
Recursive Common Table Expressions
in Oracle Database 11g Release 2

Iggy Fernandez
Database Specialists

Session #303

2

3

CTE Recap
Inline Views
SELECT *
FROM (SELECT *
 FROM Suppliers
 MINUS
 SELECT *
 FROM (SELECT SupplierName
 FROM (SELECT *
 FROM (SELECT *
 FROM Suppliers
 Parts)
 MINUS
 SELECT *
 FROM (SELECT SupplierName,
 PartName
 FROM Quotes))));

4

CTE Recap
All Supplier Part Pairs
WITH

AllSupplierPartPairs AS
(
 SELECT *
 FROM Suppliers, Parts
),

5

CTE Recap
Valid Supplier Part Pairs
ValidSupplierPartPairs AS
(
 SELECT SupplierName, PartName
 FROM Quotes
),

6

CTE Recap
Invalid Supplier Part Pairs
InvalidSupplierPartPairs AS
(
 SELECT *
 FROM AllSupplierPartPairs
 MINUS
 SELECT *
 FROM ValidSupplierPartPairs
),

7

CTE Recap
Suppliers Who Don’t Supply All Parts
SuppliersWhoDontSupplyAllParts AS
(
 SELECT SupplierName
 FROM InvalidSupplierPartPairs
),

8

CTE Recap
Suppliers Who Supply All Parts
SuppliersWhoSupplyAllParts AS
(
 SELECT *
 FROM Suppliers
 MINUS
 SELECT *
 FROM SuppliersWhoDontSupplyAllParts
)

9

CTE Recap
Suppliers Who Supply All Parts
SELECT *
FROM SuppliersWhoSupplyAllParts;

10

Recursive CTE Algorithm
1. Split the CTE expression into anchor and recursive

members.
2. Run the anchor member(s) creating the first

invocation or base result set (T0).
3. Run the recursive member(s) with Ti as an input

and Ti+1 as an output.
4. Repeat step 3 until an empty set is returned.
5. Return the result set. This is a UNION ALL of T0 to

Tn.

11

Number Generator
Old Style
SELECT level AS n
FROM dual
CONNECT BY level <= 100;

12

Number Generator
New Style
WITH numbers(n) AS
(
 -- Anchor member
 SELECT 1 FROM dual

 UNION ALL

 -- Recursive member
 SELECT n + 1 FROM numbers WHERE n < 100
)
SELECT * FROM numbers;

13

Traditional Hierarchical Queries
Managers and Employees
SELECT
 LPAD (' ', 4 * (LEVEL - 1)) || first_name || ' ' ||
last_name AS name
FROM employees
START WITH manager_id IS NULL
CONNECT BY manager_id = PRIOR employee_id;

14

Traditional Hierarchical Queries
Managers and Employees
Name
--
Steven King
 Neena Kochhar
 Nancy Greenberg
 Daniel Faviet
 John Chen
 Ismael Sciarra
 Jose Manuel Urman
 Luis Popp
 Jennifer Whalen
 Susan Mavris
 Hermann Baer
 Shelley Higgins
 William Gietz

15

Traditional Hierarchical Queries
Managers and Employees
WITH

RCTE (employee_id, first_name, last_name, lvl) AS
(

SELECT
 employee_id,
 first_name,
 last_name,
 1 AS lvl
FROM
 employees
WHERE manager_id IS NULL

16

Traditional Hierarchical Queries
Managers and Employees
UNION ALL

SELECT
 e.employee_id,
 e.first_name,
 e.last_name,
 lvl + 1 AS lvl
FROM
 RCTE INNER JOIN employees e
 ON (RCTE.employee_id = e.manager_id)
)
-- SEARCH DEPTH FIRST BY employee_id ASC SET seq#

17

Traditional Hierarchical Queries
Managers and Employees
SELECT LPAD (' ', 4 * (lvl - 1)) || first_name || ' ' ||
last_name AS name
FROM RCTE
--ORDER BY seq#;

18

Traditional Hierarchical Queries
Breadth First Search

Steven King
 Michael Hartstein
 Neena Kochhar
 Lex De Haan
 Den Raphaely
 Matthew Weiss
 Adam Fripp
 Payam Kaufling
 Shanta Vollman
 Kevin Mourgos
 John Russell
 Karen Partners
 Alberto Errazuriz
 Gerald Cambrault
 Eleni Zlotkey
 Pat Fay
 Jennifer Whalen

19

Railroad Diagram

20

Restrictions
The recursive member cannot contain any of the
following elements:
The DISTINCT keyword or a GROUP BY clause
The model_clause
An aggregate function. However, analytic functions are
permitted in the select list.
Subqueries that refer to the recursive member.
Outer joins that refer to recursive member as the right
table.

21

Other Goodies
• SYS_CONNECT_BY_PATH
• CONNECT_BY_ROOT
• CONNECT_BY_CYCLE
• CONNECT_BY_ISLEAF
• ORDER SIBLINGS BY

22

Coupon Clipping
Given a list of products and a list of discount coupons,
we needed to find the minimum price for all the products
based on certain rules. Here are those rules:
A maximum of ten coupons can be applied on the same
product.
The discount price can not be less than 70% of the
original price.
The total amount of the discount can not exceed 30$.

23

Coupon Clipping
 Discounted Discount Discount Coupon
 Id Name Price Price Amount Rate Names
------ ---------- ------- ---------- -------- -------- -------------------------
 1 PROD 1 100.00 73.00 27.00 27.00 CP 1 : -15$ + CP 4 : -12$
 2 PROD 2 220.00 193.00 27.00 12.27 CP 1 : -15$ + CP 4 : -12$
 3 PROD 3 15.00 13.50 1.50 10.00 CP 3 : -10%
 4 PROD 4 70.00 49.50 20.50 29.29 CP 1 : -15$ + CP 3 : -10%
 5 PROD 5 150.00 120.00 30.00 20.00 CP 3 : -10% + CP 1 : -15$

24

Coupon Clipping
CREATE TABLE products (ID INTEGER PRIMARY KEY, Name VARCHAR2(20),Price NUMBER);

INSERT INTO products VALUES (1,'PROD 1',100);
INSERT INTO products VALUES (2,'PROD 2',220);
INSERT INTO products VALUES (3,'PROD 3',15);
INSERT INTO products VALUES (4,'PROD 4',70);
INSERT INTO products VALUES (5,'PROD 5',150);

CREATE TABLE coupons (ID INTEGER PRIMARY KEY, Name VARCHAR2(20), Value INTEGER, IsPercent CHAR(1));

INSERT INTO coupons VALUES (1,'CP 1 : -15$',15,'N');
INSERT INTO coupons VALUES (2,'CP 2 : -5$',5,'N');
INSERT INTO coupons VALUES (3,'CP 3 : -10%',10,'Y');
INSERT INTO coupons VALUES (4,'CP 4 : -12$',12,'N');

25

Coupon Clipping
WITH RCTE(ID, Name, Price, DiscountedPrice, DiscountAmount, DiscountRate, CouponNames, CouponCount, CouponID) AS
(
SELECT
 ID,
 Name,
 Price,
 Price AS DiscountedPrice,
 0 AS DiscountAmount,
 0 AS DiscountRate,
 CAST(' ' AS VARCHAR2(1024)) AS CouponNames,
 0 AS CouponCount,
 -1 AS CouponId
FROM
 products

26

Coupon Clipping
UNION ALL

SELECT
 RCTE.ID, RCTE.Name, RCTE.Price,
 DECODE(C.IsPercent, 'N', RCTE.DiscountedPrice - C.Value, RCTE.DiscountedPrice - (RCTE.DiscountedPrice / 100 * C.Value)) DiscountedPrice,
 RCTE.Price - DiscountedPrice AS DiscountAmount,
 (RCTE.Price - DiscountedPrice) / RCTE.Price * 100 AS DiscountRate,
 DECODE(RCTE.CouponNames, ' ', C.Name, RCTE.CouponNames || ' + ' || C.Name) AS CouponNames,
 RCTE.CouponCount + 1 AS CouponCount,
 C.ID AS CouponID
FROM RCTE, coupons C
WHERE
 instr(RCTE.couponnames, c.Name) = 0 AND CouponCount < 2 AND DiscountAmount <= 30 AND DiscountRate <= 30
),

27

Coupon Clipping
SortedPrices AS
(
 SELECT
 RCTE.*,
 ROW_NUMBER() OVER (PARTITION BY ID ORDER BY DiscountedPrice) AS RowNumber
 FROM RCTE
)

SELECT
 ID, Name, Price,
 DiscountedPrice, DiscountAmount, DiscountRate,
 CouponNames
FROM SortedPrices
WHERE RowNumber = 1
ORDER BY ID;

28

29

Sudoku!
WITH RecursiveCTE(PartiallySolvedSudoku, BlankCell) AS
(
 SELECT
 cast(rpad('&&SudokuPuzzle', 81) AS VARCHAR2(81)) AS SudokuPuzzle,
 instr(rpad('&&SudokuPuzzle', 81), ' ', 1) AS FirstBlankCell
 FROM dual
 UNION ALL
 SELECT
 cast(substr(RecursiveCTE.PartiallySolvedSudoku, 1, BlankCell - 1) || to_char(Candidates.N) || substr(RecursiveCTE.PartiallySolvedSudoku, BlankCell + 1) AS VARCHAR2(81)) AS PartiallySolvedSudoku,
 instr(RecursiveCTE.PartiallySolvedSudoku, ' ', RecursiveCTE.BlankCell + 1) AS NextBlankCell
 FROM RecursiveCTE, Candidates
 WHERE
 -- Check the contents of the row containing the blank cell
 -- Check the contents of the column containing the blank cell
 -- Check the contents of the 3x3 grid containing the blank cell
 AND BlankCell > 0
)
SELECT PartiallySolvedSudoku "Partially Solved Sudoku" FROM RecursiveCTE;

30

Thanks For Listening

iggy_fernandez@hotmail.com
http://iggyfernandez.wordpress.com

Please submit evaluation forms

	Recursive Common Table Expressions in Oracle Database 11g Release 2
	Slide 2
	CTE Recap Inline Views
	CTE Recap All Supplier Part Pairs
	CTE Recap Valid Supplier Part Pairs
	CTE Recap Invalid Supplier Part Pairs
	CTE Recap Suppliers Who Don’t Supply All Parts
	CTE Recap Suppliers Who Supply All Parts
	Slide 9
	Recursive CTE Algorithm
	Number Generator Old Style
	Number Generator New Style
	Traditional Hierarchical Queries Managers and Employees
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Traditional Hierarchical Queries Breadth First Search
	Railroad Diagram
	Restrictions
	Other Goodies
	Coupon Clipping
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Sudoku!
	Thanks For Listening

