
1

Testing, testing, testing …

Jonathan Lewis
www.jlcomp.demon.co.uk

jonathanlewis.wordpress.com

Testing

2 / 40

Jonathan Lewis

© 2008

Who am I ?

Independent Consultant.

23+ years in IT
20+ using Oracle

Strategy, Design, Review
Briefings, Seminars
Trouble-shooting

www.jlcomp.demon.co.uk
jonathanlewis.wordpress.com

One of the directors of the UKOUG
Member of the Oak Table Network.
Oracle Author of the year 2006
“Select” Editor’s choice 2007

2

Testing

3 / 40

Jonathan Lewis

© 2008

Highlights

Why do we test

Three areas for testing

Principles of testing

Traps

Testing

4 / 40

Jonathan Lewis

© 2008

Why do we test

We invest to avoid waste

• We aim to eliminate threats as early as

possible in the development

• When things do go wrong, we reduce the

time it takes to fix them.

3

Testing

5 / 40

Jonathan Lewis

© 2008

Common reasons for testing

Confirming new code will work

Diagnosing possible bugs

Predicting performance threats

Testing

6 / 40

Jonathan Lewis

© 2008

Common features of testing

Build the simplest viable model

Incremental complexity minimises effort

Try to break it

Proving it won’t work is a lot easer than proving it will

Imagine the boundaries

But this means you have to know the technology

4

Testing

7 / 40

Jonathan Lewis

© 2008

Case Study (Debug – 1)

Pre-production (9.2.0.8, 16KB blocksize, 64-bit RHEL 4) takes 30 minutes.

Development (9.2.0.8, 4KB blocksize, 32-bit RHEL 4) takes 10 seconds.

The investigation included copying the pre-production data into new

tablespaces. Tests using the 16KB block size were always slow, tests

using the 4KB block size were always much faster.

http://www.oraclealchemist.com/oracle/hey-guys-does-size-matter/

A batch job updates 830,000 rows in a two-column table, copying the

data from column 1 to column 2.

Testing

8 / 40

Jonathan Lewis

© 2008

Case Study (Debug – 2)

A 10046 trace of the final test produced the following stats:

(Note: without indexes, 830,000 updates should give about 830,000 CU gets)

EXEC #1: (16K block size)

c=1822034009,e=1779788042,p=768,cr=1541885,cu=446195350,mis=0,r=829484

EXEC #1:(4K block size)

c= 8924643,e= 10332483,p= 0,cr= 12681,cu= 2219343,mis=0,r=829484

16K block: current gets = 446,000,000 CPU = 1,822.0 seconds

4K block: current gets = 2,200,000 CPU = 8.9 seconds

5

Testing

9 / 40

Jonathan Lewis

© 2008

Case Study (Debug – 3)

Let’s try to model the problem from the description so far

create table t1

-- tablespace test_4k

-- tablespace test_16k

as

select

trunc(dbms_random.value(10000000,100000000)) n1,

trunc(dbms_random.value(10000000,100000000)) n2

from

dual

connect by

level <= 830000

;

No difference in performance,

Small differences in the stats
update t1 set n2 = n1;

Testing

10 / 40

Jonathan Lewis

© 2008

Case Study (Debug – 4)

16KB blocks: Time:- 23 seconds

Name Value

session logical reads 851,198

CPU used when call started 685

CPU used by this session 685

db block gets 849,964

consistent gets 1,234

4KB blocks: Time:- 23 seconds

Name Value

session logical reads 856,931

CPU used when call started 747

CPU used by this session 747

db block gets 849,964

consistent gets 6,967

(The “db block gets” results are consistent with the expected ca, 830,000

6

Testing

11 / 40

Jonathan Lewis

© 2008

Case Study (Debug – 5)

What if …

I make the tablespaces ASSM - no differences

I index the updated column - no differences

I “exercise” the data first - no differences

The numbers for current gets were always as expected.

There is no reasonable cause for the excess 444,000,000

CU gets to appear – so where is the model wrong ?

Testing

12 / 40

Jonathan Lewis

© 2008

Case Study (Debug – 6)

The SQL updates 830,000 rows in a two-column table,

copying column 1 to column 2.

create table t1

tablespace test_16k_assm

as

select

trunc(dbms_random.value(10000000,100000000)) n1,

to_number(null) n2

from

dual

connect by

level <= 830000

;

What if column 2 is initially null ?

update t1 set n2 = n1;

7

Testing

13 / 40

Jonathan Lewis

© 2008

Case Study (Debug – 7)

16KB blocks - ASSM: Time:- 5805 seconds

Name Value

session logical reads 846,972,182

CPU used when call started 579,244

CPU used by this session 579,244

db block gets 845,084,110

consistent gets 1,888,072

4KB blocks - ASSM: Time:- 89 seconds

Name Value

session logical reads 6,698,517

CPU used when call started 3,602

CPU used by this session 3,602

db block gets 5,547,182

consistent gets 1,151,335

(The logical I/O was unreasonably high in tests with ASSM –

especially when I used the 16KB block size.

Testing

14 / 40

Jonathan Lewis

© 2008

Case Study (Debug – 8)

We seem to have emulated the problem under ASSM.

Moving to a 4K block appears to improve performance.

Is it the correct fix ?

Can we work out why this effect appears ?

Why are the current gets still too high in 4K ?

(5.5M instead of about 830,000)

8

Testing

15 / 40

Jonathan Lewis

© 2008

Case Study (Debug – 9)

What is the real impact of this update ?

trunc(dbms_random.value(10000000,100000000)) n1,

to_number(null) n2

update t1 set n2 = n1;

The row size “doubles”

Testing

16 / 40

Jonathan Lewis

© 2008

Case Study (Debug – 10)

16KB Blocks: Time:- 22 seconds

Name Value

session logical reads 849,704

CPU used when call started 819

CPU used by this session 819

db block gets 848,345

consistent gets 1,359

4KB Blocks: Time:- 22 seconds

Name Value

session logical reads 856,032

CPU used when call started 801

CPU used by this session 801

db block gets 851,167

consistent gets 4,865

Set pctfree to 50

9

Testing

17 / 40

Jonathan Lewis

© 2008

Case Study (Debug – 11)

16KB Blocks - ASSM: Time:- 5805 seconds

Why0 Why1 Why2 Other Wait

144,587,672 0 0 0 ktspfwh10: ktspscan_bmb

696,965,277 0 0 0 ktspbwh1: ktspfsrch

830,778 0 0 0 kduwh01: kdusru

4KB Blocks - ASSM: Time:- 89 seconds

Why0 Why1 Why2 Other Wait

1,321,618 0 0 0 ktspfwh10: ktspscan_bmb

680,379 0 0 0 ktspfwh12:

660,257 0 0 0 ktspswh12: ktspffc

660,257 0 0 0 ktsphwh39: ktspisc

668,945 0 0 0 ktspbwh1: ktspfsrch

481,868 0 0 0 ktuwh05: ktugct

660,257 0 0 0 kdtwh00:

830,629 0 0 0 kduwh01: kdusru

660,257 0 0 0 kduwh07: kdumrp

What were those block gets ? Mostly “free space search” for row migration

Testing

18 / 40

Jonathan Lewis

© 2008

Case Study (Debug – 12)

The difference in workload HAD to be a “side-effect”.

A simple model showed a dramatic performance difference

Know what you need to measure (x$kcbsw)

Comparison of measurements highlights the error

Knowledge of the technology pinpoints the bug

The more you test, the faster you can design tests.

If you create a test, document it and keep it

10

Testing

19 / 40

Jonathan Lewis

© 2008

New Code – 1

• Range Partitioning is terrific but ...
– I want to add a partition every hour.

– I want to keep one year's worth of data

– I need 4 indexed access paths

• What happens when you -
– add a partition to 8,760

– drop 24 partitions out of 8,760

• which is actually 120 out of 43,800 (table + 4 indexes)

Testing

20 / 40

Jonathan Lewis

© 2008

New Code – 2

create table pt_big (

n1 number,

n2 number,

n3 number,

n4 number,

n5 number,

v1 varchar2(10)

)

partition by range(n1) (

partition p0 values less than (0)

);

create index pb_2 on pt_big(n2) local;

create index pb_3 on pt_big(n3) local;

create index pb_4 on pt_big(n4) local;

create index pb_5 on pt_big(n5) local;

11

Testing

21 / 40

Jonathan Lewis

© 2008

New Code – 3

declare

m_ts timestamp := systimestamp;

begin

for i in 1..8760 loop

execute immediate

'alter table pt_big add partition p' ||

to_number(i,'FM9999') ||

' values less than(' ||

to_number(i,'FM9999') ||

')'

;

dbms_output.put_line(systimestamp - m_ts);

m_ts := systimestamp;

end loop;

end;

/

Testing

22 / 40

Jonathan Lewis

© 2008

New Code – 4

select

obj#, part#

from

tabpart$

where

bo# = {table object id};

Results 9.2.0.8
OBJ# PART#

48008 1

48011 2

48013 3

48015 4

...

Results 10.2.0.3
OBJ# PART#

54815 10

54818 20

54820 30

54822 40

...

12

Testing

23 / 40

Jonathan Lewis

© 2008

New Code – 5

View tabpartv$
select ...

row_number() over (partition by bo# order by part#),

...

from tabpart$

dba_tab_partitions references:
9i tables: tabpart$, tabcompart$

10g views: tabpartv$, tabcompartv$

View tabcompartv$
select ...

row_number() over (partition by bo# order by part#),

...

from tabcompart$

Testing

24 / 40

Jonathan Lewis

© 2008

New Code – 6

Ideas to investigate – dealing with dropping partitions.

How about a ‘recent’ and ‘history’ table.

Exchange partition out of ‘recent’, then add, then exchange

partition into ‘history’ - maybe once per day

Create a UNION ALL view of the two tables ?

Maybe build history as daily partitions by insert/append

Add date predicates to view to hide ‘overlap’ data.

Could query rewrite do anything clever ? (probably not)

13

Testing

25 / 40

Jonathan Lewis

© 2008

Performance – 1

I want to test the effect of disk_async_io and filesystemio_options

I did some testing in which I update 4 separate tables in 4 sessions and

1 million updates per session . But I can see no significant difference in

the elapsed time for the combinations (true and none, true and setall

etc. all possible combinations)

A bulk update on the other hand shows significant differences in elapsed

times of the combinations.

From a recent email

Testing

26 / 40

Jonathan Lewis

© 2008

Performance – 2

Disk I/O “tricks” are likely to be of some benefit during peak loading –

async i/o, for example, typically flattens out peaks. This is why there

was some effect during the bulk loading.

How do you emulate a heavily loaded OLTP system though ?

Maximise random I/O – reads and writes

Find a way to scale up concurrency

14

Testing

27 / 40

Jonathan Lewis

© 2008

Performance – 3

I would create a very large table (say 25M rows) with at least four

indexes on it. The indexes could be numeric columns with randomly

integer values at about 10 rows per value – and one primary key.

Update the table randomly, frequently, and concurrently.

Run at least 20 concurrent processes which do something like:

Pick a row at random by key

Update all four indexed columns

commit

sleep for 2/100 second

repeat 100,000 times (ca. 2,000 seconds)

Testing

28 / 40

Jonathan Lewis

© 2008

Performance – 4

execute dbms_random.seed(0)

create table t1 nologging pctfree 90 pctused 10

as

with generator as (

select --+ materialize

rownum id

from all_objects

where rownum <= 5000 -- 5K * 5K = 25M

)

select

rownum id,

trunc(dbms_random.value(1,2500000)) n1, -- 2.5M

...

trunc(dbms_random.value(1,2500000)) n4,

lpad(rownum,50,'0') vc1

from generator v1, generator v2

where rownum <= 25000000 -- 25M

;

15

Testing

29 / 40

Jonathan Lewis

© 2008

Performance – 5

alter table t1 add constraint t1_pk primary key (id);

create index t1_n1 on t1(n1);

create index t1_n2 on t1(n2);

create index t1_n3 on t1(n3);

create index t1_n4 on t1(n4);

begin

dbms_stats.gather_table_stats(

ownname => user,

tabname =>'T1',

estimate_percent => 1,

block_sample => true,

method_opt => 'for all columns size 1',

cascade => true

);

end;

/

Testing

30 / 40

Jonathan Lewis

© 2008

Performance – 6

Easy Synchronisation -- controller

variable g_lock_handle varchar2(32)

execute dbms_lock.allocate_unique(-

lockname => 'External id1', -

lockhandle => :g_lock_handle, -

expiration_secs => 120 -

)

execute dbms_output.put_line(-

dbms_lock.request(-

lockhandle => :g_lock_handle, -

lockmode => dbms_lock.X_mode, -

timeout => 60, -

release_on_commit => TRUE -

) -

)

16

Testing

31 / 40

Jonathan Lewis

© 2008

Performance – 7

Easy Synchronisation -- worker

variable g_lock_handle varchar2(32)

execute dbms_lock.allocate_unique(-

lockname => 'External id1', -

lockhandle => :g_lock_handle, -

expiration_secs => 120 -

)

execute dbms_output.put_line(-

dbms_lock.request(-

lockhandle => :g_lock_handle, -

lockmode => dbms_lock.S_mode, -

timeout => 60, -

release_on_commit => TRUE -

) -

)

Testing

32 / 40

Jonathan Lewis

© 2008

Performance – 8

Worker code:

execute dbms_random.seed(&1)

begin

for i in 1..100000 loop

update t1

set

n1 = trunc(dbms_random.value(1,2500000)),

n2 = trunc(dbms_random.value(1,2500000)),

n3 = trunc(dbms_random.value(1,2500000)),

n4 = trunc(dbms_random.value(1,2500000))

where

id = trunc(dbms_random.value(1, 25000000))

;

commit write immediate wait;

dbms_lock.sleep(0.02);

end loop;

end;

17

Testing

33 / 40

Jonathan Lewis

© 2008

Performance – 9

Running:

Session 0 start controller_lock_code

Acquires exclusive lock on user-defined lock

Session 1 start worker_code 1

Session 2 start worker_code 2

...

Session N start worker_code N

Sessions 1..N are waiting on session 0

Session 0 commit;

Releases exclusive lock

Session 1..N acquire shared lock and start running simultaneously

Testing

34 / 40

Jonathan Lewis

© 2008

Performance – 10

What do you want to check ?

Session workload v$sessstat

Session time lost v$session_event

File I/O v$filestat / v$tempstat

Latch contention v$latch

Data contention v$segstat

Buffer contention v$buffer_pool_statistics

ASM issues v$asm_disk_stat

O/S issues See relevant o/s tools

18

Testing

35 / 40

Jonathan Lewis

© 2008

Approaches (a)

“Empirical”

Create a sufficiently realistic model and exercise it to see

if it breaks – you may get lucky, you may get unlucky

“Analytical”

Examine the actions of a simple model and predict the

breaking point. Then build a complex model to test the

prediction (if necessary).

Testing

36 / 40

Jonathan Lewis

© 2008

Approaches (b)

Proof of Concept:

I want one table (which has to be an IOT)

8 Concurrent loading processes

One partition per process avoids contention

A process splits “its” partition every 15 minutes

It’s a novel strategy - will it work ?

19

Testing

37 / 40

Jonathan Lewis

© 2008

Approaches (c)

“Empirical”

Create the table

Snapshot wait events and workload statistics

Run eight copies of pl/sql to do:

insert 10 rows into my partition;

commit;

split my partition;

See what happens

Testing

38 / 40

Jonathan Lewis

© 2008

Approaches (d)

“Analytical”

Enable SQL trace to check dictionary activity

Use DDL triggers to check library cache effects

Run once through the cycle

insert 10 rows into one partition;

commit;

split the partition;

Look at the results and predict the problems.

20

Testing

39 / 40

Jonathan Lewis

© 2008

Approaches (e)

Early in 8i concurrent splits of partitioned IOTs could deadlock

(ORA-04020) due to a defect in Oracle’s internal code.

“Empirical” testing

The stress test might hit the critical concurrency condition.

“Analytical” testing

The threat is visible in the library cache locking sequence

Testing

40 / 40

Jonathan Lewis

© 2008

Summary

Why are you testing

What are you going to model ?

What is a positive result, what is negative ?

Degree of realism (sanity check)

