Developer

REcUrsIVE ComMON TABLE EXPRESSIONS
IN OracLE DATABASE 11G RELEASE 2

Iogy Fernandez, Database Specialists

INTRODUCTION

Oracle was late to the table with recursive common table expressions which have been part of the SQL standard since 2003
but—to Oracle’s credit—it has provided the CONNECT BY clause for hierarchical queries from the very beginning.
However, recursive common table expressions can be used for much more than hierarchical queries. Also note that Oracle
uses the non-standard terms “subquery factoring” and “recursive subquery factoring” for “common table expressions” and
“recursive common table expressions” respectively.

Recar or Non-Recursive CommoN TABLE EXPRESSIONS

Here is a quick recap of common table expressions of the non-recursive kind. They are an alternative to inline views and make
a complex SQL query much easier to read and maintain. Another advantage is that they only need to be evaluated once if they
are used more than once within the query. Here is an example: suppliers who supply all parts. Here is the data for the

example.
CREATE TABLE suppliers
(
suppl er nane VARCHARZ2(30)
)
CREATE TABLE parts
(
part nanre VARCHAR2(30)
)
CREATE TABLE quot es
(

suppl i er name VARCHAR2(30),
part nanre VARCHAR2(30),
quot e NUMBER
)
Here’s how we might formulate the query using traditional inline views.

SELECT *

FROM

-- Suppliers Wio Supply Al Parts

(
-- Suppliers

(
SELECT *
FROM Suppliers
)
M NUS
-- Suppliers Wio Don't Supply Al Parts
(
SELECT Suppl i er Nane
FROM
-- Invalid Supplier Part Pairs

1 Session #303

http://download.oracle.com/docs/cd/E11882_01/server.112/e10592/queries003.htm#SQLRF52332

Developer

(
-- Al Supplier Part Pairs
(
SELECT *
FROM Suppliers, Parts
)
M NUS
-- Valid Supplier Part Pairs
(
SELECT Suppl i er Name, Part Nanme
FROM Quot es
)
)

Even with the provided annotations, the above formulation is difficult to read and understand. Common table expressions
can be used to formulate the following much more readable version.

W TH

Al'l SupplierPartPairs AS

(
SELECT *

FROM Suppliers, Parts
)1

Val i dSuppl i erPartPairs AS

(
SELECT Suppl i er Nane, Part Nane

FROM Quot es
) L]

I nval i dSuppl i erPartPairs AS
(

SELECT *

FROM Al | SupplierPartPairs
M NUS

SELECT *

FROM Val i dSuppl i er Part Pai rs

),

Suppl i er sWhoDont Suppl yAl | Parts AS

(
SELECT Suppl i er Nane

FROM I nval i dSuppl i erPart Pairs
)1

Suppl i er sWhoSuppl yAl | Parts AS
(

SELECT *

FROM Suppliers

M NUS

SELECT *

FROM Suppl i er sWwhoDont Suppl yAl | Part s

2 Session #303

Developer

SELECT *
FROM Suppl i er sWwhoSuppl yAl | Parts;

STRUCTURE OF RECURSIVE CoMMON TABLE EXPRESSIONS

On to recursive common table expressions. A recursive common table expression (recursive CTE) contains subqueries called
“anchor members” and “recursive members.” The rows produced by the anchor members are processed by the recursive
members. The recursive members produce other rows that are fed right back to them for further processing. Recursion stops
only when the recursive members fail to produce additional rows. The explanation in the Oracle documentation is fairly
cryptic but a good explanation can be found on the Microsoft Developer Network.

1. Run the anchor member(s) creating the first invocation or base result set (T0).
2. Run the recursive member(s) with Ti as an input and Ti+1 as an output.

3. Repeat step 3 until an empty set is returned.

4. Return the result set. This is a UNION ALL of TO to Tn.

A NuMBER GENERATOR

Here’s a simple example of a recursive common table expression: a number generator. The following example generates the
consecutive numbers from 1 to 9. The anchor member generates the first row which is then processed by the recursive
member. The recursive member uses the name of the recursive CTE as a placeholder for the output of the anchor member or
a previous execution of the recursive CTE. In this example, each execution of the recursive member produces one more row.
Recursion stops when nine records have been produced.

W TH

-- The follow ng nunber generator is a sinple exanple of a recursive CTE. It
-- produces the consecutive digits from1 to 9.

Nunbers(n) AS
(

-- The "anchor nmenber." It contains exactly one row (N = 1).
SELECT 1 AS N
FROM dual

UNI ON ALL

-- The "recursive nenber." Notice that it references the nanme of the recursive
-- CTE as a placeholder for the results of the anchor nenber or the previous
-- execution of the recursive CTE. Each iteration of the recursive nenber

-- produces the next value of N Recursive execution stops when N = 9.

SELECT N+ 1 AS N
FROM Nunber s
VWHERE N < 9

)
SELECT *
FROM Nunber s;

The above example can be simply duplicated using the CONNECT BY clause as follows:
SELECT level AS N
FROM dual

3 Session #303

http://msdn.microsoft.com/en-us/library/ms186243.aspx
http://download.oracle.com/docs/cd/E11882_01/server.112/e10592/statements_10002.htm#BCEJGIBG

Developer

CONNECT BY | evel <= 9;

A StaANDARD HIERARCHICAL QUERY

Next consider a standard hierarchical query; an org-chart of managers and employees. First, here’s the old solution using the
CONNECT BY clause; it is short and sweet.
SELECT
LPAD (" ', 4 * (LEVEL - 1)) || first_nane || " ' || last_nane AS nane
FROM enpl oyees
START W TH nmanager _id |'S NULL
CONNECT BY nmnager _id = PRI OR enpl oyee_i d;

The solution using recursive common table expressions is much more verbose. Note especially the SEARCH DEPTH FIRST

clause; refer to the Oracle documentation for an explanation.
W TH

Recursi veCTE (enpl oyee_id, first_name, |ast_nane, Ivl) AS

(

-- The "anchor menber" of the recursive CTE. It |ocates enpl oyees who don't
-- have any nmanager; presumably there is at |east one such enpl oyee

SELECT
enpl oyee_i d,
first_nane,
| ast _nane,
1 AS |vl
FROM
enpl oyees
WHERE manager _id IS NULL

UNI ON ALL

-- The "recursive nenber"” of the recursive CITE. Notice that it uses the nane
-- of the recursive CTE as a placeholder for the results of the anchor nenber
-- or the previous execution of the recursive CITE. Each iteration of the

-- recursive nmenber |ocates the enpl oyees who report to the enpl oyees | ocated
-- in the previous iteration. Recursive execution stops when all enployees

-- have been | ocat ed.

SELECT
e. enpl oyee_i d,
e.first_nane,
e.l ast _nane,
vl + 1 AS |vl
FROM
Recursi veCTE r I NNER JO N enpl oyees e
ON (r.enployee_id = e. nanager _i d)

-- CGo deep in order to produce records in exactly the sane order as the CONNECT
-- BY clause. The default order of processing is BREADTH FI RST whi ch woul d

-- produce all managers at the sanme | evel before any of their enployees; this is
-- not not the order in which the CONNECT BY produces rows. The pseudocol um

-- seg# has been designated here to capture the order in which records are

4 Session #303

http://download.oracle.com/docs/cd/E11882_01/server.112/e10592/statements_10002.htm#BCEJGIBG
http://download.oracle.com/docs/cd/E11882_01/server.112/e10592/statements_10002.htm#BCEJGIBG

Developer

-- produced by the recursive CTE; it will be used in the main query.
SEARCH DEPTH FI RST BY enpl oyee_id ASC SET seq#

-- This is the main query. It processes the results produced by the recursive
-- CTE

SELECT LPAD (' ', 4 * (Ivl - 1)) || first_nanme || ' ' || last_nanme AS nane
FROM Recur si veCTE
ORDER BY seq#;

A More ComrLEX EXAMPLE

From the two examples above, it might appear that a recursive CTE is little more than a verbose way of specifying what could
be more succinctly achieved with the CONNECT BY clause. However recursive common table expressions are significantly
more powerful than the CONNECT BY clause. For example, consider the following example from the TSQL Challenges

team:

1. Given a list of products and a list of discount coupons, we need to use the following rules to find the minimum price for
each product:

2. Not more than two coupons can be applied to the same product.

3. The discounted price cannot be less than 70% of the original price.

4. 'The total amount of the discount cannot exceed $30.

Syed Mehroz Alam provided an elegant solution to the above problem using recursive common table expressions; a modified
version is shown below.

CREATE TABLE products

(
| D | NTEGER PRI MARY KEY,
Nane VARCHAR2(20),
Pri ce NUMBER

)

I NSERT | NTO products VALUES (1,'PROD 1',100);
I NSERT | NTO products VALUES (2,' PROD 2', 220);
I NSERT | NTO products VALUES (3,' PROD 3',15);
I NSERT | NTO products VALUES (4,' PROD 4',70);
I NSERT | NTO products VALUES (5,' PROD 5', 150);

CREATE TABLE coupons
(

| D | NTEGER PRI MARY KEY,
Nanme VARCHARZ2(20),

Val ue | NTEGER,

| sPercent CHAR(1)

)1

I NSERT | NTO coupons VALUES (1,'CP 1 -15%' ,15,"'N);
I NSERT | NTO coupons VALUES (2,'CP 2 : -5%',5,'N);

I NSERT | NTO coupons VALUES (3,'CP 3 : -10%,10,'Y");
I NSERT | NTO coupons VALUES (4,'CP 4 -12%' ,12,"N);

COLUW | d FORVAT 99999 HEADI NG "1d"
COLUWN Nane FORVAT alO HEADI NG " Nane"
COLUWN Price FORVAT 990. 00 HEADI NG "Pri ce"

5 Session #303

http://smehrozalam.wordpress.com/2009/08/04/tsql-challenge-11-calculating-the-lowest-price-of-an-item-by-applying-discount-coupons/
http://beyondrelational.com/blogs/tc/default.aspx

Developer

COLUWN Di scount edPri ce FORMAT 990. 00 HEADI NG " Di scount ed| Pri ce"
COLUWN Di scount Amount FORMAT 990. 00 HEADI NG " Di scount | Anbunt "
COLUWN Di scount Rat e FORMAT 990. 00 HEADI NG " Di scount | Rat e"
COLUWN CouponNanes FORVAT a30 HEADI NG " Coupon| Names"

SET linesize 250
SET pagesi ze 1000
SET sql bl ankl i nes on

W TH

RCTE

(
I D,
Nane,
Price,
Di scount edPri ce,
Di scount Anount
Di scount Rat e,
CouponNanes,
CouponCount ,
Couponl D

) AS

-- The "anchor nenber" of the recursive CTE. It lists the undiscounted prices
-- of each product.

SELECT

I D,

Nane,

Pri ce,

Price AS Di scountedPri ce,

0 AS Di scount Anount ,

0 AS Di scount Rat e,

CAST(' ' AS VARCHAR2(1024)) AS CouponNanes,
0 AS CouponCount,

-1 AS Couponld

FROM
products
UNI ON ALL
-- The "recursive nmenber"” of the recursive CTE. It applies one additiona
-- coupon to data rows generated by a previous iteration while obeying the
-- rules: not nore than two coupons can be applied to the same product, the

-- discounted price cannot be less than 70% of the original price, and the
-- total anmount of the discount cannot exceed $30.

SELECT

6 Session #303

Developer

RCTE. | D,
RCTE. NAMVE
RCTE. pri ce,
(
DECODE
(
C.i spercent,
"N, RCTE. discountedprice - c.Val ue,
RCTE. di scount edprice - (RCTE. di scountedprice / 100 * c. Val ue)

)
) AS di scount edpri ce,

RCTE. pri ce -
DECODE
(
C.i spercent,
"N, RCTE. discountedprice - c.Val ue,
RCTE. di scount edprice - (RCTE. di scountedprice / 100 * c. Val ue)
)

) AS di scount anount,

RCTE. pri ce -
DECCDE
(
c.i spercent,
"N, RCTE. discountedprice - c.Val ue,
RCTE. di scount edprice - (RCTE. di scountedprice / 100 * c. Val ue)
)
) / RCTE.price * 100 AS discountrate,
DECCDE
(
RCTE. couponnanes,
"', c.Nane,
RCTE. couponnanes || ' + ' || c.Nane
) AS couponnanes,
RCTE. couponcount + 1 AS couponcount,
c. 1D AS couponid

FROM

RCTE,
coupons ¢

WHERE

-- cannot reuse a coupon
i nstr (RCTE. couponnanes, c.Nane) = 0

-- not nore than two coupons can be applied to the sane product
AND couponcount < 2

-- the total anobunt of the discount can not exceed 30%
AND

7 Session #303

Developer

(
RCTE. pri ce -
DECODE
(
C.i spercent,
"N, RCTE. discountedprice - c.Val ue,
RCTE. di scount edprice - (RCTE. di scountedprice / 100 * c. Val ue)

)
) <= 30

-- the discounted price cannot be | ess than 70% of the original
AND

(

price

RCTE. pri ce -
DECODE
(
C.i spercent,
"N, RCTE. discountedprice - c.Val ue,
RCTE. di scount edprice - (RCTE. di scountedprice / 100 * c. Val ue)

)
) /| RCTE.price * 100 <= 30

),

sort the results in order of discounted price

SortedPrices As
(
SELECT
RCTE. *,
ROW NUMBER() OVER (PARTI TION BY | D ORDER BY Di scountedPrice) AS RowNumber
FROM RCTE

)

SELECT
I D,
Nane,
Price,
Di scount edPri ce,
Di scount Anmount
Di scount Rat e,
CouponNanes
FROM SortedPrices

WHERE RowNumber = 1
ORDER BY | D
Di scount ed Di scount Di scount Coupon

I d Nane Price Price Anount Rat e Nanes
1 PROD 1 100. 00 73.00 27.00 27.00 CP 1 : -15% + CP 4 : -12%
2 PROD 2 220. 00 193. 00 27.00 12.27 CP 1 : -15% + CP 4 : -12%
3 PROD 3 15. 00 13.50 1.50 10.00 CP 3 : -10%
4 PROD 4 70. 00 49. 50 20. 50 29.29 CP 1 : -15% + CP 3 : -10%
5 PROD 5 150. 00 120. 00 30. 00 20.00 CP 3 : -10%+ CP 1 : -15%

Session #303

Developer

SubpokU

My final exhibit is a Sudoku puzzle. It turns out that a Sudoku puzzle can be elegantly solved with recursive common table
expressions. The solution was discovered by Anton Scheffer. The listing below is a heavily annotated version of Anton
Scheffet’s solution with some cosmetic changes for better understandability.'

-- The following SQ statenent solves a Sudoku puzzle that is provided in the

-- formof a one-dinensional array of 81 digits. Note that a Sudoku puzzle is

-- really a 9x9 square grid. Here is how the positions in the one-dinensiona

-- array correspond to positions in the 9x9 grid.

-] 1 2 3 4 5 6 7 8 9
-~ | 10 11 12| 13 14 15| 16 17 18]

-- A recursive conmon table expression (CTE) is used to solve the puzzle. The

-- "anchor nenber" of the recursive CTE contains the unsol ved Sudoku puzzle. The
-- "recursive nenber" generates partially solved Sudokus. Each iteration of the
-- recursive nenber conpletes one blank cell. Recursive execution stops when no
-- nore blank cells are left or if no value can be found for a blank cel

-- (neaning that the Sudoku has no solution). Al solutions are produced if the
-- puzzle has nultiple solutions.

-- Consider the follow ng Sudoku puzzle: (Al but the last 9 cells are filled.)
-- 534678912672195348198342567859761423426853791713924856961537284287419635

-- Here is the output produced for the above puzzle: (The output has been
-- condensed in order to acconodate it within the avail abl e space.)

-- Partially Solved Sudoku

-- 5384678912672195348198342567859 ... 53791713924856961537284287419635

-- 5384678912672195348198342567859 ... 537917139248569615372842874196353

-- 5384678912672195348198342567859 ... 5379171392485696153728428741963534

-- 584678912672195348198342567859 ... 53791713924856961537284287419635345

-- 584678912672195348198342567859 ... 537917139248569615372842874196353452

-- 584678912672195348198342567859 ... 5379171392485696153728428741963534528

-- 5384678912672195348198342567859 ... 53791713924856961537284287419635345286

-- 5384678912672195348198342567859 ... 537917139248569615372842874196353452861
-- 584678912672195348198342567859 ... 5379171392485696153728428741963534528617
-- 5384678912672195348198342567859 ... 53791713924856961537284287419635345286179

' Anton Scheffer also has two solutions that work with Oracle Database 10g Release 2: a solution using the MODEL clause and a solution
using collections.
9 Session #303

http://technology.amis.nl/blog/6404/oracle-rdbms-11gr2-solving-a-sudoku-using-recursive-subquery-factoring
http://technology.amis.nl/blog/6404/oracle-rdbms-11gr2-solving-a-sudoku-using-recursive-subquery-factoring
http://technology.amis.nl/blog/1757/solving-a-sudoku-with-collections
http://technology.amis.nl/blog/1757/solving-a-sudoku-with-collections
http://technology.amis.nl/blog/2066/solving-a-sudoku-with-1-sql-statement-the-model-clause

Developer

SET sql bl ankl i nes on
SET linesize 132
SET pagesi ze 66

W TH

-- The followi ng nunber generator is itself an exanple of a recursive CTE It

produces the consecutive digits from1 to 9.

Nunbers(n) AS

(

),

-- The "anchor nenber." It contains exactly one row (N = 1).
SELECT 1 AS N
FROM dua

UNI ON ALL
-- The "recursive nmenber." Each iteration of the recursive nenber produces the
-- next value of N Recursive execution stops when N = 9.

SELECT N+ 1 AS N
FROM Nunber s
WHERE N < 9

Recur si veCTE(Parti al | ySol vedSudoku, Bl ankCell) AS

(

-- The "anchor nenber" of the recursive CTE. It contains exactly one row the
-- unsol ved Sudoku puzzl e.
SELECT

cast (rpad(' &&SudokuPuzzl e', 81) AS VARCHAR2(81)) AS SudokuPuzzl e,

i nstr(rpad(' &&SudokuPuzzle', 81), ' ', 1) AS FirstBl ankCel
FROM dua
UNI ON ALL
-- The "recursive nenber"” of the recursive CITE. It generates internediate
-- solutions by providing values for the first blank cell in the internediate
-- solutions produced by the previous iteration. Recursive execution stops
-- when no nore blank cells are left or if none of the internmedi ate sol utions
-- generated by the previous iteration can be inproved (nmeaning that the
-- Sudoku puzzle has no solution). Al solutions are generated if the puzzle
-- has nultiple solutions.
SELECT

-- Construct an internmediate solution by conpleting one blank cell.

cast (
subst r (Recur si veCTE. Parti al | ySol vedSudoku, 1, BlankCell - 1)

10 Session #303

Developer

|| to_char(Candi dates. N
| | substr(RecursiveCTE. Parti al |l ySol vedSudoku, Bl ankCell + 1)
AS VARCHAR2(81)

) AS PartiallySol vedSudoku,

-- Locate the next blank cell, if any. Note that the result of instr is O if
-- the string we are searching does not contain what we are | ooking for.

instr(
Recur si veCTE. Parti al | ySol vedSudoku
Recur si veCTE. Bl ankCel I + 1

) AS Next Bl ankCel

FROM

-- The internediate solutions fromthe previous iteration
Recur si veCTE,

-- Consider all 9 candidate values fromthe Nunbers table.
Nunber s Candi dat es

VHERE NOT EXI STS

-- Filter out candi date values that have already been used in the same row,

-- the same colum, or the same 3x3 grid as the blank cell. Note that a Sudoku
-- puzzle is really a 9x9 grid but we are using a one-di nensional array of 81
-- cells instead. Recursive execution will stop if none of the internediate

-- solutions generated by the previous iteration can be inproved.

-- The position within the one-di mensional array of the first cell in the sane
-- row of the 9x9 grid as the blank cell is trunc((BlankCell-1)/9)*9 + 1. The
-- position of the Nth cell is obtained by adding N-1. For exanple, if

-- BlankCell = 41, then the positions of the cells in the same row are 37

-- 37+1, 37+2, 37+3, 37+4, 37+5, 37+6, 37+7, and 37+8.

-- The position of the first cell in the same columm of the 9x9 grid as the
-- blank cell is nod(BlankCell-1,9) + 1. The position of the Nth cell is
-- obtained by adding 9*(N-1). For exanple, if BlankCell = 41, then the

-- positions of the cells in the same columm are 5, 5+9, 5+18, 5+27, 5+36
-- b+45, 5+54, 5+63, and 5+72.

-- The position of the first cell in the same 3x3 grid as the blank cell is

-- trunc((BlankCel | -1)/27)*27 + nmod(trunc((Bl ankCell-1)/3),3)*3 + 1. The

-- position of the Nth cell in the same 3x3 grid is obtained by adding (N-1) +
-- trunc((N-1)/3)*6. For exanple, if BlankCell = 41, then the positions of the
-- cells of in the same 3x3 grid are 31, 31+1, 31+2, 31+9, 31+10, 31+11

-- 31+18, 31+19, and 31+20.

SELECT N FROM Nunbers

VWHERE t o_char (Candi dates. N) I N
(

11 Session #303

Developer

-- Check the contents of the row containing the blank cel

substr
(
Recur si veCTE. Parti al | ySol vedSudoku
trunc((BlankCell1-1)/9)*9 + 1
+ (N-1),
1
),

-- Check the contents of the colum containing the blank cel

substr

(
Recur si veCTE. Parti al | ySol vedSudoku
nod(Bl ankCel I -1,9) + 1
+ 9*(N-1),
1
),

-- Check the contents of the 3x3 grid containing the blank cel

substr

(
Recur si veCTE. Parti al | ySol vedSudoku

trunc((Bl ankCel | -1)/27)*27 + nod(trunc((BlankCell-1)/3),3)*3 + 1
+ (N-1) + trunc((N1)/3)*6
1

-- Stop processing when no nore blank cells are left.

AND Bl ankCell > 0

)
SELECT Parti al | ySol vedSudoku "Partially Sol ved Sudoku"
FROM Recur si veCTE

ConcLupING REMARKS

At first glance, it might appear that recursive common table expressions in Oracle Database 11¢R2 are little more than a
verbose way of specifying what could be more succinctly achieved with the CONNECT BY clause. However—as shown by
the examples in this paper—recursive common table expressions are significantly more powerful than the CONNECT BY
clause.

AsBout THE AUTHOR

Igey Fernandez is an Oracle DBA with Database Specialists and has fifteen years of experience in Oracle database
administration. He is the editor of the quarterly Journal of the Northern California Oracle Users Group (NoCOUG), the
author of Beginning Oracle Database 11g Administration (Apress, 2009), and an Oracle ACE.

12 Session #303

