
<Insert Picture Here>

Oracle Database 10g and 11g:

What to Expect From the Optimizer

Maria Colgan Principal Product Manager

Agenda

• Changes in behaviour
• Init.ora Parameters

• DBMS_STATS subprograms

• New auto stats job

• New features
• Adaptive Cursor Sharing

• Optimizer statistics enhancements

• SQL Plan Management

• Pre-upgrade checklist

• Post-upgrade checklist

• Correcting regressed SQL Statements
• SQL Testcase Builder

• SQL Repair Advisor

<Insert Picture Here>

Change in Behavior

Init.ora Parameters

FalseN/AN/AOptimizer_capture_SQL_plan_baselines

TrueTrueN/ASecure_view_merging

221Dynamic_Sampling

All_rowsAll_rowsChooseOptimizer_mode

TrueN/AN/AOptimizer_use_SQL_plan_baselines

FalseN/AN/AOptimizer_use_pending_statistics

FalseN/AN/AOptimizer_use_invisible_indexes

11g Value10g Value9i ValueParameter

New DBMS_STATS Subprograms

YesN/AGathers stats for a user specified

column group or an expression

Create_Extended_stats

Yes10.2.0.4Compare stats for a table from two
different sources

Compare_Table_Stats

YesYesGather stats on V$viewsGather_Fixed_Object_Stats

YesYesGathers stats on dictionary objectsGather_Dictionary_Stats

YesYesGathers stats on CPU and IO
speed of H/W

Gather_System_Stats

YesN/ASets stats preferences at a table,
schema, database or global level

Set_*_Prefs

Yes10.2.0.4Revert stats back to what they
were before most recent gather

Restore_Table_Stats

YesN/APending stats allows stats to be
gather but not published immediate

Publish_Pending_stats

In
11g

In 10gR2FunctionSubprogram

DBMS_STAT. SET_*_PREFS

Offers a finer granularity of control with 4 procedures

• DBMS_STAT.SET_TABLE_PREFS

• Changes parameter value for the specified table

• DBMS_STAT.SET_SCHEMA_PREFS

• Changes parameter value for all tables in the specified schema

• Calls DBMS_STAT.SET_TABLE_PREFS for each table

• DBMS_STAT.SET_DATABASE_PREFS

• Changes parameter value for all tables in user-defined schemas

• Calls DBMS_STAT.SET_TABLE_PREFS for each table

• DBMS_STAT.SET_GLOBAL_PREFS

• Changes parameter value for all tables without a table preference and all future
tables

Hierarchy: Parameter value in gather stats stmt if specified

↑table preference if specified

↑ global preference

Automatic statistics gathering job

• Introduced in 10g

• Gathers statistics on objects where

• Statistics are missing

• Statistics are Stale (10% of rows have changed USER_TAB_MODIFICATIONS)

• In 10g its an Oracle Scheduler job

• Runs during maintenance window (default 10pm – 6 am)

• In 11g its an Autotask

• Runs during maintenance window (default 10pm – 6 am)

• DBMS_STATS.GATHER_DATABASE_STATS_JOB_PROC

• Parameter values can be change using SET_GLOBAL_PERFS

<Insert Picture Here>

New Features in 11g

New 11g Optimizer features

• Bind peeking doesn’t work when there is a data skew

• Gathering Optimizer Statistics takes too long

• Cardinality estimate is wrong so plan goes wrong

• Plans change unexpectedly especially during upgrades

New 11g Optimizer features

• Bind peeking doesn’t work when there is a data skew

• Enhanced plan sharing with binds

• Gathering Optimizer Statistics takes too long

• Faster statistics gathering

• Improved statistics quality

• Cardinality estimate is wrong so plan goes wrong

• Collect appropriate statistics

• Eliminate wrong cardinality estimates

• Plans change unexpectedly especially during upgrades
• Guaranteed plan stability and controlled plan evolution

• Controlled statistics publication

<Insert Picture Here>

Adaptive Cursor Sharing

Enhanced Bind Peeking

Adaptive Cursor Sharing

Business Requirement

• The optimizer peeks bind values during plan selection

• Initial value of the binds determines the plan

• Same execution plan shared regardless of future bind
values

• During the business day a cursor gets aged out at the
next hard parse a different bind value is used and a
different plan gets generated

One plan not always appropriate for all bind values

Example with 10g

SELECT ……FROM..WHERE Job = :B1

Value of B1 = CLERK

CLERK7782CLARK

CLERK7788SCOTT

VPKING

CLERK7521WARD

CLERK7499ALLEN

CLERK6973SMITH

JobEnumEname
Employee table

8739

• If clerk is the bind value at hard parse

five out six records will be selected

Note Plan Output from dbms_xplan.display_cursor

CLERK7782CLARK

CLERK7788SCOTT

CLERK7521WARD

CLERK7449ALLEN

CLERK6973SMITH

JobEnumEname

| Id | Operation | Name | Starts | E-Rows | A-Rows |

|* 1 | TABLE ACCESS FULL| EMP | 1 | 5 | 5 |

Example with 10g cont.

CLERK7782CLARK

CLERK7788SCOTT

VPKING

CLERK7521WARD

CLERK7499ALLEN

CLERK6973SMITH

JobEnumEname
Employee table

SELECT ……FROM..WHERE Job = :B1

Value of B1 = VP

• If VP is the bind value at hard parse
one out six records will be selected

VP8739KING

JobEnumEname

8739

| Id | Operation | Name | Starts | E-Rows | A-Rows |

|* 1 | INDEX RANGE SCAN| IND_EMP_JOB | 1 | 1 | 1 |

Solutions for bind peeking and

histograms in 10g

• Drop histogram using DBMS_STATS.DELETE_COL_STATS for just the

effected table

• Regather statistics on this table without histogram

• Use DBMS_STATS.SET_PARM to change default setting for method_opt

parameter

• New default in 10g FOR_ALL_ROWS_SIZE_AUTO

• Oracle automatically gathers histograms based on column usage

• Switch off bind peeking set _optim_peek_user_binds = false

With 11g

B1 = CLERK B1 = VP

Full Table Scan is optimal

Index Access is optimal

Peek all binds & take the plan that is optimal for each bind set

YOU CAN HAVE BOTH PLANS

CLERK7782CLARK

CLERK7788SCOTT

CLERK7521WARD

CLERK7449ALLEN

CLERK6973SMITH

JobEnumEname

VP6973KING

JobEnumEname

SELECT ……FROM..WHERE Job = :B1

Adaptive Cursor Sharing

Solution

• Share the plan when binds values are “equivalent”

• Plans are marked with selectivity range

• If current bind values fall within range they use the same plan

• Create a new plan if binds are not equivalent
• Generating a new plan with a different selectivity range

Adaptive Cursor Sharing – in detail

• Controlled by init.ora parameter

• _optim_peek_user_binds

• Determines if the optimizer will peek at bind values

• Set to TRUE by default in 11gR1

• Monitor
• V$SQL has 2 new columns

• IS_BIND_SENSITIVE – A histogram is present on column used with Bind

• IS_BIND_AWARE – An alternative plan has been found for SQL STMT

Optimizer Statistics

Improved Efficiency and
Quality

Q

Improved Efficiency and Quality
New statistics gathering algorithm

Business problem
• “ .. Compute statistics gives accurate results but takes too long ..”

• “ .. Sampling is fast but not always accurate ..”

• “ .. AUTO SAMPLE SIZE does not always work with data skew ..”

Solution

• New groundbreaking implementation

• Faster than sampling

• Accuracy comparable to compute statistics

• Used by default with AUTO_SAMPLE_SIZE value

• No need to use manual sampling anymore

FASTER AND BETTER

Speed of sampling with the accuracy of compute

Improved Efficiency and Quality
Incremental Statistics Maintenance

Business Requirement
• Gathering statistics on one partition (e.g. after a bulk

load) causes a full scan of all partitions to gather
global table statistics

• Extremely time consuming

Solution

• Gather statistics for touched partition(s) ONLY

• Table (global) statistics are built from partition statistics

Refreshed WITHOUT scanning the NON touched partitions

Incremental Global Statistics

Sales TableSales Table

May 22May 22ndnd 20082008

May 23May 23rdrd 20082008

May 18May 18thth 20082008

May 19May 19thth 20082008

May 20May 20thth 20082008

May 21May 21stst 20082008

Sysaux Tablespace

S1

S2

S3

S4

S5

S6

1. Partition level stats are

gathered & synopsis

created

Global
Statistic

2. Global stats generated by
aggregating partition level
statistics and synopsis

Incremental Global Statistics Cont’d

Sales TableSales Table

May 22May 22ndnd 20082008

May 23May 23rdrd 20082008

May 24May 24thth 20082008

May 18May 18thth 20082008

May 19May 19thth 20082008

May 20May 20thth 20082008

May 21May 21stst 20082008

Sysaux Tablespace

3. A new partition
is added to the
table & Data is
Loaded

May 24May 24thth 20082008 S7 4. Gather partition
statistics for new

partition

S1

S2

S3

S4

S5

S6

5. Retrieve synopsis for
each of the other

partitions from Sysaux

Global
Statistic

6. Global stats generated by
aggregating the original
partition synopsis with the
new one

Copy Statistics

Business Requirement

• New partition is added to a table and data is loaded into it - Statistics
for this partition do not reflect actual data volume or values

• Optimizer prorates cardinality based on distance between predicate
value and current max value for column RESULT very low cardinality

Solution

• Use dbms_stats.copy_table_stats()

• Derives statistics for new partition:
• Column statistics (min,max, NDV, histogram, etc)

• It adjusts min/max for partitioning column but not histogram

• Partition statistics (number of rows, blocks, etc)

• Local index statistics (NOT global)

• Requires patch on top of 10.2.0.4 - bug 7687788

Setting Optimizer Statistics

Business Requirement

• Temporary table used in transaction logic – Original empty but
gets a lot of data added during the course of the transaction

Solution

• Gather statistics when table is full (before end of trans) & lock them

OR

• Use dbms_stats.set_table_stats

• Requires you to know what best possible stats are

<Insert Picture Here>

Extended Optimizer
Statistics

Eliminate wrong cardinality
estimates

Extended Optimizer Statistics

Business problem - Correlated Columns

• Real data often shows correlations between various attributes

•e.g. job title influences salary, car model influences make, seasons affect the
amount of sold goods (e.g. snow shoes in winter)

• Optimizer has to estimate the correct cardinality

•“Does an additional filter reduce the result set or not?”

Solution

• Extended Optimizer Statistics provides a mechanism to collect statistics
on a group of columns

• Full integration into existing statistics framework

• Automatically maintained with column statistics

• Instantaneous and transparent benefit for any migrated application

Improved Cardinality leads to Improved Plans

Extended Statistic Example
single column

SELECT ……FROM..

WHERE model = ‘530xi’

SLIVERC320MERC

BLACKSLKMERC

RED911PORSCHE

SILVER530xiBMW

BLACK530xiBMW

RED530xiBMW

ColorModelMake
Vehicles table

• Three records selected
• Single column statistics are

accurate

SILVER530xiBMW

BLACK530xiBMW

RED530xiBMW

ColorModelMake

--

| Id | Operation | Name | Starts | E-Rows | A-Rows

--

|* 1 | TABLE ACCESS FULL| CARS | 1 | 3 | 3 |

--

SELECT ……FROM..

WHERE model = ‘530xi’

AND color = 'RED'

SLIVERC320MERC

BLACKSLKMERC

RED911PORSCHE

SILVER530xiBMW

BLACK530xiBMW

RED530xiBMW

ColorModelMake
Vehicles table

Example
non-correlated columns

• One record selected
• No correlated columns

• Additional predicate reduces result set

• Single column statistics are sufficient

RED530xiBMW

ColorModelMake

--

| Id | Operation | Name | Starts | E-Rows | A-Rows

--

|* 1 | INDEX RANGE SCAN| CAR_MC | 1 | 1 | 1 |

--

SELECT ……FROM..

WHERE model = ‘530xi’

AND make = ‘BMW’;

Example
correlated columns, no extended statistics

SLIVERC320MERC

BLACKSLKMERC

RED911PORSCHE

SILVER530xiBMW

BLACK530xiBMW

RED530xiBMW

ColorModelMake
Vehicles table

• Three records selected
• Correlated columns

• Additional predicate has no effect

• Single column statistics are NOT sufficient

SILVER530xiBMW

BLACK530xiBMW

RED530xiBMW

ColorModelMake

--

| Id | Operation | Name | Starts | E-Rows | A-Rows

--

|* 1 | INDEX RANGE SCAN| CAR_MC | 1 | 1 | 3 |

--

SELECT ……FROM..

WHERE model = ‘530xi’

AND make = ‘BMW’;

Example
correlated columns, extended statistics

SLIVERC320MERC

BLACKSLKMERC

RED911PORSCHE

SILVER530xiBMW

BLACK530xiBMW

RED530xiBMW

ColorModelMake
Vehicles table

• Three records selected.
• Multi-column statistics solve the problem

SILVER530xiBMW

BLACK530xiBMW

RED530xiBMW

ColorModelMake

--

| Id | Operation | Name | Starts | E-Rows | A-Rows

--

|* 1 | TABLE ACCESS FULL| CARS | 1 | 3 | 3

--

Extended Statistics – in detail

• Use dbms_stats package

• Create_extended_stats

• Manually specify the group of columns

• Show_extended_stats_name

• Displays the system generated name for the column group

• Drop_extended_stats

• Drop a column group and all the statistics associated with it

• Monitor
• New dictionary table user_stat_extensions

• Shows sys generated name & actual column group desc

• Look at dictionary table user_tab_col_statistics

• New row with sys generated name will be add for each column group

Pending Statistics

Controlled statistics
publication

Pending Statistics

Business Requirement

• Statistics are published as soon as we complete gathering

=> Possibly unpredictable changes of execution plans

• Today you have ‘freeze’ critical plans or statistics

Solution

• Gather statistics and save as pending

• Verify the new statistics don’t change plans adversely

• Either on the same or a different system

• Publish verified statistics

Controlled and DBA-verified statistics management

Pending Statistics – in detail

• Controlled by init.ora parameter

• optimizer_use_pending_statistics

• Determines if the optimizer will use pending statistics

• Set to false by default in 11gR1

• Use dbms_stats package

• set_table_prefs

• All tables preferences have “publish” set to true by default

• publish_private_stats

• Once stats have been tested publish them for general use

• Monitor

• Look at dictionary table user_*_pending_stats (* = tab, col, ind)

<Insert Picture Here>

SQL Plan Management

Guaranteed plan stability and
controlled plan evolution

SQL Plan Management

Business Requirement

• Unpredictable changes in execution plans can happen

• New Statistics

• Changes in the Environment

• Software upgrades

• Today you have to ‘freeze’ critical plans or statistics

Solution

• Optimizer automatically manages ‘execution plans’

• Only known and verified plans are used

• Plan changes are automatically verified

• Only comparable or better plans are used going forward

SQL Plan Management is controlled plan evolution

Statement log

With SQL Plan Management

HJ

HJ

GB

Parse

• SQL statement is parsed for the first time and a plan is generated

• Check the log to see if this is a repeatable SQL statement

• Add SQL statement signature to the log and execute it

• Plan performance is still “verified by execution”

Execute Plan Acceptable

With SQL Plan Management

• SQL statement is parsed again and a plan is generated

• Check log to see if this is a repeatable SQL statement

• Create a Plan history and use current plan as SQL plan baseline

• Plan performance is “verified by execution”

Parse

HJ

HJ

GB

Statement log

Plan history

HJ

HJ

GB

Plan baseline

Execute Plan Acceptable

Statement log

Plan history

HJ

HJ

GB

Plan baseline

With SQL Plan Management
• Something changes in the environment

• SQL statement is parsed again and a new plan is generated

• New plan is not the same as the baseline – new plan is not executed
but marked for verification

GB

NL

NL

NL

NL

GB

Parse

With SQL Plan Management
• Something changes in the environment

• SQL statement is parsed again and a new plan is generated

• New plan is not the same as the baseline – new plan is not executed
but marked for verification

• Execute known plan baseline - plan performance is “verify by history”

Execute
Plan Acceptable

Parse

HJ

HJ

GB

Statement log

Plan history

HJ

HJ

GB

Plan baselineGB

NL

NL

Verifying the new plan

• Non-baseline plans will not be used until verified

• DBA can verify plan at any time

Invoke or schedule

verification

Optimizer

checks if new

plan is as good

as or better

than old plan

Statement log

Plan
history

HJ

HJ

GB

Plan baseline

GB

NL

NL

Plans which perform as good as or

better than original plan are added to

the plan baseline

GB

NL

NL

Plans which don’t

perform as good as

the original plan

stay in the plan

history and are

marked

unaccepted

Statement log

Plan
history

HJ

HJ

GB

Plan baselineGB

NL

NL DBA

SQL Plan Management – the details

• Controlled by two init.ora parameter

• optimizer_capture_sql_plan_baselines

• Controls auto-capture of SQL plan baselines for repeatable stmts

• Set to false by default in 11gR1

• optimizer_use_sql_plan_baselines

• Controls the use of existing SQL plan baselines by the optimizer

• Set to true by default in 11gR1

• Monitoring SPM

• Dictionary view DBA_SQL_PLAN_BASELINE

• Via the SQL Plan Control in EM DBControl

• Managing SPM

• PL/SQL package DBMS_SPM or via SQL Plan Control in EM DBControl

• Requires the administer sql management object privilege

SPM Plan Capture – Bulk

• From SQL Tuning Set (STS)
• Captures plan details for a (critical) set of SQL Statement

• Load these plans into SPM as baseline plans

• Next time statements are executed baseline plans will be used

• From Cursor Cache
• Load plans from the cursor cache into SPM as baseline plans

• Filters can be specified (SQL_ID, Module name, schema)

• Next time statements are executed baseline plans will be used

• From staging table
• SQL plan baselines can be captured on another system

• Exported via a table (similar to statistics) and imported locally

• Plan are “unpacked” from the table and loaded into SPM

<Insert Picture Here>

Pre-Upgrade Checklist

What to do before the upgrade

Testing on the new database release

• Conduct tests on hardware identical to product
• Same CPU brand and speed

• Same Memory size and architecture

• Same OS release

• Same disk array & # of physical disk

• Use a copy of the ‘live’ data from product
• ‘Hand-crafted’ data sets lead to unrealistic test results

• Ensure all important queries and reports are tested
• Current high-load SQL

• End of month / year batch jobs

• Capture all necessary performance information during tests
• Elapse times

• Execution plans

• Statspack reports

• System statistics / characteristics (IOSTAT, VMSTAT etc)

• Ensure comparable test results are available for your current Oracle
release

Removing old Optimizer hints

• If there are hints for every aspect of the execution plan
the plan won’t change between releases (Stored Outline)

• Partial hints that worked in one release may not work in
another

• Test all SQL stmts with hints on the new release using
the parameter _optimizer_ignore_hints=TRUE

• Chance are the SQL stmts will perform better without any hints

SQL Plan Management - general

upgrade strategy

Pl
an

Baseline

Plan History

HJ

GB

HJ

Oracle Database 11g
O_F_E=10

Begin

with

HJ

GB

HJ

No plan

regressions

Run all SQL in the Application

and auto load SQL Plan

Baselines with 10g plan

• Seeding the SQL Plan Baselines with 10g plans No plan change on upgrade

• After all SQL Plan Baselines are populated switch Optimizer_Features_Enable to 11g

• new 11g plans will only be used after they have been verified

O_F_E=11
After plans

are loaded

change

optimizer_features_enable

HJ

GB

NL

11g plan queue

for verification

Upgrade Strategy from 9i or 10g using

Stored Outlines

Oracle Database 9i
CREATE_STORED_OUTLINES=true

Begin

with

Run all SQL in the

Application and

auto create a

Stored Outline for

each one

•Auto capture Stored Outlines for top SQL Statement

• Stored Outlines will provide a safety net should any SQL regress after the upgrade

•After upgrade activate Stored Outline for an regressed SQL stmts and capture the plan

CREATE_STORED_OUTLINES=false

After Store

Outlines

are

captured

St
or
ed Outlines

OH Schema

HJ

GB

HJ

Oracle Database 11g

Pl
an

Baseline

Plan History

HJ

GB

HJ

Other Upgrade SQL Plan Management Scenarios

DBA

Database Upgrade

using SQL Tuning Sets

Oracle Database 10g

HJ

GB

HJ

Well

tuned

plan

Pl
an

Baseline

Plan History

HJ

GB

HJ

Oracle Database 11g

No plan

regressions

HJ

GB

HJ

Pl
an

Baseline

Development Database 11g

Well tuned

plan

HJ

GB

HJ

Baseline

plans

staging table

Plan History

Database Upgrade after 11g testing

on another environment

HJ

GB

HJ

Pl
an

Baseline

Plan History

HJ

GB

HJ

Production Database

No plan

regressions

HJ

GB

HJ

DBA

Pre-Upgrade Checklist

• Gather Instance-wide performance statistics from the
Production database (during peak load times) as a
baseline
• Hourly level 7 Statspack reports or AWR reports

• OS stats including CPU, memory and IO (such as sar, vmstat,
iostat)

• Export the Statspack or AWR schema owner

• Export Optimizer statistics into a stats table & export the
table

• Make a backup of your init.ora file

• Create a SQL Tuning Set including plans for critical SQL

• Or create Stored Outlines for all key SQL statements as
a backup mechanism to ensure you have a way to revert
back to the 10g

<Insert Picture Here>

Post-Upgrade Checklist

What to monitor after the upgrade

What to do with statistics after upgrade

• Use last known good set of 10g stats until system is stable

• Switch on incremental statistics for partitioned tables
• DBMS_STATS.SET_GLOBAL_PREFS('INCREMENTAL','TRUE');

• Temporarily switch on pending statistics
• DBMS_STATS.SET_GLOBAL_PREFS(‘PENDING’,’TRUE’);

• Gather 11g statistics
• DBMS_STATS.GATHER_TABLE_STATS(‘sh’,’SALES’);

• Test your critical SQL statement with the pending stats
• Alter session set optimizer_use_pending_statistics=TRUE;

• When proven publish the 11g statistics
• DBMS_STATS.PUBLISH_PENDING_STATS();

Post-Upgrade Checklist

• Install or upgrade Statspack & set the level to 7

• Schedule Statspack snapshots every hour

• If licensed for Diagnostic Pack use AWR

• Capture OS statistics, which coincide with your
statspack or AWR reports

• Identify the expensive SQL (top SQL by time, buffer gets)

• Compare these SQL statements to the top SQL
statements you had prior to the upgrade

• If they are not the same, you will need to investigate
why

<Insert Picture Here>

SQL Test Case Builder

SQL Test Case Builder

Business Requirement

• Bug resolution

• Test case required for fast bug resolution

• Not always easy to provide a test case

• What information should be provided?

• How much data is need?

• Getting the test case to Oracle can be tricky

Solution

• Oracle automatically creates a test case

• Collects necessary information relating to a SQL incident

• Collected data is packaged to be sent to Oracle

• Collected data allows a developer to reproduce the problem

SQL Testcase Builder

