Database

Oracle Database 10gR2: An enlightened revisit (before we give up and move to 11g!)
John Kanagaraj, DB Soft Inc
Introduction

There is usually a significant gap between the "New features" books and articles that accompany the first Release of a new database version and the consolidation and extension that occurs in Release 2 of that same product. This is true in the case of Oracle Database 10g Release 2, and information on new and useful (but underutilized) features reaches the user community in bits and pieces. As a result, we tend to utilize information purely from the "first revelation" and loose out on both the new features from the more stable Release 2 as well as features overlooked or under-rated in the first release.

In this paper, we will try and consolidate some of this information, specifically related to performance monitoring and tuning in Oracle Database 10g Release 2. We will also point to resources, including documentation that will help us maximize our investment in Oracle Database 10gR2 before we give up and move on to Oracle Database 11gR1.

Background to this paper (or "I thought we were all done with 10g!!")

Indulge me as I reminisce on what happened in this area and set the context for this paper: Many books (including mine!) covered the topic of New Features in Oracle Database 10g in great detail. Due to long lead times in producing books, most of them were written when Oracle Database 10gR1 itself was in Beta or was just released. Some of these books were also written when Oracle Database 10gR2 was in Beta (mine, for example). As a result, the topics and text was based on what the authors saw as useful features in R1 and early releases of R2. However, as more and more Oracle sites went into Production mode with Oracle Database 10g (R1 and R2), we ran into both issues and new ways of using this flagship version. Papers and articles about this version then followed, and over the years, have added to the knowledge base found in the books. For example, I presented a paper titled "Back porting ADDM, AWR, ASH and METRICS to Oracle 9i & 8i" at COLLABORATE 06 (and OOW 2006) and then two other papers titled "Your Tuning Arsenal: AWR, ADDM, ASH, METRICS and ADVISORS" and "Diamonds in the rough: 10gR2 Rules Manager and Expression Filters" at COLLABORATE 07 (and OOW 07). In the 2006 paper I applied what I have learnt about Oracle DB 10g back to older versions of the database that the majority of the production databases were still based on. In the 2007 papers, I compressed the panoply of performance management features available in Oracle DB 10g in the first paper, and dealt with a little known feature called Express Filters with the second one. With these papers (and my book), I thought that I was all done with this "New" version. However, Oracle Database 10g has continued to surprise me with so many features that it is worth writing one more paper about! Hopefully, all of what I want to say is captured is this paper and we can wrap up and move on to conquer Oracle Database 11g. As Oracle Database 10g replaces Oracle 9i and 8i databases as mainline production databases, I hope that this paper will help shine the light on some of the really useful features.
Overview of the new performance management features

Before we dive into the details, it is essential that we restate an overview of what is new in Oracle Database 10g, specifically related to performance management. Much of this is covered in books as well as in the wealth of articles that you will find in the websites of IOUG, the SELECT Journal and other SIGs. A wealth of papers and articles from previous IOUG sponsored conferences is available for download for all IOUG members from "LoOK" (for "Library of Oracle Knowledge") at http://www.ioug.org. Hence, we will not repeat what is already known but just mention this is passing.

Although Oracle Database 10g has introduced major changes in many areas, the most significant improvement has been in the area of performance monitoring and tuning. As a result, we will need to unlearn some of our old tuning methodologies and understand and embrace the new. The main thrust in this flagship version of the database has been to automate the traditional database administrative functions, support enterprise grid computing, and ultimately reduce the TCO (Total Cost of Ownership) of running a scalable and highly available database. Many architectural changes have been made to automatically improve memory handling, resource management, storage provisioning, SQL tuning, data movement, recovery speed, and globalization. Thus, “automation” is the main philosophy in this RDBMS version and this has been fully implemented in the performance management component. This important area consists of the following components:
Special disclaimer: Keep in mind though that special license will be required to even access any of the new views directly, via the API or the OEM GUI. The Oracle Diagnostic Pack and the Oracle Tuning Pack will need to be purchased (or licensed) to be able to use most of the features mentioned in this paper. The only notable exception is the use of STATSPACK, with the caveat that all access is to STATSPACK data only.

AWR – The Performance Data Warehouse

The Automatic Workload Repository or AWR for short is the performance data warehouse of Oracle Database 10g. All versions of the Oracle Database produce a vast amount of performance data. In Oracle Database 10g however, this is taken to a whole new level. The Automatic Workload Repository (AWR) is a new infrastructure component that is at the heart of the collection, storage and processing of this data. This data forms the basis for most of the problem detection and self-tuning mechanisms that Oracle Database 10g provides. In fact, all the performance-related reports, such as AWR, ASH and ADDM reports, as well as all the performance advisors depend on the data stored in this module. AWR consists of two sub-components: in-memory performance statistics, accessible through V$ views, and snapshots of these V$ views “persisted” in the database that record the historical values. AWR thus consists of the following collections:

· Active Session History (ASH)

· High-load SQL statements

· Time model statistics at the database level as well as at the session level for CPU usage and wait classifications

· Object statistics that record usage as well as access counts for segments such as tables, indexes, and other database objects

· Snapshots of traditional V$SESSTAT, V$SYSSTAT, V$SYSTEM_EVENT, and V$SESSION_EVENT data

· Host CPU, Memory and other statistics (in the form of the V$OSSTAT view)

Out of the box, AWR data is automatically collected every hour on the hour. The Oracle kernel allocates a small but distinct portion of the System Global Area (SGA) to buffers that are dedicated to holding session history and other AWR-related information. These in-memory buffers are updated by the MMNL and MMON background processes via sampling of session information and counters. The Memory Monitor Light (MMNL) process, new to Oracle Database 10g, performs tasks such as session history capture and metrics computation and stores this information in these buffers. The statistics are "persisted" from these in-memory buffers to disk as needed in the form of AWR tables. The Memory Monitor (MMON) process performs various background tasks, such as issuing alerts whenever a given metric violates its threshold value and taking snapshots by spawning additional process (MMON slaves), among others. Together, they are responsible for the statistics, alerts, and other information maintained by AWR. By default, these background jobs automatically generate snapshots of the performance data once every hour and flush the statistics to the workload repository. The Automatic Database Diagnostic Monitor (ADDM) as well as other performance related Advisors then kick in to analyze the data by comparing the immediately prior and current snapshots, and highlight any performance issues or problems. You can perform all this manually as well, but this is setup occur automatically out of the box. Ultimately, because SQL executing in a user or background session produces database work and hence load, AWR works to compare the difference between snapshots to determine which SQL statements should be captured based on their effect on the system load. This reduces the number of SQL statements that need to be captured over time, while still capturing the essential ones. Thus, AWR serves as a performance warehouse for the Oracle Database 10g, generating, maintaining, and reporting these performance statistics. AWR purges its own data in a scheduled manner, thus self managing itself.
AWR is reported via the AWRRPT.SQL report. A Diff-Diff report is produced using the AWRDDRPT.SQL. Other scripts provide information, ability to export AWR data, etc.
ASH - What happened to the sessions?!

Simply stated, ASH is the new Oracle database 10g performance component that exposes a historical view of the active sessions. ASH samples the session states of all active sessions in memory once every second and exposes a history of their states, include wait event information. The reasoning behind the provisioning of this very interesting data is to allow the performance analyst to perform on-the-spot analysis of a current session as well as to be able to look at the overall breakdown of session-related information in the short term. In the short term, this is exposed using the V$ACTIVE_SESSION_HISTORY. This view is presented from a circular buffer in memory and the data within is thus transient. Every 10th sample (by default) is then "persisted" in the WRH$_ACTIVE_SESSION_HISTORY table and this data is linked to the SNAP_ID value of the current AWR snapshot. In effect, if one is able to detect a performance issue using two snapshots, it is now possible to look at the sessions that contributed to this issue in an after-the-fact manner, which is indeed powerful. Thus, using ASH data, you can perform both on-the-spot analysis as well as look back into history and perform retroactive analysis because the ASH data is tied to a snapshot and a period. The advantage of immediate analysis is that you can obtain a larger number of samples directly from the memory buffer. However, the data is coarser when viewed later using the persisted copy on disk. Keep in mind that since ASH is part of and is linked to AWR, and hence suffers from the same downsides. In other words, there are some overheads to collection and storage. Nothing is free!!

ASH data is used in AWR snapshot and other collections as well. For example, we mentioned previously that AWR tracks and collects high-load SQL that occurs within the snapshot period rather than trolling through V$SQL for previously recorded SQL. It does this based on ASH data for SQL from sessions that either caused a majority of the waits during the period or consumed the most CPU. Other information collected directly from ASH includes “hot” files and segments (from P1 and P2 values) as well as database metrics. ASH data can be viewed both directly using the views as well as indirectly via EM Database Control. The base view V$ACTIVE_SESSION_HISTORY exposes the contents of the ASH buffers. This view holds all the relevant details that both V$SESSION and V$SESSION_WAIT hold, along with some additional columns. Note that the column names for some of the common columns have changed. For example, the SID and SERIAL# columns are now known as SESSION_ID and SESSION_SERIAL# respectively.

ASH data was not formally reported in Oracle Database 10gR1. However, a new report named ASHRPT.SQL (in the RDBMS/ADMIN directory) summarizes and reports ASH data from both memory and persisted information. Since this was an R2 feature, this was not well documented, if at all, in the books. If you were writing scripts to extract this information directly, please note this change.
ADDM – Your inbuilt (and unpaid!!) expert

The Automatic Database Diagnostic Monitor (ADDM) is probably the most important of the performance advisors and is indeed the starting point in the investigation of any performance issue in Oracle Database 10g. Simply stated, it is a self-diagnostic mechanism built into the kernel that automatically examines and analyzes the AWR snapshots at the end of every snapshot with the objective of determining any performance-affecting issue. It is then able to recommend corrective action; these recommendations come with an expected benefit. ADDM does not stop with these recommendations. Just as a general practitioner examines a patient in an initial investigation and recommends further examination in particular areas by other specialists, ADDM can direct the performance analyst to other advisors such as the SQL Tuning Advisor or the SQL Access Advisor when it determines that a problem exists. By default, ADDM executes at the end of every scheduled snapshot, performing a scheduled “database performance health checkup” using the captured AWR snapshots. In effect, it is casting an expert eye on the AWR report in a scheduled manner, every time, all the time. This is equivalent to an unpaid expert DBA performing analysis of these snapshots 24/7/365! These recommendations and findings are stored in the database so that you can analyze and report on them later on, at a convenient time.

Internally, ADDM applies certain rules to the massive amount of performance data collected by AWR. These rules have been based on the collective experience of many tuning experts within the Oracle RDBMS design and other teams. The goal of ADDM is simple - reduce the "DB Time" component generated by any load on the database. In Oracle Database 10g, this DB Time is the total time spent by the foreground sessions performing useful work. In other words, it is a combination of CPU spent parsing and executing SQL, PL/SQL, and Java as well other overheads such as process setup and management. When triggered, ADDM drills down into the performance statistics to identify the root cause of problems rather than just the symptoms, and reports the overall impact of the issue on the system as a whole. In making a recommendation, it reports the benefits that can be expected, again in terms of this DB Time. As we said before, the use of this common currency allows the impact of several problems or recommendations to be compared effectively.
Using such a well-understood and easily identifiable set of components to quantify the impact also prevents judgments based on experience rather than hard figures. For example, while interpreting a STATSPACK report, a rule of thumb, based on experience or "expert advice", might have indicated that an IOPS (the number of I/O operations per second) should not exceed the rate of, say, 1,000 per second. Anything exceeding this rate was classified as a problem that should be fixed. That said, we are aware of many systems that can run significantly higher IOPS rates without noticeably affecting performance. Using the new Time and Wait model data in AWR, ADDM can now report quantitatively that such I/O operations are, say, taking 30% of time spent in the database during that period. This quantified value makes it much easier to understand the problem and help determine the effect of fixing the issue, rather than just making a judgmental statement such as “The database is performing too much I/O.” Better still, it helps the performance analyst concentrate on what is important to tune so that the fix has the most effect. While this is an area where ADDM excels, it also encourages us to look at absolute performance figures and thresholds in a new way.
ADDM handles the most frequently observed performance problems and drills down to the root cause rather than taking the easier approach of just reporting symptoms. This reporting includes but is not limited to problems seen in the following areas:

· CPU bottlenecks. Is the system CPU bound by Oracle processes or by some other applications?

· Excessive parsing. Is there too much parsing due to use of short SQLs that do not use bind variables?

· Lock contention. Is there application-level lock contention?

· Concurrency. Is there an excessive number of buffer busy waits, latching, and the like, which reduce concurrency and thus prevent the application from scaling effectively?

· I/O capacity. Is the I/O subsystem performing as required, as compared to a set of expected I/O throughput figures?

· Incorrect sizing of Oracle memory and file structures. Are Oracle memory structures, such as the buffer cache and redo log buffer, adequate? Are Oracle’s file structures, such as the size of redologs, adequate? Are Oracle settings, such as an aggressive MTTR (mean time to recover), stressing the system?

· High-load SQL statements. Are any SQL statements consuming excessive system resources?

· High-load Java and PL/SQL time. Are Java and PL/SQL statements consuming a large amount of resources?

· Poor connection management. Are there excessive logon/logoff rates?

· Hot objects. Are any “hot” objects assessed repeatedly and needing investigation?

· RAC-specific issues. Are there any hot blocks in the global cache that result in inter instance contention? Is the interconnect behaving properly, without any latency issues?

ADDM reports these problems as “findings,” but does not stop with the diagnosis; it recommends possible solutions, based on the detected problem areas. When appropriate, ADDM recommends multiple solutions for the performance analyst to choose from. These are in the form of recommendations, and include the following:

· Hardware changes. This includes increasing the CPU capacity or changing the I/O subsystem configuration.

· Database-configuration changes. This includes changing initialization parameter settings, such as those for session caching of cursors, sort area size, and so on.

· Schema-level changes. ADDM may recommend partitioning a table or index, using automatic segment-space management (ASSM) for certain segments, and so on.

· Application changes. ADDM may recommend using the cache option for sequences when it encounters high access rates for SEQ$, and recommend using bind variables when it observes short SQLs that have hard-coded values.

· Using other advisors. ADDM may recommend running the SQL Tuning Advisor on high-load SQL or running the Segment Advisor on hot objects.

ADDM is also smart enough not to perform an analysis when it is not required to do so. When invoked at the end of every AWR snapshot, ADDM first determines the DB Time spent within the snapshot period. When this value is insignificant compared to the total time period of analysis, ADDM does not proceed further, instead recording the fact that there was no significant activity and thus the report was not generated. ADDM also highlights non-problematic areas in addition to the problem areas. This is based on wait classes that have been determined as not affecting the result significantly, but are nevertheless listed. A performance analyst can then quickly see that these wait classes were eliminated and hence not spend time and effort working on something that will not produce significant improvement. This is akin to a general practitioner assuring a patient that an otherwise worrying symptom is not the cause of a deeper issue, helping the patient concentrate on battling what is more important to his or her health. Sometimes, large values in STATSPACK reports that actually do not pose a problem seem alarming. Many a performance analyst has wasted time and resources trying to chase and fix such issues.

ADDM reports can be obtained using the ADDMRPT.SQL script in the RDBMS/ADMIN directory. For examples to extract and report summaries from ADDM data, please take a look at my 2007 paper.

As for changes in Oracle Database 11g, ADDM is now available in two flavors: Instance ADDM (which was the traditional ADDM report that needed to be run on every node) and Database ADDM (which performs an analysis that is RAC specific and covers information from all nodes). A new built-in package DBMS_ADDM is also provided to manage ADDM.

Tuning Advisors – Your bonus freebies

Oracle introduced the concept of inbuilt advisors starting in Oracle 9i. This version included the Database Buffer Cache Advisor (available in 9i Release 1 itself) as well as advisors for Shared Pool, Mean-time-to-recover (MTTR), Summary (MVIEW) and the PGA Target advisors. Oracle Database 10g extends this with a slew of new tuning advisors, including advisors for SQL Tuning, SQL Access, Segment (space fragmentation, online shrinking and segment growth trends) , Redo Logfile sizing, Tablespace and Undo Advisor. Many of these new advisors base their findings and advice on AWR performance data. Again, they follow the patterns established by ADDM, namely follow a logical path and generate advice based on internal rules that in turn was built with experience. In many cases, as with the Buffer Cache and Shared pool advisors, note that these are already present in Oracle 9i itself, but has never been utilized effectively. After reading this paper, we are hoping that you will end up reading the "New Features" guide, the Concepts, Reference and Tuning Guides for Oracle 9i, where all these advisors are described in great detail, and thus "re-discover" these nuggets and tools that were already at your disposal. We will touch upon just two of these advisors – the SQL Tuning Advisor (STA) and the SQL Access Advisor (SAA) as they pertain to tuning. The Advisors are usually accessed from the “Advisor Central” screen in EM Database Control as shown in Figure 5. An Advisor Framework ensures consistency and uniformity in the way advisors function in access, storage and reporting and this allow them to interact with each other seamlessly.
SQL Tuning Advisor

The SQL Tuning Advisor is actually a front end interface to the deeper Automatic SQL Tuning capability of the query optimizer. The main objective of the SQL Tuning Advisor (STA in its short form) is to automate the entire process of tuning SQL. Along with the SQL Access Advisor, it tries to automate one of the hardest and most complex tasks of a performance analyst—that of changing the SQL or the environment in which it works so that the SQL statement runs more efficiently. The STA uses a kernel code component known as the Automatic Tuning Optimizer (ATO) which is an integral part of the query optimizer. The ATO is able to perform “what-if” analysis and creates a profile of the SQL statement called a SQL Profile. This SQL Profile consists of auxiliary statistics specific to that statement. The query optimizer under normal mode makes estimates about cardinality, selectivity, and cost that can sometimes be off by a significant amount resulting in poor execution plans. SQL Profile addresses this problem by collecting additional information using sampling and partial execution techniques to verify and, if necessary, adjust these estimates. During SQL Profiling, the Automatic Tuning Optimizer also uses execution history information of the SQL statement to appropriately set optimizer parameter settings as may be required.

Once analysis is done, it is presented as a recommendation to accept the SQL Profile. A SQL Profile, once accepted, is stored persistently in the data dictionary. Note that the SQL Profile is specific to a particular query. If accepted, the optimizer under normal mode uses the information in the SQL Profile in conjunction with regular database statistics when generating an execution plan. The availability of the additional information makes it possible to produce well-tuned plans for corresponding SQL statement without requiring any change to the application code. Not much information about the ATO is available outside of Chapter 12 in the Oracle Performance Tuning Guide. Much of it occurs under the surface of the STA and it is recommended that you use the STA (whether via EM Database Control or the DBMS_ADVISOR API) to access it. The DBMS_SQLTUNE API provides access to and manipulation of SQL Profiles, including copying profile in/out of the data dictionary. SQL Profiles are grouped into categories which can be applied and this allows you to perform ‘test-and-set’ with the use of different categories. I.e., you could generate a development category, switch certain SQLs to use this category for validation in production environments before you turn it on for everyone.

As we mentioned before, you can submit a single SQL statement by itself or a set of SQL statements as a “SQL Tuning Set” (STS) to both the STA and the SAA for tuning. The latter makes more sense as the ATO can make decisions as a whole considering all the statements. An STS is a database object that includes one or more SQL statements along with their execution statistics and execution context, and could include a user priority ranking. The SQL statements can be loaded into a SQL Tuning Set from different SQL sources, such as the AWR, the current cursor cache, or custom SQL provided by the user. An STS includes:

· A set of SQL statements

· Associated execution context, such as user schema, application module name and action, list of bind values, and the cursor compilation environment

· Associated basic execution statistics, such as elapsed time, CPU time, buffer gets, disk reads, rows processed, cursor fetches, the number of executions, the number of complete executions, optimizer cost, and the command type

· Associated execution plans and row source statistics for each SQL statement (optional)

SQL Access Advisor

The SQL Access Advisor works alongside the SQL Tuning Advisor and could be called by the latter when appropriate. It is a tuning tool that provides advice specifically on materialized views, indexes, and materialized view logs. Given a specified workload in the form of a SQL tuning set or even individual SQL statements, the SQL Access Advisor recommends the creation of materialized views, materialized view logs, and indexes for a given workload. In general, as the number of materialized views and indexes and the space allocated to them is increased, query performance improves. The SQL Access Advisor considers the tradeoffs between space usage and query performance and recommends the most cost-effective configuration of new and existing materialized views and indexes. The SQL Access Advisor is actually based on and builds upon the Oracle 9i Summary Advisor.

Other Advisors
Other advisors of interest include the

· Segment Advisor where you can get advice on segments including recommendations to shrink the object. Quick tip: Metalink Note: 242736.1 10g NEW FEATURES on SEGMENT ADVISOR
· Undo Advisor which can be used to display Undo usage over a selected period and set Undo parameters using a GUI screen. The Undo Advisor can help you determine the best size for your undo tablespace to ensure successful completion of queries.

· Memory Advisor which can be used to display and change pool sizes in the SGA. It also serves as a front end to the Shared Pool and Buffer Cache advisories on the SGA side as well as PGA Memory usage details on the PGA management.

· MTTR Advisor which deals with setting and display of the Instance recovery, Media recovery and Flash Recovery

Metrics and SGA – (This "SGA" stands for "Server Generated Alerts")
Most of the database statistics views that you know of and use with other versions are essentially cumulative counters. For example, the V$SYSTEM_EVENT view exposes the cumulative value of various Wait events in the database that have accumulated from the time the database started until the time when you chose to view it. Similarly, the V$SYSSTAT view displays accumulated database statistics since database startup. When performing reactive real-time performance diagnosis, however, it is the rate of change of the counter that is important, rather than its absolute value since instance startup. Knowing that the system performed 2,000 I/Os per second or 3 I/Os per transaction during the last minute is rather more helpful than knowing that the database has performed 27,000,000 I/Os since it was started. As such, you can call this "rate of change" a metric because you know that when a particular rate is excessive as compared to a previous lower rate of change, you might expect to see some performance issue. In other words, thresholds for alerting can often be set based on rates. These alerts are known as the SGA or Server Generated Alerts. Some of these were highlighted in Figure 1. Oracle Database 10g detects those using metrics and can optionally send you the SGA alerts via email.

In Oracle Database 10g, metrics are available in a pre-calculated manner, normalized by both time and transaction. Most metrics are maintained at a one-minute interval and are also available in a historical fashion. You can use these views to determine the units of various metrics that you will encounter. In fact, the EM agent uses these metrics to raise alerts. The following objects can be of interest for viewing and analysis:

· V$METRIC displays individual metrics from the immediate past, and is rolled up as V$SYSMETRIC. This is generated once every 15 seconds

· V$METRIC_HISTORY exposes the history of the V$METRIC view while V$SYSMETRIC_HISTORY does the same for V$SYSMETRIC. Using these views you can look at the metrics from the past hour.

· V$METRICNAME names and describes the units for these metrics, while V$METRICGROUP groups them.

· V$EVENTMETRIC is another view that displays values of Wait event metrics for the most recent and active 60-second interval and can be used to take a quick look at the summary of events that happened in the last active minute.

· V$SYSMETRIC_SUMMARY is another view that provides max, min, average and standard deviation on the metric history

· WRH$_SYSMETRIC_SUMMARY persists some of these values in the AWR

These values are built on a circular buffer in memory and are thus overwritten every minute or so. Note that on a quiet system, these values will live on past the minute—the start and end times for this quick snapshot can be seen from the BEGIN_TIME and END_TIME columns. The thresholds for that instance are exposed via DBA_THRESHOLDS. V$ALERT_TYPES groups and scopes these alerts. Most of these views are not documented in the Oracle Database 10g Reference Manual. For more details on how these views matter in Server Generated Alerts, look at MetaLink Note #266970.1.

Features we did not mention before (in detail at least!)

All of the above may be "old-hat" for most of us, so let us move on and look at the not-so-visible details. I will do this as a series of points, each not really connected to the next, but when seen together will hopefully make sense.

1. STATSPACK – Not dead yet!

STATSPACK, introduced in Oracle 8.0, was a replacement for the DDL intensive BSTAT/ESTAT utility. STATSPACK takes snapshots of performance and environment related V$ views at scheduled intervals. It was then possible to report on the differences between the values in two snapshots. The AWR Report uses a similar concept, albeit in a much more advanced fashion, and was supposed to replace the functionality that STATSPACK provides. However, it seems that STATSPACK is still available, and in fact, has been modified to report some 10g specific information. The manner it is setup, used and maintained continues to be the same. In other words, you will have to install STATSPACK on all the instances/databases you require, setup jobs to capture snapshots at the appropriate level, manage the space used, setup purge routines, etc. You can continue to use the SPREPORT.SQL script to generate a STATSPACK report as you previously did. What is new is the additional sections in the 10g version that are described below:
Host and Instance CPU statistics
Host CPU (CPUs: 32)

~~~~~~~~              Load Average 

                      Begin     End      User  System    Idle     WIO     WCPU 

                    ------- -------   ------- ------- ------- ------- -------- 

                       0.04    0.03      3.38    1.06   95.56    3.13 ####### 

Instance CPU 

~~~~~~~~~~~~ 

 % of total CPU for Instance: 3.64

 % of busy CPU for Instance: 81.90

 %DB time waiting for CPU - Resource Mgr:

Memory Statistics Begin End

~~~~~~~~~~~~~~~~~                ------------ ------------ 

                  Host Mem (MB):     65,274.7     65,274.7 

                   SGA use (MB):      6,144.0      6,144.0 

                   PGA use (MB):      2,038.8      2,233.6 

    % Host Mem used for SGA+PGA:         12.5         12.8 

          ------------------------------------------------------------- 

Derived from OS related statistics exposed via V$OSSTAT and system-level Time Model statistics exposed via V$SYS_TIME_MODEL, this section will provide you "at-a-glance" look at the OS statistics as well as how much of the available CPU the Instance itself used. CPU Usage is reported as a percentage of the total CPU as well as a percentage of the Busy CPU. In other words, this is the percentage of ("DB CPU" + "background cpu time") compared to the total CPU available (No. of seconds in the period * No. of CPUs) as well as ("DB CPU" + "background cpu time") compared to the total CPU used across the system ("BUSY TIME" from V$OSSTAT). If you are interested in how this is derived, you will be able to see the related code in the SPCPKG.SQL (which creates the STATSPACK package) and SPREPINS.SQL.
% of total CPU for Instance:' ch45n, 100* ((:dbcpu+:bgcpu)/1000000) 

                                             / (:ttics)               pctval

% of busy  CPU for Instance:' ch45n, 100* ((:dbcpu+:bgcpu)/1000000)

                                             / ((:btic)/100)          pctval

In the equation above, "dbcpu" and "bgcpu" are the statistics values for the "DB CPU" and "background cpu time" entries in V$SYS_TIME_MODEL and "btic" and "ttics" are the statistics values for "BUSY_TIME" and ("BUSY_TIME" + "IDLE _TIME") from V$OSSTAT. The report also lists discrepancies, if any, between the estimated CPU available ("BUSY_TIME + IDLE_TIME") and the actual CPU available (No. of .seconds in time period * No. of CPUs).
An interesting point to note is that the AWR Report does NOT contain a section that reports these figures: You will have to calculate them manually.
Wait Event Histograms

The Wait Event Histogram is the other interesting section that is present in STATSPACK but NOT present in AWR. This is reported from the snapshots of V$EVENT_HISTOGRAM.

Wait Event Histogram  DB/Inst: MYRAC/MYRAC1  Snaps: begin_snap-end_snap 

-> Total Waits - units: K is 1000, M is 1000000, G is 1000000000 

-> % of Waits - column heading: <=1s is truly <1024ms, >1s is truly >=1024ms 

-> % of Waits - value: .0 indicates value was &lt.05%, null is truly 0 

-> Ordered by Event (idle events last) 

                           Total ----------------- % of Waits ------------------ 

Event                      Waits  <1ms  <2ms  <4ms  <8ms <16ms <32ms  <=1s   >1s 

-------------------------- ----- ----- ----- ----- ----- ----- ----- ----- ----- 

enq: TX - row lock content 7561    4.1    .0    .0          .1    .1  95.8 

enq: UL - contention        384   99.2    .5          .3 

enq: US - contention       3746   99.9    .1 

enq: WF - contention          7   57.1                                42.9 

enq: WL - contention          4   75.0  25.0 

gc buffer busy             1893   74.2   4.5   3.4  11.5   3.4   1.2   1.7 

gc cr block 2-way            44K  95.1   1.6   2.1   1.0    .1    .0 

gc cr block busy             33K  21.9   8.4   3.5   5.0   5.0  27.3  28.7 

gc cr block congested       117          3.4  23.1  53.8  18.8    .9 

gc cr disk read            1626   99.6    .4    .1 

gc cr failure                 1  100.0 
<snip>

SQL*Net break/reset to cli 2276   99.3    .5    .1                      .2 

SQL*Net message from dblin  683   43.6  25.0  14.5   4.2   6.4   2.0   4.1 

SQL*Net message to dblink   683  100.0 

<snip>

db file scattered read     2070K  91.4   7.3    .7    .5    .1    .0    .0 

db file sequential read    1413K  96.4   1.2    .6   1.5    .3    .0    .0 
This is an especially helpful section of you want to see the spread of the waits for any wait event. The histogram has buckets of time intervals from < 1 millisecond, < 2 milliseconds, < 4 milliseconds, < 8 milliseconds, and so on, in increasing powers of 2 up to 2^22 milliseconds. In the above section, it is clear that most (95.8%) of the wait times for the "enq: TX – row lock contention" event (waited 7,561 times) are less than a second, but greater than 32 milliseconds. On the other hand, the "gc cr block busy" event is more or less spread out between <1 msec on the one end and <= 1 sec on the other end. The familiar "SQL*Net message from dblink" and "db file sequential read" events shows an evenly decreasing wait time bucket that is re-assuring. STATSPACK also stores and reports snapshots of File response histograms that is exposed in V$FILE_HISTOGRAM., and Temp file response histograms that is exposed in V$TEMP_HISTOGRAM. 

If you notice bumps in the wait times for file I/O related events or any other events, then you should investigate them – look for large read/Write times in the following "File IO Stats" section for badly performing files: they may indicate specific problems with a particular device or disk volume. 
Unfortunately, while STATSPACK stores snapshots of V$EVENT_HISTOGRAM and V$FILE_HISTOGRAM, AWR does not, so it is not possible to extract this information as we did in the case of the CPU statistics. 
STATSPACK with level 7 generates Segstat report. However this is not on by default, and also there was a bug that caused ORA-4031 before. Starting Oracle Database 10g, while STATSPACK collection and reporting is still at Level 5 by default, you can always switch on Level 7 as the ORA-4031 related bug was fixed. This means that object statistics can and should be reported. This is also reported in AWR by the way, and we will see these later.

Additional "SQL ordered by" sections

STATSPACK in Oracle Database 10g also contains additional SQL sections in addition to the ones available previously in its Oracle 9i version (such as Gets, Reads, Shareable Memory, etc). The following new sections are now available:

· SQL ordered by CPU – Based on new CPU_TIME statistics in V$SQL
· SQL ordered by Elapsed – Based on new ELAPSED_TIME statistics in V$SQL 
· SQL ordered by Cluster Wait Time – Based on new CLUSTER_WAIT_TIME in V$SQL
Note that these are based on new time statistics columns in V$SQL, as we will see later. Also note that these are not the only new columns in V$SQL.
STATSPACK in 10g also compares the total statistics time for the SQL statements captured to the total statistics time reported by the Database. It also reports how much the SQL statements reported took up. This provides greater detail and shows the effect of SQL statements in that section
SQL ordered by CPU  DB/Inst: MYRAC/MYRAC1  Snaps: begin_snap-end_snap 

-> Resources reported for PL/SQL code includes the resources used by all SQL 

   statements called by the code. 

-> Total DB CPU (s):           1,826 

-> Captured SQL accounts for  202.4% of Total DB CPU 

-> SQL reported below exceeded  1.0% of Total DB CPU 

    CPU                  CPU per             Elapsd                     Old 

  Time (s)   Executions  Exec (s)  %Total   Time (s)    Buffer Gets  Hash Value 

---------- ------------ ---------- ------ ---------- --------------- ---------- 

    947.13          437       2.17   51.9    3503.86      29,619,674 4144629374 

select q_name, state, delay, expiration, rowid, msgid,   dequeue 

_msgid, chain_no, local_order_no, enq_time, enq_tid, step_no,

Notice that explanation for total figures more than 100% is provided as well in this text: "Note that resources reported for PL/SQL includes the resources used by all SQL statements called within the PL/SQL code.  As individual SQL statements are also reported, it is possible and valid for the summed total % to exceed 100". In other words, this is double-counting introduced because of PL/SQL packaged code as well the individual SQL statements executed within collects SQL statistics, and there is currently no way of distinguishing the two. 
So what does this mean for you?

It is clear that STATSPACK is not dead yet! One reason that STATSPACK was made available was to provide an alternative (albeit limited) to AWR and related reports which may not be used because of licensing reasons. Note that usage of certain options within DB Control such as AWR, ADDM and ASH and other new features will require purchase of the appropriate licenses. So if you do not have the appropriate license, you will have to use STATSPACK for performance reporting. Keep in mind one of the major weaknesses of STATPACK - the way Top SQL is collected and reported is entirely different as compared to AWR. STATSPACK scans V$SQL for SQL statements that exceed a pre-defined threshold for disk reads, Logical I/Os, CPU time, etc. As a result, STATSPACK collects "Top SQL" that may not really representative of the period in question. In contrast, because AWR only stores SQL that occurred during that period, the "Top SQL" section is the true representation of the SQL during that period. This is an important consideration while deciding to use STATSPACK over AWR.
For more information on STATSPACK, look at Note: 394937.1 Statistics Package (STATSPACK) Guide. This is however, incomplete – sections 8.3 onwards are missing, at least at the time of writing this paper.
2. New and Changed views

There are quite a number of new views as well as very welcome additions to existing views. These were mentioned in passing in various documents and books, and in fact, many of them have little if any documentation. We have listed some of the useful ones in sections:
Service related

We will deal with three views in this subsection: V$SERVICES, V$SERVICE_STATS and V$SERVICE_EVENT. Oracle had introduced the concept of a "Service" way back in Oracle 8i. Essentially, in its current form, Services provide the ability to connect to an abstract, named entity rather than a fixed Database System Identifier (SID). Right from the initial version, views such as V$SESSION and V$SQL provided a column named SERVICE_NAME. When specific services are setup, you can then use this column to determine which Service the session has connected to (from V$SESSION) or which Service this SQL served. For a great article on how Services are setup and work, have a look at Jeremy Schneider'a paper on http://www.ardentperf.com – look under the Publications section for a paper titled "Unleashing Oracle Services: A Comprehensive Review of “Services” in Oracle Databases". A listing from V$SERVICES is shown below:
SQL> select name, goal, dtp, aq_ha_notification, clb_goal
  2* from v$services;
NAME                 GOAL       D AQ_HA_NOTIFICATION CLB_GOAL

-------------------- ---------- - ------------------ ----------

APPLSYS.WF_CONTROL   NONE       N NO                 LONG

MYRAC1.MYDOM.COM     NONE       N NO                 LONG

SYS$BACKGROUND       NONE       N NO                 SHORT

SYS$USERS            NONE       N NO                 SHORT 
The GOAL and CLB_GOAL have to do with Service workload and Connection Load Balancing (CLB) – the latter is new in Oracle Database 10gR2. You can read up the RAC related manuals to obtain more understanding about this. However, what we do want to point out is the fact that you can create new "services" and allow clients to attach to these specific services. The database is normally configured with two default services, namely "SYS$BACKGROUND" and the "SYS$USERS". In the example above, we have added two more – namely "APPLSYS.WF_CONTROL" and "MYRAC1.MYDOM.COM" – these are accessed via the SERVICE_NAME entry in TNS. 
So what does this fetch you? In short, the ability to perform session segregation and workload measurement by service! This is easily summarized using the V$SERVICE_STATS view.

SQL> select service_name, stat_name, value

  2  from v$service_stats

  3  where stat_name in

  4  ('cluster wait time',

  5* 'db block changes');
SERVICE_NAME         STAT_NAME                                 VALUE

-------------------- ------------------------------ ----------------

SYS$USERS            db block changes                     34,618,836

MYRAC1.MYDOM.COM     db block changes                    471,456,178

APPLSYS.WF_CONTROL   db block changes                              0

SYS$BACKGROUND       db block changes                      2,383,337

SYS$USERS            cluster wait time                52,810,072,281

MYRAC1.MYDOM.COM     cluster wait time               798,080,328,466

APPLSYS.WF_CONTROL   cluster wait time                             0

SYS$BACKGROUND       cluster wait time                 4,405,806,181

In the example above, we list two statistics across all the services. Note that twenty eight different stats, including RAC related stats such as 'gc cr blocks received', 'gc current blocks received', 'gc cr block receive time' are available via this view. 
Service event is also interesting. Some 114 events are listed – there is no intersection between this and the Statistics above.
SQL> select service_name, event, total_waits,

  2  total_timeouts, time_waited

  3  from v$service_event

  4  where event in (

  5  'latch: library cache',

  6* 'read by other session');

SERVICE_NAME     EVENT                  TOTAL_WAITS TOTAL_TIMEOUTS TIME_WAITED

---------------- ---------------------- ----------- -------------- -----------

MYRAC1.MYDOM.COM read by other session     25107023          23985    10848655

MYRAC1.MYDOM.COM latch: library cache        420975              0     4352231

SYS$BACKGROUND   read by other session           29              0          14

SYS$BACKGROUND   latch: library cache          6742              0      104454

SYS$USERS        read by other session     27368974            435     3657701

SYS$USERS        latch: library cache        144347              0      734451

What does this get you? The ability to summarize statistics across various services and the ability to perform workload analysis.
In-Memory Metrics 

We touched upon In-memory metrics in a previous section. Kyle Hailey provides some excellent material on this on his website at http://www.perfvision.com/papers/rmoug_new_features_10g.ppt. These Metrics include short lived (15 seconds to a minute) and long lived (1 minute up to an hour).
Performance Histograms

Oracle Database 10g now provides performance figures using a Histogram of buckets that makes it easy to see the spread of statistics. This includes Event, File and Temp file response figures in Histogram buckets.
SQL> select event, wait_time_milli, wait_count

  2  from v$event_histogram

  3* where event like 'SQL*Net %to client'

EVENT                          WAIT_TIME_MILLI WAIT_COUNT

------------------------------ --------------- ----------

SQL*Net message to client                    1  137034612

SQL*Net message to client                    2      19183

SQL*Net message to client                    4       9922

SQL*Net message to client                    8       5446

SQL*Net message to client                   16       2931

SQL*Net message to client                   32       1519

SQL*Net message to client                   64        752

SQL*Net message to client                  128        310

SQL*Net message to client                  256        111

SQL*Net message to client                  512         29

SQL*Net message to client                 1024          1

SQL*Net message to client                 2048          1

SQL*Net more data to client                  1    8582781

SQL*Net more data to client                  2      34556

SQL*Net more data to client                  4      22114

SQL*Net more data to client                  8      20108

<Snip>

In the example, we are looking at V$EVENT_HISTOGRAM for a specific set of events (SQL*Net message to client and (partly) SQL*Net more data to client). This spread shows that most of the DB to Client messages are sent within 1 millisecond, and that shows there are no issues. The first few lines of the second event set shows that “more data to client” also follows this trend of completing within 1 millisecond(s). 
A similar view V$FILE_HISTOGRAM will show the Wait_time spread for *individual* files. This is a great tool to look at for determining "Hot files" and how they are behaving. The V$TEMP_HISTOGRAM view provides this same information for TEMP files. Unfortunately, the File and Event Histograms are stored in STATSPACK only (i.e. it is not snapshotted in AWR) while TEMP Histogram is not snapshotted either in AWR or elsewhere. All statistics are cumulative since startup 
Extensions and additions to existing views

Some of the views in Oracle Database 10g have been extended with information merged from other views, and columns that provide really useful information have been added. Some of them are listed below

V$SESSION view
In previous versions, you will have to join V$SESSION and V$SESSION_WAIT to determine what the session is waiting for and also join V$SESSION to V$LOCK to determine blocking sessions: No longer! With the addition of a few columns, the V$SESSION view now provides the same information. Blocking and locking information is now available via the BLOCKING_SESSION, BLOCKING_SESSION_STATUS, BLOCKING_INSTANCE columns and Session Wait information is merged into the EVENT, P1, P2, P3, SEQ#, etc. columns. In addition new columns show PL/SQL objects in use and being executed (PLSQL_ENTRY_OBJECT_ID, PLSQL_SUBPROGRAM_ID, PLSQL_ENTRY_SUBPROGRAM_ID, PLSQL_OBJECT_ID). Note that these are being exposed in the V$ACTIVE_SESSION_HISTORY as well as in the related AWR history table. Unfortunately, the BLOCKING_INSTANCE column is not recorded in the ASH and AWR data. As a result, if there was any cross-instance blocks, this information is missing in ASH and AWR.
The SQL_ID column now provides a replacement for the SQL_ADDRESS/HASH_VALUE column pair, and should be used instead. The SQL_CHILD_NUMBER column shows Child cursor executing and the SQL_TRACE columns shows if trace is turned on. Additionally, the SQL_TRACE_WAITS and SQL_TRACE_BINDS columns show the level of trace being performed.
V$SQL and related Views
As for the V$SQL view, the full text of SQL is now available in the SQL_FULLTEXT (Clob) column. Also, as noted above, you should use SQL_ID instead of older SQL address/Hash values. You can determine parallel executions (PX_SERVERS_EXECUTIONS) , different types of Wait times exposed per SQL Statement (APPLICATION_WAIT_TIME, CONCURRENCY_WAIT_TIME, CLUSTER_WAIT_TIME, USER_IO_WAIT_TIME, PLSQL_EXEC_TIME, JAVA_EXEC_TIME), detect changes to Optimizer environment (OPT_ENV) and many more including SQL_PROFILE, PROGRAM_ID, etc. Note also that V$SQL shows the PARSING_SCHEMA_NAME so this means you will not have to join DBA_USERS to resolve the name. The new column LAST_LOAD_TIME also shows when this SQL statement was last reloaded.

The OPTIMIZER_ENV, OPTIMIZER_ENV_HASH columns along with the SQL_ID points to the V$SQL_OPTIMIZER_ENV view. This view shows the various values of parameters that influence the CBO that have been set for that SQL/session. This will help determining if a session changes its CBO related parameters inside itself! The V$SQL_PLAN table as also undergone some changes. Specifically, the OTHER_XML column records a number of key factors about that Plan. We will see later how this value is exposed.
Interesting views: V$SQL_SHARED_CURSOR and V$SQL_BIND_CAPTURE

Two views V$SQL_SHARED_CURSOR and V$SQL_BIND_CAPTURE make for interesting research. The V$SQL_SHARED_CURSOR (existed in 9.2, new columns added in 10.2) exposes why a cursor was not shared, with the 10.2 version showing many more reasons why the cursor sharing did not occur. Of specific interest is the USER_BIND_PEEK_MISMATCH column. We believe it lays some foundation for the "Bind Aware" and "Bind Sensitive" adjustments that are now available in Oracle Database 11g to overcome the vexing issue of bind peeking introducing vast swings in performance. 

The new V$SQL_BIND_CAPTURE view on the other hand exposes a few of the latest set of bind variables by SQL_ID. There are still a few flaws – some of the variables are not captured (no reasons why!), there is no apparent consistency or rule as to how many of the last few sets are captured etc. However, note that the history is recorded and exposed via the DBA_HIST_SQLBIND view. All of this makes for some interesting research if you have the time! 
WAIT_CLASS column – a new way to classify Type of Wait
A new WAIT_CLASS (and related WAIT_CLASS#) column on various views including V$SESSION and AWR/ASH Views enable one to classify waits quickly. All the 878 different wait events are now classified, and a split up can be seen from the query below:
SQL> select wait_class, count(*) from v$event_name

  2  group by wait_class;

WAIT_CLASS                                                       COUNT(*)

---------------------------------------------------------------- --------

User I/O                                                               17

Application                                                            12

Network                                                                27

Concurrency                                                            25

Administrative                                                         46

Configuration                                                          23

Scheduler                                                               2

Cluster                                                                47

Other                                                                 592

Idle                                                                   62

System I/O                                                             24

Commit                                                                  1

This will help you zero in on the type of wait quickly rather than try and individually classify the 100s of different wait events. OEM uses this effectively to display System level wait summaries. 

3.
Event breakout
In prior versions, wait events such as ‘latch free’ and ‘enqueue’ encompassed different type of subevents. In other words, usually the values of P1 or P2 qualified the subevent or type of event. In Oracle Database 10g, however, these events have been broken out. For example, the ‘enqueue’ wait event now has 205 types. A sample list is provided below:
· enq: TX - row lock contention  (Waiting for Row lock)

· enq: UL – contention (Waiting for User generated lock)

· enq: XR - quiesce database (Waiting for DB Quiesce)

· enq: ST – contention (Space transaction – rare now with LMT)

Continuing with the ‘latch free’ wait event, this is now broken into 29 types. A sample list is shown below:
· latch: cache buffers chains 

· latch: library cache 

· latch: library cache pin

Note that this breakdown is available at all levels, i.e. at the Session and System levels as well as in History. As usual, see V$EVENT_NAME and/or Appendix C (Oracle Wait Events) of the Oracle 10g reference for explanations of the parameters. Note that Oracle Database 10gR1 was not consistent in naming this breakup at the System level – R2 seems to have rectified that issue.
What does this mean for you? You will no longer have to interpret the type of subevent. This also means that you might have to rewrite some of your scripts.
4.
Mutexes
Introduced in Oracle Database 10g (in R1 itself!), mutexes are a low overhead mechanism that are used instead of latches. Very little information is available about mutexes. Views V$MUTEX_SLEEP shows where the new mutex structures are sleeping (as compared to Latch sleeps) and provides a summary view. However, V$MUTEX_SLEEP_HISTORY exposes mutex sleeps for specific sessions. This is stored in an in-memory buffer that closely matches ASH buffers. Similar to the Performance histogram data, this is snapshotted in STATSPACK and surprisingly, not in AWR.
Note that in certain platforms such as HP-UX on PA-RISC based systems, Mutexes are simulated. As a result, there are a number of bugs and performance issues. In such cases, you can use the hidden "_kks_use_mutex_pin" and set this to FALSE (default is TRUE) to disable mutexes.
5.
Operating System Statistics
Starting in Oracle Database 10gR1, the Database exposes Operating system statistics via the V$OSSTAT view. This includes CPU and memory related operating system statistics. This is snapshotted in both STATSPACK and AWR.
SQL> select stat_name, value

  2  from v$osstat;

STAT_NAME                                                             VALUE

---------------------------------------------------------------- ----------

NUM_CPUS                                                                 24

IDLE_TIME                                                         802033123

BUSY_TIME                                                         878091185

USER_TIME                                                         489231709

SYS_TIME                                                          388859476

IOWAIT_TIME                                                       187539358

AVG_IDLE_TIME                                                      33398667

AVG_BUSY_TIME                                                      36564711

AVG_USER_TIME                                                      20362160

AVG_SYS_TIME                                                       16180042

AVG_IOWAIT_TIME                                                     7794964

OS_CPU_WAIT_TIME                                                 2.6867E+13

RSRC_MGR_CPU_WAIT_TIME                                                    0

LOAD                                                               2.359375

NUM_CPU_SOCKETS                                                          24

PHYSICAL_MEMORY_BYTES                                            1.0287E+11

VM_IN_BYTES                                                      7868502024

VM_OUT_BYTES                                                              0

Earlier, we had used the BUSY_TIME and IDLE_TIME in describing the new features of STATSPACK in 10g. Of particular interest is the LOAD, which is a snapshot of the System load at that point in time. Note that the value shown above is zero. See the effect of setting the FORMAT in SQL*Plus shows the actual value below.
SQL> column value format 9.9999999

SQL> select stat_name, value
  2  from v$osstat

  3  where stat_name = 'LOAD';

STAT_NAME                                                             VALUE

---------------------------------------------------------------- ----------

LOAD                                                              0.4580078

6. Other interesting views 
Other interesting views include the following:

· V$PROCESS_MEMORY – Session wise SQL and PL/SQL memory allocated (current and max) and  used 

· V$SQLSTATS – Same as V$SQL, but faster and some additional columns (AVG_HARD_PARSE_TIME, LAST_ACTIVE_CHILD_ADDRESS)

7.
Time and Wait Model

The Time and Wait model was derived from the philosophy of tuning: Both Waits and CPU usage needs to be considered in the DB Response time. In other words, DB Response = Sum(CPU) + Sum(Waits). As we saw before, STATSPACK reporting considered this in 9iR2 and above and used “Top 5 Timed Events” through the addition of “CPU Time” as a timed component. In Oracle Database 10G, the breakdown of CPU Time and Wait Classification is provided as shown below:
· V$SYS_TIME_MODEL/V$SYSTEM_WAIT_CLASS at the System level
· V$SESS_TIME_MODEL/V$SESSION_WAIT_CLASS at the Session level
The Time and Wait model is basically an organized view of the V$SYSSTAT/V$SYSTEM_EVENT. We have to consider the CPU Time component in tuning as the Wait interface does NOT contain these statistics. 
SQL> select stat_name, value from v$sys_time_model
     where value > 0;
STAT_NAME                                              VALUE

---------------------------------------------  --------------

DB time                                          893170091346

 DB CPU                                          176244910473

 sequence load elapsed time                       10215471781

 parse time elapsed                                4524012412

   hard parse elapsed time                         3657262901

   failed parse elapsed time                        103540062

   hard parse (sharing criteria) elapsed time       365217641

   hard parse (bind mismatch) elapsed time            5923514

   repeated bind elapsed time                        14768010 

 connection management call elapsed time            328536127

 PL/SQL execution elapsed time                     5554924592

   PL/SQL compilation elapsed time                  333815896

background elapsed time                           13782131027

 background cpu time                               4572399582

Statistics such as ‘Java execution elapsed time’ which did not accumulate any CPU usage will show up with zero values. In the listing above, all times are in Microseconds and indentations are manually introduced in order to show you the rollup. Unfortunately, there are no level indicators and one has to rely on the text to understand how the rollup occurs. Lines seen in V$SYS_TIME_MODEL are actually subcomponents of other lines. For example, the background cpu time is part of background elapsed time and can never be larger than the former. Similarly parse time elapsed is a rollup of the other parse components. The DB Time is the most valuable of these and is the total time spent by the foreground sessions performing useful work. In other words, it is a combination of CPU spent parsing and executing SQL, PL/SQL, and Java, as well other overheads such as process setup and management. 
Note that DB Time = (DB CPU + Elapsed time).New stats ‘concurrency wait time’, ‘application wait time’, ‘user I/O wait time’ from V$SYSSTAT matches the figures from V$SYS_WAIT_CLASS stats ‘Concurrency’, ‘Application’, ‘User I/O‘. However, DB CPU and DB Time do not match 

SQL> select wait_class, time_waited, total_waits 

     from v$system_wait_class;

WAIT_CLASS                TIME_WAITED      TOTAL_WAITS

-------------------- ---------------- ----------------

Other                      1370371162      10777690366

Application                  11031616            77468

Configuration                  433075          3972043

Administrative                    986               10

Concurrency                5069513044       4023651698

Commit                        4187059          4606985

Idle                      26816217176       1179884266

Network                       1964510        152943745

User I/O                    845512795       3197266600

System I/O                   21813081         47778673

For session level waits, use V$SESS_TIME_MODEL/V$SESSION_WAIT_CLASS Ties back to V$SESSION.WAIT_CLASS This time however, is in seconds! (inconsistent). Also note that Statistics can also be obtained by summarizing V$SYSTEM_EVENT or V$SESSION_EVENT by WAIT_CLASS
SQL> select wait_class, name from v$event_name

  2  where wait_class in ('System I/O','Concurrency') order by wait_class, name;

WAIT_CLASS         NAME

------------------ ------------------------------------

Concurrency        buffer busy waits

Concurrency        enq: TX - index contention   

Concurrency        latch: cache buffers chains  

Concurrency        latch: library cache

Concurrency        os thread startup

System I/O         LGWR sequential i/o

System I/O         control file parallel write

System I/O         recovery read

8.
Hidden surprises

GROUP BY does not ensure ORDER BY

There are a few hidden surprises in Oracle Database 10g that were probably not highlighted or emphasized in the text. One is that GROUP BY does NOT guarantee sorting, as was the default previously. Although sorting was never guaranteed unless specifically enforced in a GROUP BY, a large amount of legacy code used this default, and thus you may be surprised with unexpected results during an upgrade. Hence, you may have to plan for and possibly make SQL code changes in such circumstances. Note that the earlier behavior can be simulated using the “_gby_hash_aggregation_enabled” hidden parameter. Note that there are bugs around this usage too!)

System Statistics 
In Oracle Database 10g, System Statistics are collected by default. In other words, by default, the 'CPU Cost' is automatically considered in addition to IO Cost. While System Stats was introduced as a new feature from 9i on, it is enforced by default in Oracle Database 10g. When the database is created, the CPU speed is automatically sampled. Although the I/O speeds are not sampled, certain default values are assumed for I/O Seek Time and I/O Transfer time and the whole set is exposed via the SYS.AUX_STATS$ view. New columns also show up in new PLAN_TABLE. A default collection is shown below
SQL> select pname, pval1, pval2 

  2  from sys.aux_stats$;

PNAME                               PVAL1 PVAL2

------------------------------ ---------- ----------------

STATUS                                    COMPLETED

DSTART                                    07-06-2007 00:15

DSTOP                                     07-06-2007 00:15

FLAGS                                   1

CPUSPEEDNW                     1097.43428

IOSEEKTIM                              10

IOTFRSPEED                           4096

SREADTIM

MREADTIM

CPUSPEED

MBRC

MAXTHR

SLAVETHR

What all of this means is that you will have to remember that CPU costing will provide the adjustments to Indexed access that was earlier provided by manual adjustments to parameters such as OPTIMIZER_INDEX_CACHING and OPTIMIZER_INDEX_COST_ADJ. We would suggest that you revert back to the default values in case these were adjusted before. More details are available in Metalink Notes 149560.1 System Statistics: Collect and Display System Statistics (CPU and IO) for CBO usage and 153761.1 System Statistics: Scaling the System to Improve CBO optimizer. 
There is no general agreement, however, on how often System statistics should be collected. Be aware that collection of system statistics does NOT invalidate existing plans in the shared pool as with object statistics. Our recommendation is this: If you have not scheduled a manual System Statistics collection, do not change this without adequate testing.
Dynamic Sampling
Dynamic sampling, introduced in Oracle 9i automatically provides missing statistics when they are not present. The purpose of dynamic sampling is to improve server performance by determining more accurate estimates for predicate selectivity and statistics for tables and indexes. In Oracle Database 10g, the Optimizer_Dynamic_Sampling value defaults to 2 (instead of 1 in 9i). At Level 2, dynamic sampling is applied to all unanalyzed tables, and the number of blocks sampled is two times the default number of dynamic sampling blocks i.e. 64 blocks are sampled by default. What this means is that Global Temporary tables and new tables that are created will automatically participate in dynamic sampling at parse time. This parse time will not be limited by the _OPTIMIZER_MAX_PERMUTATIONS parameter (this parameter is actually a hidden one in 10g).
Statistics Gathering and Table Monitoring

In Oracle Database 10g, Table monitoring is turned on by default. This fact is combined with an out of the box Gather Stats Job that is adequate for most databases. In other words, a daily job runs to gather table/index statistics if the involved table undergoes a change of more than 10%. (In 10g, this value of 10% is fixed, but can be changed in 11g). The daily job also runs within a scheduled window to reduce impact on the Database, and the 10% threshold ensures that only active objects require statistics update. If you have a custom statistics collection job, remember to turn off one of them!
Also Dictionary Statistics collected by default, and you should schedule updates to this type of statistics. Statistics collection on Fixed Objects (V$Views) is now available although this is optional.
DBMS_STATS parameterization
Previously, the default parameters for DBMS_STATS were fixed. Now, some of these parameters can be changed using the DBMS_STATS.SET_PARAM call. This means that you could run into some nasty surprises if these changed from your 9i default and you were not aware of these changes since you were not specifically using them in your previous DBMS_STATS collection, or worse still someone/something else with access to DBMS_STATS changed them under you "just because it can be done" or "this needs to be fixed via a backdoor". Changes in the default values can also generate both pleasant and nasty surprises. For example, the availability of the new DBMS_STATS.AUTO_INVALIDATE value for the NO_INVALIDATE option helps avoid a 'cursor invalidation storm' when object statistics are collected. However, if you were dependent on an invalidation after a manual gathering, be aware that you may manually have to invalidate cursors by flushing the shared pool. As well, a new parameter for DBMS_STATS, namely AUTOSTATS_TARGET is applicable only for the Out of Box auto statistics collection. The value of this parameter controls the objects considered for statistics collection – ALL collects stats for all objects, ORACLE collects statistics only for objects owned by Oracle, i.e. SYS. AUTO decides which objects to collect stats.
The default values for the complete set of DBMS_STATS parameters are shown below, along with their impact.
	DBMS_STATS Option
	Default 10g
	Default 9i
	Comments

	CASCADE
	DBMS_STATS.AUTO_CASCADE (i.e. Oracle determines whether index statistics should be collected or not)
	FALSE
	. We suggest forcing this to TRUE always

	DEGREE
	NULL
	NULL
	No change

	ESTIMATE_PERCENT
	DBMS_STATS.AUTO_SAMPLE_SIZE (Oracle determines the appropriate sample size for good statistics – does this by sampling)
	NULL (means COMPUTE or 100%)
	If you were previously using NULL (which resulted in 100%), be prepared for surprises, both positive/negative!

	METHOD_OPT
	FOR ALL COLUMNS SIZE AUTO (Oracle determines the columns to collect histograms based on data distribution and the workload of the columns – again using sampling. We assume "column workload" refers to the undocumented COL_USAGE$ view which stores information about how columns participate in filters 
	FOR ALL COLUMNS SIZE 1
	Consider the various options for this crucial parameter and choose the right one. These were available in 9i itself:  SIZE integer; REPEAT; AUTO and SKEWONLY

	NO_INVALIDATE
	DBMS_STATS.AUTO_INVALIDATE (Oracle decides when to invalidate dependent cursors – not sure what is used to determine this)
	FALSE
	This may actually be good – i.e. it avoids an invalidation storm. However, if you were dependent on an invalidation after a manual gathering, be aware that you may manually have to invalidate cursors by flushing the shared pool (tricky one this invalidation!)

	GRANULARITY (Note that this parameter applies only if the object is partitioned)
	AUTO (Oracle determines the granularity based on the partitioning type)
	NULL – The default was to Gather global- and partition-level statistics.
	Again, depending on the previous default and what Oracle now determines to the right value, you might have some issues.


Also note that DBMS_STATS in Oracle Database 10g automatically stores the past 31 days' statistics and exposes that via the DBA_TAB_STATS_HISTORY view. Apparently, in Oracle Database 10g R2 patch set 10.2.0.4,  the presence of a new set of DIFF_TABLE_STATS_* functions "can be used to compare statistics for a table from two different sources". In any case, previous statistics seem to be stored in AWR's WRI$_OPTSTAT_* tables if you want to dig further, and the DBMS_STATS..RESTORE_TABLE_STATS function can be used to restore a previous version of the statistics. Some of the Optimizer's automatic operations are also recorded in AWR's WRI$_OPTSTAT_OPR table.
9.
Useful sections in the AWR report: Segment Statistics and others
By default Segment statistics are always collected and exposed in V$SEGSTAT. This is stored in AWR and reported in the AWR report and analyzed in the ADDM report as well. The following sections are reported:
· Segments by Logical Reads
· Segments by Physical Reads
· Segments by Row Lock Waits 

· Segments by ITL Waits
· Segments by Buffer Busy Waits
· Segments by Global Cache Buffer Busy (RAC only, new section in 10g)

· Segments by CR Blocks Received (RAC only)

· Segments by Current Blocks Received (RAC only)

These sections are extremely useful while drilling down into details. One of the issues is that due to reporting column sizes, long object names get chopped, so you will have to use SQL to extract this from the base tables. These sections were earlier called "Top 5 <name> Segments" for that named section. The GC Buffer Busy section, new in Oracle Database 10g, is especially helpful in solving the 'gc buffer busy' wait event.
On a related note, a number of sections in the AWR report related to RAC statistics is expanded in Oracle Database 10g. This includes in the GC Load Profile and the GC Efficiency Percentages: 

Global Cache Load Profile

~~~~~~~~~~~~~~~~~~~~~~~~~                  Per Second       Per Transaction

 --------------- ---------------

 Global Cache blocks received: 1,375.70 2.90

 Global Cache blocks served: 164.77 0.35

 GCS/GES messages received: 5,165.31 10.88

 GCS/GES messages sent: 8,684.54 18.30

 DBWR Fusion writes: 0.63 0.00

 Estd Interconnect traffic (KB) 15,028.80

Global Cache Efficiency Percentages (Target local+remote 100%)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Buffer access -  local cache %:   97.41

Buffer access - remote cache %:    0.43

Buffer access -         disk %:    2.16
10.
Extracting data from the AWR - drill down using the DBA_HIST tables wth example

The historical data in AWR tables is exposed by a number of views starting with DBA_HIST. The naming is quite apparent and map quite closely to AWR's WRH$ and WRM$ tables in the SYS schema. We will show an example below of how you can write SQL to extract some information directly from these tables:
rem

rem  Show diff in specific statistic from AWR Data

rem  Rewritten for 10g from Statspack

rem  JK/Sep 2007

declare

v_value                 number;

v_stat_name             v$osstat.stat_name%TYPE;

v_begin_snap_id         sys.dba_hist_snapshot.snap_id%TYPE;

v_end_snap_id           sys.dba_hist_snapshot.snap_id%TYPE;

v_prt_end_snap_id       sys.dba_hist_snapshot.snap_id%TYPE;

v_begin_interval_time   sys.dba_hist_snapshot.begin_interval_time%TYPE;

v_end_interval_time     sys.dba_hist_snapshot.end_interval_time%TYPE;

v_begin_startup_time    sys.dba_hist_snapshot.startup_time%TYPE;

v_end_startup_time      sys.dba_hist_snapshot.startup_time%TYPE;

--

v_instance_number       number;  -- Change this as required

--

/*  This cursor fetches details of the current snapshot plus the next one

    using the LEAD function. We will use this to

    make sure that there was no DB restart inbetween */

cursor snapshot is

select snap_id, lead(snap_id, 1, 0) OVER (ORDER BY snap_id),

startup_time, lead(startup_time, 1) OVER (ORDER BY snap_id),

to_char(begin_interval_time) begin_interval_time,

to_char(end_interval_time) end_interval_time

from sys.dba_hist_snapshot

where instance_number = v_instance_number

and dbid = (select dbid from v$database);

-- We don't subtract for certain types such as NUM_CPUS, etc.

cursor osstat is

select e.instance_number, e.stat_name,

case

  when e.stat_name in ('NUM_CPU_SOCKETS','NUM_CPUS','NUM_CPU_CORES','LOAD')

    then e.value

  else e.value - b.value

end stat_value

from sys.dba_hist_osstat b, sys.dba_hist_osstat e

where b.stat_id = e.stat_id

and b.snap_id = v_begin_snap_id and e.snap_id = v_end_snap_id

and b.instance_number = e.instance_number

and b.instance_number = v_instance_number;

begin

v_instance_number := &1;   -- Send this from command line

open snapshot;

   LOOP

    fetch  snapshot into v_begin_snap_id, v_end_snap_id,

       v_begin_startup_time, v_end_startup_time,

       v_begin_interval_time, v_end_interval_time;

    exit when snapshot%NOTFOUND;

    -- Run through only if the startup times for both snaps are same!

    -- also, avoid the last line (lead will return 0 for end_id)

    if ( v_begin_startup_time = v_end_startup_time ) and ( v_end_snap_id != 0 ) then

      open osstat;

      loop

        fetch osstat into v_instance_number, v_stat_name, v_value;

        exit when osstat%NOTFOUND;

        dbms_output.put_line(v_end_snap_id || ','

          ||  to_char(v_end_interval_time, 'DD-MON-YY HH24:MI')

          || ',' || v_stat_name || ',' || v_value);

      end loop;

      close osstat;

    end if;

   END LOOP;

close snapshot;

end;

/

Sample output: (portion of output)

SQL> @awr_osstat 1

old  38: v_instance_number := &1;   -- Send this from command line

new  38: v_instance_number := 1;   -- Send this from command line

5363,18-FEB-08 00:00,NUM_CPUS,24

5363,18-FEB-08 00:00,IDLE_TIME,5975106

5363,18-FEB-08 00:00,BUSY_TIME,2664727

5363,18-FEB-08 00:00,USER_TIME,970933

5363,18-FEB-08 00:00,SYS_TIME,1693794

5363,18-FEB-08 00:00,IOWAIT_TIME,531265

5363,18-FEB-08 00:00,AVG_IDLE_TIME,248847

5363,18-FEB-08 00:00,AVG_BUSY_TIME,110918

5363,18-FEB-08 00:00,AVG_USER_TIME,40339

5363,18-FEB-08 00:00,AVG_SYS_TIME,70455

5363,18-FEB-08 00:00,AVG_IOWAIT_TIME,22016

5363,18-FEB-08 00:00,OS_CPU_WAIT_TIME,115055488300

5363,18-FEB-08 00:00,RSRC_MGR_CPU_WAIT_TIME,0

5363,18-FEB-08 00:00,LOAD,.3505859375

5363,18-FEB-08 00:00,NUM_CPU_SOCKETS,24

5363,18-FEB-08 00:00,PHYSICAL_MEMORY_BYTES,0

5363,18-FEB-08 00:00,VM_IN_BYTES,23502864

5363,18-FEB-08 00:00,VM_OUT_BYTES,0

5364,18-FEB-08 01:00,NUM_CPUS,24

5364,18-FEB-08 01:00,IDLE_TIME,6018339

5364,18-FEB-08 01:00,BUSY_TIME,2684043

5364,18-FEB-08 01:00,USER_TIME,967711

5364,18-FEB-08 01:00,SYS_TIME,1716332

5364,18-FEB-08 01:00,IOWAIT_TIME,600067

5364,18-FEB-08 01:00,AVG_IDLE_TIME,250650

5364,18-FEB-08 01:00,AVG_BUSY_TIME,111715

5364,18-FEB-08 01:00,AVG_USER_TIME,40201

5364,18-FEB-08 01:00,AVG_SYS_TIME,71398

5364,18-FEB-08 01:00,AVG_IOWAIT_TIME,24891

5364,18-FEB-08 01:00,OS_CPU_WAIT_TIME,116153638900

5364,18-FEB-08 01:00,RSRC_MGR_CPU_WAIT_TIME,0

5364,18-FEB-08 01:00,LOAD,.3349609375

5364,18-FEB-08 01:00,NUM_CPU_SOCKETS,24

5364,18-FEB-08 01:00,PHYSICAL_MEMORY_BYTES,0

5364,18-FEB-08 01:00,VM_IN_BYTES,23683056

5364,18-FEB-08 01:00,VM_OUT_BYTES,0

In the example above, the PL/SQL anonymous block extracts and reports OS Stats information held in the AWR. We use the LEAD function to get subsequent snapshot details from the DBA_HIST_SNAPSHOT view and loop around in the DBA_HIST_OSSTAT view which stores the details. Please note that our code will handle DB restarts which will 'break the pair' of snapshots, and start from the next. You can extract this into an output file using DBMS_OUTPUT, import into Excel and graph away as required. Note that certain values such as BUSY_TIME and IDLE_TIME are subtracted from previous snapshot values while NUM_CPUS and LOAD is not. Using this script as a framework, you can build extracts from as many DBA_HIST views as required.
11. New features in the DBMS_XPLAN

The DBMS_XPLAN inbuilt package was introduced in 9i and is used to format and display the contents of a plan table. In 9i, it contained just the DISPLAY function. However, in Oracle Database 10g, this useful package has been greatly expanded to contain the following functions:
· DISPLAY_AWR Function - Displays the contents of an execution plan stored in the AWR

· DISPLAY_CURSOR - Displays the execution plan of any cursor in the cursor cache

· DISPLAY_SQLSET - Displays the execution plan of a given statement stored in a SQL tuning set
This is very useful and should be used rather than the EXPLAIN PLAN functionality as a lot more information is collected and displayed. An example is listed below. 
SQL> select * from table(dbms_xplan.display_cursor('g6jzbgnku8024',NULL,'ADVANCED'));

PLAN_TABLE_OUTPUT

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

SQL_ID  g6jzbgnku8024, child number 0

-------------------------------------

SELECT R.RESPONSIBILITY_NAME FROM FND_RESPONSIBILITY_VL R   WHERE R.RESPONSIBILITY_ID =  :1  AND

R.APPLICATION_ID =  :1

Plan hash value: 3221072286

---------------------------------------------------------------------------------------------------------

| Id  | Operation                    | Name                     | Rows  | Bytes | Cost (%CPU)| Time     |

---------------------------------------------------------------------------------------------------------

|   0 | SELECT STATEMENT             |                          |       |       |     2 (100)|          |

|   1 |  NESTED LOOPS                |                          |     1 |    51 |     2   (0)| 00:00:01 |

|*  2 |   INDEX UNIQUE SCAN          | FND_RESPONSIBILITY_U1    |     1 |    10 |     1   (0)| 00:00:01 |

|   3 |   TABLE ACCESS BY INDEX ROWID| FND_RESPONSIBILITY_TL    |     1 |    41 |     1   (0)| 00:00:01 |

|*  4 |    INDEX UNIQUE SCAN         | FND_RESPONSIBILITY_TL_U1 |     1 |       |     0   (0)|          |

---------------------------------------------------------------------------------------------------------

Query Block Name / Object Alias (identified by operation id):

-------------------------------------------------------------

   1 - SEL$F5BB74E1

   2 - SEL$F5BB74E1 / B@SEL$2

   3 - SEL$F5BB74E1 / T@SEL$2

   4 - SEL$F5BB74E1 / T@SEL$2

Outline Data

-------------

  /*+

      BEGIN_OUTLINE_DATA

      IGNORE_OPTIM_EMBEDDED_HINTS

      OPTIMIZER_FEATURES_ENABLE('10.2.0.3')

      OPT_PARAM('_b_tree_bitmap_plans' 'false')

      OPT_PARAM('_fast_full_scan_enabled' 'false')

      ALL_ROWS

      OUTLINE_LEAF(@"SEL$F5BB74E1")

      MERGE(@"SEL$2")

      OUTLINE(@"SEL$1")

      OUTLINE(@"SEL$2")

      INDEX(@"SEL$F5BB74E1" "B"@"SEL$2" ("FND_RESPONSIBILITY"."APPLICATION_ID"

              "FND_RESPONSIBILITY"."RESPONSIBILITY_ID"))

      INDEX_RS_ASC(@"SEL$F5BB74E1" "T"@"SEL$2" ("FND_RESPONSIBILITY_TL"."APPLICATION_ID"

              "FND_RESPONSIBILITY_TL"."RESPONSIBILITY_ID" "FND_RESPONSIBILITY_TL"."LANGUAGE"))

      LEADING(@"SEL$F5BB74E1" "B"@"SEL$2" "T"@"SEL$2")

      USE_NL(@"SEL$F5BB74E1" "T"@"SEL$2")

      END_OUTLINE_DATA

  */

Peeked Binds (identified by position):

--------------------------------------

   1 - :1 (NUMBER): 50357

   2 - :1 (NUMBER, Primary=1)

Predicate Information (identified by operation id):

---------------------------------------------------

   2 - access("B"."APPLICATION_ID"=:1 AND "B"."RESPONSIBILITY_ID"=:1)

   4 - access("T"."APPLICATION_ID"=:1 AND "T"."RESPONSIBILITY_ID"=:1 AND

              "T"."LANGUAGE"=USERENV('LANG'))

Column Projection Information (identified by operation id):

-----------------------------------------------------------

   1 - "T"."RESPONSIBILITY_NAME"[VARCHAR2,100]

   3 - "T"."RESPONSIBILITY_NAME"[VARCHAR2,100]

   4 - "T".ROWID[ROWID,10]

SQL_ID  g6jzbgnku8024, child number 1

-------------------------------------

SELECT R.RESPONSIBILITY_NAME FROM FND_RESPONSIBILITY_VL R   WHERE R.RESPONSIBILITY_ID =  :1  AND

R.APPLICATION_ID =  :1

<snipped out further information about child cursor 1 and 2>

The SQL in question has multiple children and hence all the details are listed out for all the children (second parameter = NULL). Note the use of the (yet-to-be-documented) "ADVANCED" parameter which lists much more details including Bind variable values from V$SQL_BIND_CAPTURE and so on. All this information is present in XML format in the OTHER_XML column in V$SQL_PLAN. Obtaining such deep information is really useful, and we recommend using the DBMS_XPLAN extensively.
Note that the DBMS_XPLAN.DISPLAY_AWR fetches the Plan from stored data rather than from the Shared pool.

Conclusion

So there you have it. This is a quick summary of some of the new features now available in Oracle Database 10g that have improved upon or totally transformed an existing feature. In many ways, what this new flagship version has done is to leap-frog over the usual repertoire of incremental updates to existing features that used to be the norm for new versions. However, that does not necessarily mean that all is lost for your existing versions and you have to upgrade to get the new bells and whistles. The purpose of this paper is to show you, using some examples, how you can also follow along the path blazed by this new version. We will not, as stated before, be able to reproduce all the new features. However, we will establish a pattern and methodology so that you yourself can add to it and extend it as you require.
Reference

· Oracle Database 10gR1 and R2 documentation set – Concepts, Admin, Performance Tuning, Inbuilt Functions and New Features manuals

· OTN White paper "Upgrading from Oracle Database 9i to 10g: What to expect from the Optimizer"

· Hailey, Kyle; ASH and other information: http://www.perfvision.com
· Kanagaraj, John et al: Oracle Database 10g: Insider Solutions book, SAMS Publishing
· Scheider, Jeremy; Service paper from http://www.ardentperf.com
About the Author

John Kanagaraj is a Principal Consultant with DBSoft Inc., and resides in the Bay Area in sunny California. He has been working with various flavors of UNIX since ’84 and with Oracle since ’88, mostly as a Developer/DBA/Apps DBA and System Administrator. Prior to joining DBSoft, he led small teams of DBAs and UNIX/NT SysAdmins at Shell Petroleum companies in Brunei and Oman. He started his Troubleshooting career as a member (and later became head) of the Database SWAT/Benchmarking team at Wipro Infotech, India. His specialization is UNIX/Oracle Performance management, Backup/recovery and System Availability and he has put out many fires in these areas along the way since ’84! 
John is an Oracle ACE, and has co-authored the "Oracle Database 10g: Insider Solutions" book published by SAMS. He is also the Associate Editor of IOUG’s SELECT Journal and has written many articles for IOUG's SELECT and OAUG's Insight Quaterly journals and even the SQL Server Magazine! John has presented interesting papers at IOUG and OAUG and always seeks to inspire budding writers and DBAs. John can be reached via email at ‘ora_apps_dba_y@yahoo.com’ or off his blog (non-Oracle) at http://jkanagaraj.wordpress.com. 

11





Paper 206


