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Databases are normally high-concurrency environments, where the number of 

concurrent processes ranges from tens to thousands. Yet many developers are 

either ignorant of the complexities and traps that are inherent in multi-process 

systems or wrongly assume that all the problems will be correctly handled by the 

database. There are many ways in which code that ran correctly on the 

developer’s workstation will slow down, crash, give wrong results or otherwise 

fail to scale when it is deployed on production environment. 

In this paper, I’ll present seven common concurrency mistakes well-known in 

computer science theory, yet often ignored by database developers. I’ll show test-

cases that reproduce each problem within Oracle and give tips on how to identify 

the problem when it occurs in production environment. 

 

 

Introduction 

At 1967, the first computer systems to support multiprogramming were released to the 

market [1]. Until that time, computers could only run one program at a time, sequentially. 

If your program was busy reading IO, or a user spent some time thinking instead of using 

the program, expensive CPU time was wasted. 

 

Multiprogramming allows the operating system to switch between processes, so while 

one program is waiting for the user or an IO operation, other programs can use the CPU. 

Modern operating systems can do this context switching so fast and seamlessly that even 

on a single CPU machine; we can run multiple users or multiple programs and believe 

that they all run at the same time. 

 

Multiprogramming systems make better use of their CPU and give users better response 

times. Without doubt, this is a very good thing. There is a catch, of course. Programmers 

can no longer assume their code will run continually and without interruptions on the 

CPU. If your code writes to a file, it may lose the CPU in the middle of writing and 

another program will run, possibly deleting this file. Programmers need to learn to write 

code that will expect these situations and can handle them correctly. 

 

Even though multiprogramming has been around since 1967, there is some evidence that 

not every program running today is designed to correctly handle issues that arise when 

several programs are running concurrently. 

 

Due to the complexity of concurrency issues, they are normally studied using sample 

programs, which recreate specific concurrency problems without the added complexity 

associated with real systems.  
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In this paper, I start by discussing the most complicated concurrency problems – the race 

condition. I give multiple examples and show the trade-offs involved in resolving it. Then 

I discuss some of the classical problems of concurrency, problems that were shown in 

1970s by operating system researches. I show how these problems appear in Oracle and 

show some of the conclusions that can be reached by studying them. 

I finish the paper with quick review of concurrency problems that are unique to Oracle 

and related to its read consistency mechanisms. 

 

 

Race Condition 

Assume we have a bank account that is shared by multiple users. Users will want to 

deposit and withdraw money from the account. 

 

We can create the account and interface with the following code: 

create table bank_account (id number primary key, amount 

number); 

insert into bank_account values (1,0); 

commit; 

 

 

create or replace procedure update_account(p_id 

number,p_amount number) as n number; 

begin 

 select amount into n from bank_account where id=p_id; 

 update bank_account set amount = n+p_amount; 

end; 

/ 

 

 

create or replace procedure deposit (p_id number,p_amount 

number) as 

begin 

 update_account(p_id,p_amount); 

end; 

/ 

 

create or replace procedure withdraw(p_id number,p_amount 

number) as 

begin 

 update_account(p_id,p_amount*(-1)); 

end; 

 

 

 

And now two users attempt to use the bank account concurrently: 

 



SQL> exec deposit(1,500) 

 

 

 

SQL> commit; 

 

 

 

 

SQL> exec withdraw(1,-500) 

 

 

 

SQL> commit; 

 

SQL> select amount from bank_account; 

AMOUNT 

----------  

-500 

 

As you can see from this simple example – a code that was not written to support 

concurrent users ends up giving a wrong result when used by two users. 

When the result of a procedure depends on the order in which different users executed it, 

we call this a race condition. The example we just saw shows a specific type of race 

condition, known as a lost update. Race conditions are probably the most annoying bugs 

to find and solve, as most of the time everything works perfectly fine, and only on rare 

conditions something unexpected happens. In particular, it is important to keep in mind 

that race conditions are sensitive to exact timing of operations and environments that 

change the timing such as a debugger or trace may prevent a reproduction of the bug . For 

this reason, it is important to instrument the program to keep log of important events and 

their timing while running. Often this log is the only way to track down the bug leading 

to a race condition when the problem would not reproduce. 

 

Since race conditions are rare and difficult to reproduce, it is tempting to simply ignore 

them. This method is known as Ostrich Algorithm. While it is sometimes a correct 

business decision not to spend resources fixing a very rare issue, it is important to 

remember that a bug which occurs very rarely in QA with 5 testers working on the code, 

will occur with great frequency on a busy production environment with 5000 users 

working on the system. 

 

The following code fragment is a demonstration of how common is the Ostrich algorithm 

when dealing with potential race conditions: 

 



 
spool XXX_drop_db_links.sql 

 

select 'drop database link '||OBJECT_NAME||';' 

from obj 

where OBJECT_TYPE='DATABASE LINK'; 

 

spool off 

 

@XXX_drop_db_links.sql 

 

 

This code fragment should be very familiar to most readers. In order to save time which 

executing the same DDL multiple times, we write a query to generate the DDL, spool the 

results into a file, and then execute the contents of the file. 

It should be clear that in case of two users executing this code, the results will be 

unpredictable. Despite the clear potential problems, this pattern is quite commonly used 

in production systems - demonstrating the usefulness of the Ostrich algorithm in 

resolving concurrency problems. 

 

How do we avoid race conditions? The key to preventing race conditions would be to 

identify resources which should not be modified by two processes at the same time, and 

prevent this from occurring. In other words, we need mutual exclusion –a way of 

making sure that while on session is accessing a shared resource, others will be excluded 

from it. To put it in more useful terms, we will refer to the section of code in which 

exclusive access to the shared resource is needed as a critical section and instead of 

seeking to protect the shared resource, we will have the easier task of making sure no two 

processes are running the critical section of the code at the same time. Note that during 

normal operations, a transaction in Oracle defines a critical section – locks are held from 

the first modification to the point the transaction is closed by either commit or rollback. 

 

Although this requirement is enough to avoid race conditions, it is not sufficient to ensure 

efficient concurrency. A good solution will need to follow these conditions [2]: 

1. No two processes may be simultaneously inside their critical sections 

2. No assumptions may be made about the number or speed of CPUs in the system 

3. No process running outside the critical section may block other processes 

4. No process should have to wait forever to enter its critical section 

 

Oracle has three mechanisms for protecting shared memory and providing mutual 

exclusion. These are the locks, latches and mutexes. 

 

Oracle documentation defines locks [3]:  

―Locks are mechanisms that prevent destructive interaction between transactions 

accessing the same resource—either user objects such as tables and rows or 

system objects not visible to users, such as shared data structures in memory and 

data dictionary rows.‖ 



In this paper I’ll mostly look at row locks, taken either automatically when a row is 

modified by DML, or by user request using select … for update syntax. 

However, these are far from being the only lock types used by Oracle. 

 

Latches are often known as ―lightweight locks‖, in this context lightweight means that 

they take fewer bytes in memory and are requested and released faster. They are typically 

used to protect internal memory structures such as blocks in the buffer cache or cursors in 

the shared pool. Latches are designed to be held for extremely short amounts of time. 

Mutexes are very similar to latches, but even lighter (see a trend here?). Starting around 

10g  Oracle is replacing many of the latches by mutexes. Developers who are used to 

Posix mutexes should remember that these have nothing in common with Oracle 

mutexes, which are implemented by Oracle and not by your standard library. 

 

Oracle also gives an interface that allows users to request a lock and give it a unique 

name, without having the lock tied to any particular database object. This can be used to 

protect objects that are not normally protected by Oracle lock services, such as writes to a 

file. It can be used to serialize procedures, in case we want certain actions to run in a 

specific order or at the exact same time [4]. User locks can also be used in a RAC 

environment in cases only one session in each node is allowed to run a specific action 

(perhaps one that is tied to the specific physical machine). 

 

Here is an example of how user locks can be used to protect code that writes to an 

external file from being executed simultaneously. Start by wrapping the DBMS_LOCK 

code with two useful functions – one that creates a lock names ―synchronize‖ and the 

other which releases it: 

 

 

 

 

create or replace procedure lock_sync 

  as 

    n1       number(38); 

    m_handle varchar2(60); 

  begin 

    dbms_lock.allocate_unique 

    ( lockname => 'Synchronize' 

    , lockhandle => m_handle 

    ); 

    n1 := dbms_lock.request 

    ( lockhandle => m_handle 

    , lockmode => dbms_lock.x_mode 

    , timeout => dbms_lock.maxwait 

    , release_on_commit => false – default! 

    ); 

  end lock_sync; 

  / 

 



create or replace procedure release_sync 

  as 

    n1       number; 

    m_handle varchar2(60); 

  begin 

    dbms_lock.allocate_unique('Synchronize',m_handle); 

    n1 := dbms_lock.release(m_handle); 

  end release_sync; 

/ 

 

 

 

Now we can use our custom locks to make sure that sessions will execute the critical 

section one at a time: 

 

exec lock_sync 

 

spool XXX_drop_db_links.sql 

 

select 'drop database link '||OBJECT_NAME||';' 

from obj 

where OBJECT_TYPE='DATABASE LINK'; 

 

spool off 

 

@XXX_drop_db_links.sql 

 

 

 

exec release_sync 

 

 

Now the first user will acquire the lock, and will hold it until he finishes running the 

critical section. Then he will release the lock, allowing the next use to acquire it. If the 

second user tried to acquire the lock before the first one finished, he would have had to 

wait until the first user released the lock. This way, the second use writing to the file will 

not interfere with the first user executing the contents of the file and the results will be 

predictable. 

 

Note: the last parameter of dbms_lock.request is release_on_commit. Releasing locks on 

commit is the default behavior of Oracle’s automatic locks, but not of user locks. Calling 

dbms_lock.request without this parameter will create a lock that will not be released on 

commit. This is sometimes beneficial, in our example, the critical section executes DDLs 

and we do not want their implicit commits to release the lock, but it is important to be 

aware of this. 

 



Sometimes, solving race conditions can lead to different kinds of issues. Take a look at 

another race condition: 
 

 

select max(id) into max_id from my_table; 

 

insert into my_table values (max_id+1,some_data); 

 

commit; 

 

 

I wish I could have said that this is a theoretical example that never happens in 

production. 

It is quite clear in this example that the developer wanted to generate a unique ID for his 

table, and either never heard of sequences or greatly disliked them. 

This code contains a race condition that can lead to duplicate IDs inserted into the table. 

 

It may be tempting to protect the maximum id in the table using select for 

update, however there is no way to actually do this. 

 

Our first attempt: 

 

 

SQL> select max(id) into max_id from my_table for update; 

select max(id) into max_id from my_table for update 

                                         * 

ERROR at line 1: 

ORA-01786: FOR UPDATE of this query expression is not 

allowed 

 

Fails. For update is only allowed on actual specific rows, not on aggregate 

expressions. 

 

We can try to trick SQL into locking the maximum id: 

 

select id into max_id from my_table where id=(select max(id) from my_table) for 

update; 
 

insert into my_table values (max_id+1,some_data); 

 

commit; 

 

 

This attempt fails in a more subtle and therefore more destructive way. Assume that 

currently the maximum ID in our table is 100. The session 1 selects 100 as max_id and 

inserts id 101, which is now the new maximum. 



Suppose that at this point in time, session 2 runs. It will block on select for 

update and wait until session 1 commits. Once session 1 commits, it will retrieve 100 

into max_id, since this is the row it waited on! It will not get the new maximum id, 

although now that session 1 committed, the change is visible to session 2.  However, 

since session 2 waited for row 100, it will get 100 as max_id, and insert a duplicate 

maximum ID. 

 

This code snippet is actually worse than the original, we are wasting time waiting for the 

wrong row, and then still have the duplicate id bug. 

 

We can make another attempt to solve the race condition. Since we cannot lock the 

maximum id in our table, we can try to keep it in another table: 

 
 

select max_id into p_max_id from extra_table for update; 

 

insert into my_table values (max_id+1,some_data); 

 

update extra_table set max_id=max_id+1; 

 

commit; 

 

 

This solution will not allow duplicate inserts. However, Oracle used to support 

concurrent inserts. Under this solution, only one session can insert data to my_table at the 

same time. The other tables will wait. By solving the race condition, we created 

serialization. As we saw before, we can also create serialization without solving any race 

conditions (Tom Kyte says that ―Blocked update or delete indicates that you probably 

have a lost update problem in your code‖ [5]). 

Serialization is not as serious bug as a race condition. While it severely hurts 

performance, it does not always lead to incorrect results. Since protecting critical sections 

against race conditions leads to serialization, it is important to be careful to protect only 

the parts that must be protected, and make sure that the serialization is 100% necessary. 

In the example above, sequences can be use successfully to generate new IDs without 

creating serialization. In case where sequences cannot be used (non-oracle database 

perhaps?), it is still possible to avoid serialization. For example by dividing future ids 

between the servers that perform the inserts – one server can insert only even numbers 

and the other only odd numbers (This solution can be generalized to any number of 

servers by using mod() function. Implementation details of this solution are left as an 

exercise to the reader). 

 

Operating systems literature is full of interesting concurrency problems that have been 

discussed and analyzed. It is useful to learn to recognize and resolve concurrency 

problems using these classical problems, rather than using real production code that is 

much more complex. 

 



Dining Philosophers 

Five philosophers are sitting around a dining table. Each philosopher has a plate with 

rice, which requires a pair of chopsticks to eat. Between each two philosophers is a single 

chopstick. 

 
 

Philosophers never speak to each other. They either eat or think. When a philosopher gets 

hungry, he attempts to acquire his chopsticks, one at a time. Then he eats for a while, and 

after eating he puts his chopsticks down and resumes thinking. Is it possible to write a 

program for each philosopher that does what it is supposed to do and never get stuck? 

 

The obvious solution is for each philosopher to run the following code: 

 

-- number of philosophers 

 

select count(*) into N from sticks;  

 

think(); 

 

-- take right chopstick 

update sticks set owner=philosopher_id where s_id=p_id;  

 

-- take left chopstick 

update sticks set owner=philosopher_id where 

s_id=mod(p_id+1,N);  

 

eat(); -- nom nom nom 

 

commit; -- put down chopsticks 

 

 

Imagine, however, a situation where all philosophers pick up their right chopstick 

simultaneously. None of them will be able to take their left chopstick, since each 

philosopher will wait for its neighbor. The result is a deadlock. Oracle will recognize this 

situation as a deadlock and will kill one of our philosophers as a deadlock victim. Once 

this philosopher is dead, the neighbor on his right has a guaranteed access to his left 

chopstick, preventing farther deadlocks. 

In the diagram below you can see the cycle of processes, each waiting for the next one to 

finish running and release resources. This cycle is the defining characteristic of deadlocks 



- deadlock detection algorithms work by recognizing cycles of blocked processes. Since 

Oracle detects deadlocks, recognizing that you have deadlocks in your code is trivial 

(compare with race conditions that are notoriously difficult to find).  

 

 
 

We could modify the program so that after picking up the right chopstick, the program 

checks to see if the left chopstick is available. If it is not, it will put down the right 

chopstick, think a bit more and then retry. 

 

 
think(); 

 

-- pick up right chopstick 

update sticks set owner=in_p_id where s_id=in_p_id; 

 

-- check if left chopstick is available 

select s_id into r_s from sticks where 

s_id=mod(in_p_id+1,N) for update nowait; 

 

-- if it is, pick it up 

update sticks set owner=in_p_id where 

s_id=mod(in_p_id+1,N); 

 

eat(); -- nom nom nom 

commit; -- put chopsticks down 

 

-- if left chopstick not available 

exception 

 when resource_busy then 

  rollback; -- put down the right chopstick 

 

 

 

This clearly prevents deadlocks from occurring, but there is a new problem. In 

jurisdictions where Murphy’s Law applies, this can lead to a situation  where all the 

philosophers start together, pick up the right chopstick, see that the left is unavailable, put 

it down, wait, pick up the right chopstick simultaneously again, and so on, forever. This 

is known as a starvation, where all sessions continue working but fail to make any 



progress (The situation is also called a livelock, but livelock is used to describe several 

other problems as well, so it can be ambiguous). 

 

Of course, under normal circumstances we would not expect complete starvation to 

occur. When the time our sessions spend eating or thinking is random and the sessions 

run for long periods, the probability for starvation is negligible. What we should be 

checking is how this method affects the time each philosopher has to wait before eating – 

the response times. 

 

In the table below you can see statistics regarding the response times experienced by five 

philosophers, using the eating algorithm we just described. 

 

 
PHILOSOPHER_ID   MAX_WAIT   AVG_WAIT TOTAL_WAIT   PCT_WAIT STDDDEV_WAIT 

-------------- ---------- ---------- ---------- ---------- ------------ 

             1       .672  .23136413     42.571 70.9516667   .132490119 

             2        .86 .237406593     43.208 72.0133333   .152001525 

             4       1.25 .254491228     43.518      72.53   .184494552 

             3        .86 .205541237     39.875 66.4583333    .14581332 

             0       .797 .217721311     39.843     66.405   .140907631 

 

 

Note that: 

 There is significant variance between maximum wait times of different 

philosophers. Some philosophers would starve while others can be quite satisfied. 

We can also see the high variance in the stddev column. 

 The maximum time spend waiting is quite high. Over a second in one case. 

 Under ideal conditions, 2 out of 5 philosophers can eat simultaneously. So we 

would expect the percent of time spent waiting to be around 60%. We can see in 

the table above that 3 of the philosophers waited over 70% of the time. This 

indicates a waste of resources. 

 

Compare these results with the response times when using a more optimal algorithm that 

will be shown later: 

 
 

PHILOSOPHER_ID   MAX_WAIT   AVG_WAIT TOTAL_WAIT   PCT_WAIT STDDDEV_WAIT 

-------------- ---------- ---------- ---------- ---------- ------------ 

             1       .515 .206848958     39.715 66.1916667   .087391237 

             2       .438  .18968932     39.076 65.1266667   .082672322 

             4       .625 .230628415     42.205 70.3416667   .112258158 

             3       .375 .169275109     38.764 64.6066667    .07941457 

             0       .672  .23995858     40.553 67.5883333    .11180214 

   

 

You can immediately see that under a better algorithm, there is less time wasted on 

needless waits and also less variance between the results and the maximum time spent 

waiting is significantly lower. 

 



You can see the different between maximum wait times in these algorithms clearly in the 

following graph: 

 
 

The blue pentagon represents the second algorithm, and it should be clear from the graph 

that it is much more wasteful of resources than the algorithm I will now introduce 

(represented by the red pentagon). 

 

Let us number the chopsticks, and ask each philosopher to first attempt to pick up the 

lower numbered chopstick (instead of always picking up the right one first). 

 

 

 

think(); 

 

update sticks set owner=in_p_id where 

s_id=least(in_p_id,mod(in_p_id+1,N)); 

 

update sticks set owner=in_p_id where 

s_id=greatest(in_p_id,mod(in_p_id+1,N)); 

 

eat(); 

 

commit; 

 

 

This forces one of the philosophers to wait for his left chopstick – before he picks up his 

right chopstick! This frees the philosopher on his left to pick up both chopsticks and eat. 

Using this algorithm our philosophers don’t need to keep retrying to pick up chopsticks 

while starving, but changing the order in which on philosopher waits for his chopsticks 

breaks the cycle and prevents deadlocks, as we can see below. 

 



 
 

The ―dining philosophers‖ problem models a scalable system. When you add more 

philosophers to the table, they arrive with at least part of the resources they will require to 

do their work. In a system with N philosophers, the number of philosophers eating is 

floor(N/2), so as we add more philosophers, our system will approach 50% 

utilization. 50% utilization indicates linear scalability – the holy grail of scalable 

systems. So, while we do need to carefully avoid deadlocks and starvation, if our system 

resembles the ―dining philosophers‖ problem, we are in a very fortunate situation. 

 

Note about deadlocks and dining philosophers: Experience shows that the number one 

cause of deadlocks in Oracle is unindexed foreign keys. If you have a parent table and 

child table, where the foreign key on the child table is unindexed, deleting rows from the 

parent table will lock the entire child table, not just the affected rows. These unexpected 

extra locks seem to be the leading cause for deadlocks. If you encounter deadlocks in 

Oracle based programs, I suggest checking for foreign key indexes before you go looking 

for philosophers and chopsticks. 
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Barbershop Problem 

A small town has one barbershop. Several barbers work in this barbershop. When 

someone in town decides it is time to get a haircut, he walks into the barbershop. If one of 

the barbers is free, the customer will sit down in the chair and receive a haircut. After the 

customer got a haircut, he will immediately leave. If all barbers are busy, the customer 

will sit in the waiting room until it is his turn to get a haircut. 

 

When we model the barbershop, it will be important to make sure certain rules are 

observed: 

 Only one barber will work on each customer 

 A barber can only handle one customer at a time. 

 Barbers will not attempt to cut hair of citizens who do not require a haircut. 

 Barbers will accept customers on a first-come first-serve basis. 

 A person who is waiting for a barber cannot enter the barbershop again until he 

got his haircut. 

 

Our model contains two procedures and one table. The table contains a list of potential 

customers – people who at any given moment either wait for a barber or not. 

The first procedure generates customers. It runs in a loop, and every second picks a 

random number of random people to enter the barbershop. The second procedure is 

executed by each barber – it looks at the table and selects the next person who requires a 

haircut, performs the haircut, marks that the person no longer needs his hair cut and 

continues to the next person. 

 

Interesting implementation note:  I implemented the barber code using the new select 

for update skip locked syntax, added in Oracle 11g. This allows the loop ran 

by each barber to open a cursor selecting all potential customers, but to only fetch rows 

that were not yet updated by other barbers and to only lock rows that were fetched. There 

are other possible implementations of barbers, but this seemed the most straightforward 

and efficient. It might not be a coincident that Oracle used select for update 

skip locked internally in its advanced queues long before it was officially supported 

as an interface. 

 

 

 

The customers table looks like this: 

 
create table customers 

 (id number primary key, 

 entered_shop timestamp, -- we want to track the wait times 

 needs_cut number); 

 

declare 

begin 

 for i in 1..2000 loop 

            -- at the beginning not one needs a haircut 

  insert into customers values (i,null,0); 



 end loop; 

 commit; 

end; 

/ 

 

 

The code for generating new customers: 
loop 

 update customers set needs_cut=1,entered_shop=systimestamp  

 where id in ( 

  select id from  

(select id from customers  

where needs_cut=0  

order by dbms_random.random)  

where  

rownum<=(dbms_random.value*(p_avg_customers_per_sec*2+1)) 

 ); 

  

commit; 

 dbms_lock.sleep(1); 

end loop; 

 

 

Each barber runs the following code: 

 
 

cursor c is  

select * from customers where needs_cut=1  

order by entered_shop  

for update skip locked; 

 

... – skipped boring parts here 

 

loop 

open c; 

loop 

 fetch c into l_rec; 

  exit when c%NOTFOUND; 

  cut_hair(dbms_random.value*p_avg_cut_time*2); 

  finish_work(l_rec.id); 

 end loop; 

 commit; 

 close c; 

end loop; 

 

This problem is interesting to study because it is a classical example of a queue system. 

The numbers of servers is fixed, customers need service at random intervals, and the 

length of service is also random. It is important to see that every concurrent system is 

also a queue system. When you have multiple processes running simultaneously on the 

same system, they will end up queuing for shared resources such as CPU, IO, specific 

blocks in memory, etc. Using the barbershop problem as a model, we can demonstrate 

concurrency mistakes that are queue related. Note that this brief overview is not intended 

to be a full queue theory course - this will be way beyond the scope of this paper. Cary 



Millsap wrote an excellent review of queue theory and its application to Oracle [6] and 

Craig Shallahamer dedicated an entire book to this topic [7]. 

 

First, assume we have 3 barbers; each of them can finish a haircut in 0.3 seconds on 

average. How many customers per second can our shop handle? 

 

 
 

One may expect that with 3 barbers, each capable of handling 3 customers per second, we 

would not see response time degradation before hitting the 9 customer limit. However, 

from the graph we can see that the wait times start getting longer significantly before we 

reach the theoretical limit of 9 customers per second, but after this point, the wait times 

increase sharply. We can also see that we did not quite achieve the theoretical ―hockey 

stick‖ figure that characterizes wait times in queue systems, possibly because we stopped 

our tests with 15 customers, but also because the way we generated random customers 

does not quite fit the Poisson distribution required by queue theory. It is also interesting 

to notice the extreme variance in maximum response times 

 

Now assume that before opening the shop we estimate that we will have 3 customers on 

average every second. How many barbers will we need? 

 

 



 
 

 

The optimal number of barbers will be between 4 and 6, which is perhaps higher than 

someone who is unfamiliar with queue behaviors may expect – shouldn’t 3 barbers who 

can handle 3 customers a second be able to support 3 concurrent customers with no wait 

time? 

But the most surprising result is the behavior when we allocate too many barbers to the 

task. At the ridiculous number of 8 barbers with average number of only 3 customers per 

second, the response times are increasing again. This is an effect of overcoming one 

major bottleneck (number of barbers in this case), only to run into a number of new 

bottlenecks (CPU, latches) that cause variance in the system behavior. DBAs who hoped 

to solve a performance problem in a system with IO or latch contention by adding CPUs, 

only to run into a worse performance problem on a less predictable system, should 

recognize this graph. This is another reminder that concurrency problems should be 

detected by looking not only on the behavior of the system on average but also by 

looking at the extreme values (90
th

 percentile, maximum) and at the variance of the 

system. 



 

Read/Write Consistency 

 

These are classical concurrency problems that are unique to Oracle, and involve the redo, 

undo and read consistency mechanisms that Oracle uses. No self-respecting review of 

concurrency problems in Oracle will be complete without at least mentioning these 

concurrency issues, but I will only cover these problems very briefly. They are covered in 

significant depth in by Tom Kyte [8].  

 

Non-transactional Changes 

Non-transactional changes are perhaps the most severe sin a database developer can 

commit (pun intended).  Transactions are one of these features that make a database what 

it is. One of the key properties of transactions is atomicity – all the changes done within a 

transaction are either committed or rolled-back together.  Oracle guarantees this behavior 

automatically, so it is normally one of those things developers don’t have to worry about. 

Except that Oracle does allow you to make changes within a transaction that cannot be 

rolled back when the transaction is rolled back, leaving the system with ―orphan 

changes‖. Examples for such non-transactional changes are sending emails, writing to a 

file, and doing anything within autonomous transaction. This is especially harmful when 

the non-transactional change is done within a trigger. 

 

Why do I say this is a concurrency problem? Because concurrent changes, can cause 

rollbacks the developer cannot anticipate in advance, and that will cause triggers to fire 

twice. If the trigger contains a non-transactional change, the change will occur twice 

since it was impossible to roll it back on the first run. 

 

Consider the following scenario: 

We have a rather large table, with 250,000 rows. Session 1 updates column X on row 

250,000. At about the same time, session 2 starts, updating all columns where X has a 

certain value. When session 2 is gets to row 250,000, it will block, waiting for session 1 

to commit. Once session 1 commits, session 2 will notice that the row it waited for now 

contains newer data and that the newer data may change the decision whether or not to 

update this row. It is impossible to decide whether or not to change this row at this 

situation, since either decision can lead to inconsistency. The only choice is to roll back 

session 2 and try again. This retry is called an update restart, and is a normal, expected 

behavior of Oracle. 

 

Of course, if session 2 caused triggers to fire with non-transactional changes during the 

update, these triggers will fire twice, a slightly less expected behavior. 

 

Extra IO 

High levels of concurrency can cause higher than expected IO in three scenarios: 

1. Consistent gets – If there are many updates and selects happening concurrently on 

the same block, every query will require reads from the undo tablespace to see a 

consistent image of the data.  You should expect to read at least as many extra 

blocks as there are transactions concurrently modifying our data. 



2. The update restarts we just saw. 

3. Delayed block cleanout – Suppose a transaction updates blocks in a system that is 

busy scanning large tables. It is possible that by the time the session commits, the 

block it changed is no longer in the buffer cache, instead they were written dirty 

to the disk. In this case, Oracle will only close the transaction in the redo log. 

Remember, that Oracle keeps lock information in the data block itself, so the data 

block is written to the disk with the lock information intact. This does not cause 

problems, as the locking transaction no longer exists. However the next time a 

query reads this block, Oracle will clean the extra information from the block and 

write it to disk. This means some extra IO and also extra redo. Note that this 

effect can cause even select statements to generate redo. 

 

Summary 
1. Race conditions only occur when the system is tested with concurrent users. 

Therefore, the only wait to catch them is by paying attention to unexpected hangs, 

delays or wrong results during load tests. This could indicate race conditions. If a 

result happens only under load and is completely irreproducible in a development 

environment, it is a good indication of a race condition. 

2. Race conditions are usually prevented by making the shared resources mutually 

exclusive. While this solves the race condition, it serializes the code and degrades 

performance. Sometimes this is an unavoidable tradeoff, but a better solution 

would be to use a resource that can be shared safely between concurrent processes 

instead, or two split the resources in advance between the different processes so 

no sharing will be needed. 

3. Serialized code can be detected by examining traces taken while it was running 

(you should be able to detect wait events resulting from serialization), or by 

noticing that the second user takes twice as long to run as the first one. 

4. ―Dining Philosophers‖ problem models concurrency at a very scalable system – 

the more users you have, the more resources they can share. A bit like nodes in 

RAC that add more memory to the system, which is later shared by all nodes. 

5. Deadlocks are the easiest problem since Oracle finds it for you. Mark J Bobak has 

very good paper about finding the problems that lead to deadlocks [10]. 

6. Starvation, or unfair resource allocation, is more difficult to detect. Large variance 

in response times for users than ran concurrently can indicate an issue. 

7. Since unindexed foreign keys, which lead to over-locking, is the most common 

reason for deadlocks (and serialization) in Oracle, you can easily prevent most of 

your problems by indexing correctly. 

8. Concurrent systems can be viewed as queue systems. Processes will queue for 

CPU, locks, latches, IO, etc. We can use queue theory to predict how many users 

our system can serve at which response times, and also to decide how to size the 

hardware to serve given number of users. 

 

 

 

 

 



Scripts 

These are the scripts used to generate the results shown in this paper. Note that the code 

snippets shown in the paper itself were edited for readability and are therefore not exactly 

identical to the code that appears in the scripts. As you’ll see in my comments below, 

none of it is production quality, but you shouldn’t run this on production anyway.  

This would be a good time to thank Rob Van Wijk for reviewing my coding and 

suggesting numerous improvements to the code style, it is actually readable now. 

 

 shared_account.sql reproduces the first race condition example. Run it in sqlplus, 

and it will run shared_account2.sql as the second concurrent session. 

 dining_philosophers.sql contains the framework for the dining philosophers 

problem. 

 start_philosophers_1.bat runs the deadlock scenario (a scenario that will cause a 

deadlock, at least some of the time).  

 start_philosophers_2.bat runs the starvation scenario. 

 start_philosophers_3.bat runs the effective solution 

 All these batch scripts run philosophers_report.sql at the end to generate a nice 

summary of response times. 

 barbershop.sql contains the framework for the barbershop tests. 

 Barber_runner.pl runs the scenarios used to demonstrate the different queue 

situations. 
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