAL"<1200)
3 – access("JOB"='CLERK')



© 2010 Convio, Inc.

Stand-alone example (details)

■ Operation #3 scans index for JOB, feeding four 
rowids to parent #2

■ Operation #2 goes to table blocks using rowids, 
finding three rows (sal<1200) that it feeds to #1

■ Operation #1 does "group by" returning 2 rows
21

Select deptno, count(*) from emp where job = 'CLERK’' and sal < 1200  group by deptno;

---------------------------------------------------------------------
|  ID | Operation                     | Name      | Starts | A-rows |
---------------------------------------------------------------------
|   1 |  HASH GROUP BY                |           | 1      | 2      |
| * 2 |   TABLE ACCESS BY INDEX ROWID | EMP       | 1      | 3      |
| * 3 |    INDEX RANGE SCAN           | EMP_JOB_I | 1      | 4      |
---------------------------------------------------------------------

2 – filter("SAL"<1200)
3 – access("JOB"='CLERK')



© 2010 Convio, Inc.

Stand-alone rule exceptions
■ Basic rule: "Child executed before parent"

■ But, in two important exceptions, a parent may 
decide that:

It makes no sense to finish child execution, or
It makes no sense to even start child execution

■ In other words, parents can sometimes control 
child execution.

22



© 2010 Convio, Inc.

Stand-alone exception: COUNT STOPKEY

■ Parent operation #1 stops child operation #2 
after 10 rows.

■ BUT: "blocking" operations cannot be stopped, 
because they need to be fully processed before 
returning first row to their parent (example 
follows)

23

select * from emp where rownum <= 10;

------------------------------------------------------
|  ID | Operation           | Name | Starts | A-rows |
------------------------------------------------------
|   1 |  COUNT STOPKEY      |      |      1 |     10 |
| * 2 |   TABLE ACCESS FULL | EMP  |      1 |     10 |
------------------------------------------------------

1 - filter(ROWNUM<=10)



© 2010 Convio, Inc.

Blocking operations cannot be stopped

■ "Blocking" operations cannot be stopped, 
because they need to be fully processed before 
returning first row to their parent

■ Child operation #4 (emp full scan) cannot be 
stopped because of the "order by".

24

select * from (select * from emp order by sal desc) where rownum < 10;

-----------------------------------------------------------
|  ID | Operation                | Name | Starts | A-rows |
-----------------------------------------------------------
| * 1 |  COUNT STOPKEY           |      | 1      | 10     |
|   2 |   VIEW                   |      | 1      | 10     |
| * 3 |    SORT ORDER BY STOPKEY |      | 1      | 10     |
|   4 |     TABLE ACCESS FULL    | EMP  | 1      | 14     |
-----------------------------------------------------------



© 2010 Convio, Inc.

Stand-alone exception: FILTER

■ Standard rules suggest that execution starts with 
operation #3, 

■ BUT: the FILTER operation controls its children 
to prevent any execution, since no rows can pass 
it anyway

25

select * from emp where job = 'CLERK' and 1 = 2;

---------------------------------------------------------------------
|  ID | Operation                     | Name      | Starts | A-rows |
---------------------------------------------------------------------
| * 1 |  FILTER                       |           | 1      | 0      |
|   2 |   TABLE ACCESS BY INDEX ROWID | EMP       | 0      | 0      |
| * 3 |    INDEX RANGE SCAN           | EMP_JOB_I | 0      | 0      |
---------------------------------------------------------------------

1 - filter(NULL IS NOT NULL)
3 - access("JOB"='CLERK')



© 2010 Convio, Inc.

Type 2: Unrelated-Combine Operations
■ Definition: Multiple children, independently 

executed

26

AND-EQUAL, BITMAP AND, BITMAP OR, 
BITMAP  MINUS, CONCATENATION, 
CONNECT BY WITHOUT FILTERING, 
HASH JOIN, INTERSECTION, 
MERGE JOIN,  MINUS, 
MULTI-TABLE INSERT, SOL MODEL, 
TEMP TABLE TRANSFORMATION, 
and UNION-ALL



© 2010 Convio, Inc.

Unrelated-Combine Operation Rules
■ Children executed before parent

■ Children executed sequentially, in ID order

■ Each child must complete before moving on to 
the next child

■ Every child "feeds" rows to the parent

27



© 2010 Convio, Inc.

Unrelated-Combine Example (tree)

1
2
3
4

28

select ename from emp
union all
select dname from dept
union all
select '%' from dual;

-----------------------------------------------------
| ID | Operation           | Name | Starts | A-rows |
-----------------------------------------------------
|  1 |  UNION-ALL          |      | 1      | 19     |
|  2 |   TABLE ACCESS FULL | EMP  | 1      | 14     |
|  3 |   TABLE ACCESS FULL | DEPT | 1      | 4      |
|  4 |   FAST DUAL         |      | 1      | 1      |
-----------------------------------------------------



© 2010 Convio, Inc.

Unrelated-Combine Example (details)

■ Operation #1 has three children, with #2 having 
the lowest ID, so execution starts with #2.

■ After #2 sends its 14 rows to the parent #1, 
operation #3 starts executing.

■ After #3 sends its 4 rows to the parent #1, 
operation #4 starts executing.

■ After #4 sends its 1 row to parent #1, the parent 
builds a single results set and returns it to caller.

29

-----------------------------------------------------
| ID | Operation           | Name | Starts | A-rows |
-----------------------------------------------------
|  1 |  UNION-ALL          |      | 1      | 19     |
|  2 |   TABLE ACCESS FULL | EMP  | 1      | 14     |
|  3 |   TABLE ACCESS FULL | DEPT | 1      | 4      |
|  4 |   FAST DUAL         |      | 1      | 1      |
-----------------------------------------------------



© 2010 Convio, Inc.

Type 3: Related-Combine Operations
■ Definition: Multiple children, and one child 

controls the execution of all other children

* note: UPDATE and FILTER can also be "stand-
alone", depending on number of children

30

NESTED LOOPS, 
UPDATE*, 
FILTER*, 
CONNECT BY WITH FILTERING, 
and BITMAP KEY ITERATION



© 2010 Convio, Inc.

Related-Combine Operation Rules
■ Children executed before parent

■ Child with lowest ID controls execution of the 
others

■ Children execute in ID order, but interleaved (not 
sequentially)

■ The controlling child is executed (at most) once, 
the others may be executed many or zero times.

■ Not every child "feeds" the parent.
31



© 2010 Convio, Inc.

Nested Loops (a "related-combine")
■ A join, so always has exactly two children

■ Child with smaller ID is the "driving rowsource" 
aka "outer loop"

■ Other child is the "inner loop"

■ Inner loop is executed once for every row 
returned by outer loop.

32



© 2010 Convio, Inc.

Nested Loops example (related-combine)

1
2
3 4

33

select *
from emp, dept
where emp.deptno = dept.deptno
and emp.comm is null
and dept.dname != 'SALES';

-------------------------------------------------------------------
|  ID | Operation                     | Name    | Starts | A-rows |
-------------------------------------------------------------------
|   1 |  NESTED LOOPS                 |         |      1 |      8 |
| * 2 |   TABLE ACCESS FULL           | EMP     |      1 |     10 |
| * 3 |   TABLE ACCESS BY INDEX ROWID | DEPT    |     10 |      8 |
| * 4 |    INDEX UNIQUE SCAN          | DEPT_PK |     10 |     10 |
-------------------------------------------------------------------

2 - filter("EMP"."COMM" IS NULL)
3 - filter("DEPT"."DNAME"<>'SALES')
4 - access("EMP"."DEPTNO"="DEPT"."DEPTNO")



© 2010 Convio, Inc.

Nested Loops Example (details)

■ Operation #1 has two children, and #2 has the 
lowest ID, so execution starts with controlling #2.

■ After #2 full scans EMP, it tells #3 to do 10 loops.
■ Using "stand-alone" rules, operation #4 executes 

first, sending its 10 rowids to #3, one at a time.
■ Operation #3 looks at DEPT table blocks one at a 

time, filtering out two rows, sending 8 rows to #1
34

-------------------------------------------------------------------
|  ID | Operation                     | Name    | Starts | A-rows |
-------------------------------------------------------------------
|   1 |  NESTED LOOPS                 |         |      1 |      8 |
| * 2 |   TABLE ACCESS FULL           | EMP     |      1 |     10 |
| * 3 |   TABLE ACCESS BY INDEX ROWID | DEPT    |     10 |      8 |
| * 4 |    INDEX UNIQUE SCAN          | DEPT_PK |     10 |     10 |
-------------------------------------------------------------------

2 - filter("EMP"."COMM" IS NULL)
3 - filter("DEPT"."DNAME"<>'SALES')
4 - access("EMP"."DEPTNO"="DEPT"."DEPTNO")



© 2010 Convio, Inc.

FILTER (a "related-combine")
■ Can be considered "stand-alone" if it has a single 

child.

■ If it has two or more children, it works similar to 
NESTED LOOPS.

35



© 2010 Convio, Inc.

FILTER example (related-combine)

36

select *
from emp
where not exists ( select 0 

from dept 
where dept.dename = 'SALES'

and dept.deptno = emp.deptno)
and not exists ( select 0

from bonus
where bonus.ename = emp.ename);

■ Note row counts: 
Three distinct values of DNAME
Six EMP rows for SALES

select dname, count(*)
from emp, dept
where emp.deptno = dept.deptno
group by dname;

DNAME        COUNT(*)
------------ --------
ACCOUNTING          3
RESEARCH            5
SALES               6



© 2010 Convio, Inc.

FILTER example (related-combine)

1
2
3 4
5

37

select *
from emp
where not exists ( select 0 

from dept 
where dept.dename = 'SALES'

and dept.deptno = emp.deptno)
and not exists ( select 0

from bonus
where bonus.ename = emp.ename);

-------------------------------------------------------------------
|  ID | Operation                     | Name    | Starts | A-rows |
-------------------------------------------------------------------
| * 1 |  FILTER                       |         |      1 |      8 |
|   2 |   TABLE ACCESS FULL           | EMP     |      1 |     14 |
| * 3 |   TABLE ACCESS BY INDEX ROWID | DEPT    |      3 |      1 |
| * 4 |    INDEX UNIQUE SCAN          | DEPT_PK |      3 |      3 |
| * 5 |   TABLE ACCESS FULL           | BONUS   |      8 |      0 |
-------------------------------------------------------------------

1 - filter(( ... )) note: Oracle v$ views can be buggy
3 - filter("DEPT"."DNAME"='SALES')
4 - access("DEPT"."DEPTNO"=:B1)
5 - filter("BONUS"."ENAME"=:B1)



© 2010 Convio, Inc.

FILTER Example (details, 1 of 3)

■ Operation #1 has three children (#2, #3, #5), and 
#2 has the lowest ID, so execution starts at #2.

■ After #2 full scans EMP, it returns 14 rows to #1
■ To a first approximation, Operation #1 would 

control its other children (#3 an #5) to execute 14 
times, once per row from #2. However, Oracle 
does some caching, once per distinct value.

38

-------------------------------------------------------------------
|  ID | Operation                     | Name    | Starts | A-rows |
-------------------------------------------------------------------
| * 1 |  FILTER                       |         |      1 |      8 |
|   2 |   TABLE ACCESS FULL           | EMP     |      1 |     14 |
| * 3 |   TABLE ACCESS BY INDEX ROWID | DEPT    |      3 |      1 |
| * 4 |    INDEX UNIQUE SCAN          | DEPT_PK |      3 |      3 |
| * 5 |   TABLE ACCESS FULL           | BONUS   |      8 |      0 |
-------------------------------------------------------------------

1 - filter(( ... ))
3 - filter("DEPT"."DNAME"='SALES')
4 - access("DEPT"."DEPTNO"=:B1)
5 - filter("BONUS"."ENAME"=:B1)



© 2010 Convio, Inc.

FILTER Example (cont. details, 2 of 3)

■ Using "stand-alone" rules, Operation #4 executes 
three times, passing its rowids to its parent #3.

■ Operation #3 looks at the table blocks for the 
rows specified by #4, looking at DNAME for 
'SALES'. It finds one matching row, but since this 
is a NOT EXISTS, it causes the six 'SALES' rows 
to be excluded in #1 (no rows passed from #3)

39

-------------------------------------------------------------------
|  ID | Operation                     | Name    | Starts | A-rows |
-------------------------------------------------------------------
| * 1 |  FILTER                       |         |      1 |      8 |
|   2 |   TABLE ACCESS FULL           | EMP     |      1 |     14 |
| * 3 |   TABLE ACCESS BY INDEX ROWID | DEPT    |      3 |      1 |
| * 4 |    INDEX UNIQUE SCAN          | DEPT_PK |      3 |      3 |
| * 5 |   TABLE ACCESS FULL           | BONUS   |      8 |      0 |
-------------------------------------------------------------------

1 - filter(( ... ))
3 - filter("DEPT"."DNAME"='SALES')
4 - access("DEPT"."DEPTNO"=:B1)
5 - filter("BONUS"."ENAME"=:B1)



© 2010 Convio, Inc.

FILTER Example (cont. details, 3 of 3)

■ Operation #5 full scans BONUS using :B1 
passed from #1. Since (like #3) this operation is 
used only to implement restrictions, no rows are 
passed to parent #1. Anyway, no matches were 
found, so no more rows get restricted.

■ Operation #1 passes eight rows to the caller 
(fourteen from #2 minus six from #3).

40

-------------------------------------------------------------------
|  ID | Operation                     | Name    | Starts | A-rows |
-------------------------------------------------------------------
| * 1 |  FILTER                       |         |      1 |      8 |
|   2 |   TABLE ACCESS FULL           | EMP     |      1 |     14 |
| * 3 |   TABLE ACCESS BY INDEX ROWID | DEPT    |      3 |      1 |
| * 4 |    INDEX UNIQUE SCAN          | DEPT_PK |      3 |      3 |
| * 5 |   TABLE ACCESS FULL           | BONUS   |      8 |      0 |
-------------------------------------------------------------------

1 - filter(( ... ))
3 - filter("DEPT"."DNAME"='SALES')
4 - access("DEPT"."DEPTNO"=:B1)
5 - filter("BONUS"."ENAME"=:B1)



© 2010 Convio, Inc.

See book for further examples
■ UPDATE

■ CONNECT BY WITH FILTERING

41



© 2010 Convio, Inc.

Summary
■ Strict parent/child, rooted tree hierarchy
■ About 200 operations exist, of these three types:

Stand-alone
Unrelated-Combine (14)
Related-Combine (5)

■ Blocking or Non-blocking
Blocking is set based (e.g., sort)
Non-Blocking is row-based (e.g., simple filter)

■ Rules for each type, apply recursively
■ Confirmed with

"all stats" plans: A-rows and A-time,
Extended SQL Event 10046, tracing, and
Tanel Poder's PlanViz, Iggy Fernadez's tool (PDF)

42

http://e2sn-planviz.appspot.com/
http://iggyfernandez.files.wordpress.com/2010/01/nocoug-200905-one-picture-is-worth-ten-thousand-words.pdf

	Reading Oracle SQL Execution Plans
	Agenda
	Troubleshooting Oracle Performance
	Cardinality Feedback – two components
	Cardinality Feedback
	DBMS_XPLAN methods
	DBMS_XPLAN.DISPLAY_CURSOR
	SQL_ID, argument #1
	CHILD_NUMBER, argument #2
	FORMAT, argument #3
	Gathering all stats
	Cardinality Feedback Recipe
	Example 1
	Parent – Child relationships
	Parent – Child Example
	Parent – Child (tree hierarchy)
	Three Types of Operations
	Blocking vs. non-blocking
	Type 1: Stand-alone Operations
	Stand-alone example (start)
	Stand-alone example (details)
	Stand-alone rule exceptions
	Stand-alone exception: COUNT STOPKEY
	Blocking operations cannot be stopped
	Stand-alone exception: FILTER
	Type 2: Unrelated-Combine Operations
	Unrelated-Combine Operation Rules
	Unrelated-Combine Example (tree)
	Unrelated-Combine Example (details)
	Type 3: Related-Combine Operations
	Related-Combine Operation Rules
	Nested Loops (a "related-combine")
	Nested Loops example (related-combine)
	Nested Loops Example (details)
	FILTER (a "related-combine")
	FILTER example (related-combine)
	FILTER example (related-combine)
	FILTER Example (details, 1 of 3)
	FILTER Example (cont. details, 2 of 3)
	FILTER Example (cont. details, 3 of 3)
	See book for further examples
	Summary

