The Nine Lives of
RAC and TAF

Mark Harrison Client'Side COding fOI‘Z
mh@pixar.com real application clusters
transparent application failover

NoCOUG Fall Conference, Nov. 2009

About Me

Not an Oracle Expert

80's: Started in Database World -- Applied Data Research
MS-DOS Expert!

Worked in compilers, telecom

1997: Back to Databases
Asialnfo: Chief Software Architect of China Internet

2001: Pixar Tech Lead
Oversee asset & data management, database, etc.
charter: find and retrieve all data over 50 year timeframe
"all the computers that don't have screens”

RAC + TAF =
Load balanced, (mostly) Transparent Application

Automatic Migration and Reconnection on node failures
Load Balancing, Connection Management (courtesy of RAC)
Automatic Failover on queries

* most queries don’t need to do anything!

Notifications on Connection, Transaction Errors

- applications can easily respond to these notifications

Configuring TAF

 configure as database service or in tns
* service configuration overrides tns
* an entry can fail over to itself -- important for RAC!

(CONNECT_DATA =

(FAILOVER_MODE =

fail over to this tns entry
(BACKUP = tnsname)}——"

ession -~ select calls get an error
(TYPE = type elect - will automatically move select

(METHOD = method) basic - connect to backup on conn. failure

preconnect - connect to backup at conn. time
(RETRIES =

X)
(DELAY = y)

try reconnect x times,
with y second delay

TNS Example

TEMPLAR

(FAILOVER_MODE =

(BACKUP = templar)
(METHOD — BASIC) tns entry fails over to itself.

(TYPE = SELECT) that's QK, it's a RAC!

(RETRIES = 18) \

for RAC, use
more retries

Nine Application Cases to Consider

Td/e Sessions

1. idle connections

Se/. eCf/‘nﬁ

2. selecting from a table
3. selecting from dual
4. selecting from an xtable

Connect /‘ns
5. connecting to the database

7T ransactions

6.
7.
8.
9.

with periodic commits

mostly idle, periodic commits
don't check ("feeling lucky")
never commits

Four Ways to Code

No Extra Codi »qg

1.

idle connections

2. selecting from a table
3.
8. don't check ("feeling lucky")

selecting from dual

Chec k Ketery Errors

4.

C/?ec,é Connection

EFrors
5.

selecting from an xtable

connecting to the database

C/?ec,é

7T ransactiorn Errors

6. with periodic commits

7.
9.

mostly idle, periodic commits
never commits

|:idle connection

+ Don't have to do anything.
* An idle connection (not executing query, DML, DDL) will fail
over automatically on the next database interaction.

[test: idle]

2,3: select from table, dual

Don't have to do anything
Must enable FAILOVER_MODE TYPE=SELECT

When you fail over to the new node, your select will
magically continue from where it left off.
The magic:

OCl tells server:

execute SQL statement #x as of SCN #y,

skipping forword to row #z

[tests: select, selectdual]

4. xtable - special case select, with error

“XTable” -- special Oracle table type

Maps Oracle internal data structures to table so that it can
be inspected via select

Specialized, more used for system tuning and
troubleshooting than for applications

xtable queries can’t relocate, since they’re looking at
memory inside the instance

Common hidden use: select from sys context

test: [xtable]

4. xtable - special case select, with error

try:
curs.execute(

select sys context('userenv', 'instance'),

sys_context('userenv', 'server_host')
from dual""")
r=curs.fetchone()

except cx Oracle.DatabaseError,e:

ORA-25401: can not continue fetches

ORA-25402: transaction must roll back

ORA-25408: can not safely replay call

if e.message.code in [25401,25402,25408]:
###print 'ignoring(case 1):', e.message.message.strip()
r=("unknown-instance', 'unknown-host")

else:

raise(e)

5. connecting

* Lots of things can go wrong while connecting
* (special case: hung connection)

testcase; [reconn]

5. connecting

while True:
try:

conn=cx_Oracle.connect(*args,**args2)
except cx _Oracle.DatabaseError,e:

ORA-01033:
ORA-12537:
ORA-12528:

ORA-12520:

#
#
#
ORA-12521:
H
H
H

if e.message.

ORACLE initialization or shutdown in progress
TNS:connection closed

TNS:listener: all appropriate instances are
blocking new connections

TNS:listener does not currently know of instance
requested in connect descriptor

TNS:listener could not find available handler for
requested type of server

code in [1©33,12537,12528,12521,12520]:

time.sleep(10)

continue
else:

raise(e)

8. lucky transaction

sometimes you get lucky, and your node downage will
happen between transactions.
in this case, either the select or idle cases apply, and you fail
over without having to take any coding action
“feeling lucky?” -- not best engineering approach!?

but, luck comes at no extra cost over not using TAF!

| XA

windows of idle luck windows of transaction non-luck

[test: 1uckytrans]

6,7,9: other transactions

periodic - mostly in transaction, like many batch jobs
short - mostly idle connection, like an interactive app
open - hever commits -- for testing transaction failover

all handled the same, like luckytrans but with error checking
all uncommitted DML is lost
application needs to re-execute DML

6,7,9: other transactions

while True:
try:
#insert, update, etc
conn.commit()
except cx _Oracle.DatabaseError,e:
ORA-25401: can not continue fetches
ORA-25402: transaction must roll back
ORA-25408: can not safely replay call
if e.message.code in [25401,25402,25408]:
print 'TAF rollback, restarting transaction...
conn.rollback()
redo insert, update, etc
continue
else:
raise(e)

Timing out hung RAC connection attempts

Sometimes connect() to the DB hangs

IMHO, OCI runtime should handle this!

Sadly it does not

Causes:
TCP session interrupted
VIP not properly transferred from downered node to
replacement node

evil space monkeys
m

Timing out hung RAC connection attempts

* Method I:via network switch
* route client -> DB connections through L4 switch, have
switch detect dead host and close client connection.
* only for dead TCP circuit detection, NOT load balancing
+ good for inducing seizures in your DBA team!
* Method 2: time out client
* when connecting;
 set an interval timer for N seconds
+ set SIGALRM handler to raise a TimeOut exception
* connect
 cancel interval timer
« catch Timeout exception, retry or fail

Timing out hung RAC connection attempts

Python example, should be similar logic in most languages

boilerplate for raising Timeout exception
class TimeoutExc(Exception): pass
def alarmhandler(signame,frame): raise TimeoutExc()

while True:
signal (SIGALRM, alarmhandler)
signal.alarm(5) # in 5 secs, raise exception TimeoutExc
try:
c=connect() # if we connect,
signal.alarm(9) # cancel alarm
break # and continue normal processing
except TimeoutExc:
print 'timed out, retrying....'

Pixar TAF Testbed

open source, cross platform
good testbed for

verifying your RAC setup

testing your TAF application code

contains example code for all nine scenarios
node control programs

tmpltest-reconr
ohm

3/dencs/taf$ taf-control stop

(1000012,
: 0 (1000013,
@luban- (1000014,
p (1000015

i

taf$ cat
WITH TAF"

oh host trac
running oh host trac

- Left-hand unn of windo

: NON-TAF connecti
These will all

test-pertrans
fail upon first node downage

open transaction
p tran

ual short transaction

table lucky transaction

tations/taf

instanc
trac

Demo | | |
3-node trac201 trac202 trac203

10.2g RAC on linux e w W W

clients on Mac
start off connected to

node 3
non-taf clients on left
taf clients on right

move applications non-taf taf
from node to node clients clients

X xterm

opentrans B0x5-300+420 B0x5-0+420
pertrans B0x5-300+504 B0x5-0+504
shorttrans B0x5-300+588 B0x5-0+538
luckytrans B0x5-300+672 B0x5-0+672

press enter to close other windows

nh@luban-2 “/trees/dmg/demos/taf —-> []

Terminal — bash — 129x8

mh@luban-2 ~/trees/dmg/demos/taf —-= I

Terminal ssh

ohm ~/trees/dmg/demos/taf$ D

Demo Takeaways

Any users would not have notice being bounced from node
to node
* sometimes a |-2 pause when a node goes down hard

constant Reconnecting = Just Say No!

queries -- all the benefits, none of the work!

"xtables", cleverly disguised as sys context

transactions -- need to catch and reapply DML

* easy for some applications, hard for others

But notice, the Feeling Lucky app worked fine in all cases!

Summary

If you use RAC, use TAF!!

configure TAF either in TNS or Service Description

TAF documentation not great

Put TAF error checking in a lib for all your apps

Most select functionality is free

Relatively small coding changes for connect, transactions
Exercise your RAC extensively, reboot and restart instances

like madmen until you are 100% confident in your RAC
|0G has an important RACVIP patch -- apply it!

Thanks to Rich Headrick, Terry Sutton, and Iggy Fernandez
of Database Specialists for their great support in this effort.
Thanks to Pixarians for their patience as we figured this out.

Resources

Net Services Administrator Guide

OCI Programmer's Guide

JDBC Developer's Guide and Reference
Data Provider for .NET Developer's Guide

this presentation and TAF testbed:
http://markharrison.net/taf

HELP WANTED!!

Systems Programmer

Data Management Group
C++, Python, Linux, Mac
Familiarity with Oracle +++

http://careers.pixar.com

job #406, Systems Software Engineer
mention this talk
cc: mh@pixar.com

