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Oracle performance tuning: a systematic approach  
 
A mission critical application system is experiencing unsatisfactory performance.  As an experienced 
Oracle performance specialist, you are called in to diagnose the problem.  You’re well versed in 
modern wait-based performance profiling oriented performance diagnostics (such as “YAPP”1), so the 
first thing you want to determine is which wait category is consuming the bulk of non-idle time.  
Looking at V$SYSTEM_EVENT, you immediately see that the database is spending the vast majority 
of it’s time within ‘db file sequential read’ events.  Furthermore, the average time for each 
of these events – which represent single block reads against database files – is more than 20ms which 
is far higher than the service time you expect from the expensive and sophisticated disk array 
supporting the application.  
 
You suspect that the disk array might have insufficient bandwidth to support the applications demands. 
Considering the average physical IO rate of 8,000 IOs per second, you determine that this corresponds 
to a rate of more than 100 IOs per second for each disk in the array and you also note that the disk 
devices are reporting that they are almost continuously 100% busy.  You therefore conclude that the 
system is IO bound and that the solution is to increase IO bandwidth.  You recommend increasing the 
number of disk devices in the array by a factor of four.   The dollar cost is substantial as is the 
downtime required to redistribute data across the new disks within the array.  Nevertheless, something 
has to be done, so management approve the expense and the downtime.  Following the 
implementation, users report they are satisfied with performance and you modestly take all the credit. 
 
A successful outcome?  You think so, until…. 
 

• Within a few months performance is again problematic and disk IO is again the culprit. 
• Another Oracle performance expert is called into the case and she reports that a single 

indexing change would have fixed the original problem with no dollar cost and no down 
time. 

• The new index is implemented, following which the IO rate is reduced to one tenth of that 
observed during your original engagement.  Management prepare to sell the now-surplus 
disk devices on E-Bay and mark your consulting record with a “do not re-engage” stamp.  

• Your significant other leaves you, and you end up shaving your head and becoming a 
monk.  

 
After years of silent mediation, you realize that while methodologies such as YAPP correctly focus 
your attention on the most time consuming activities performed by the database, they fail to 
differentiate between causes and effects.  Consequently, you mistakenly dealt with an effect – the high 
disk IO rate – while neglecting the cause (a missing index).   

A brief history of Oracle tuning philosophy and practice 
In the early nineties, the discipline of tuning an Oracle server was nowhere near as well established as 
today.  In fact, performance tuning was mostly limited to a couple of well known “rules of thumb”.  
 

                                                 
1  www.oraperf.com  
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The most notorious of these guidelines was that you should tune the “buffer cache hit 
ratio”:  the ratio which describes the proportion of blocks of data found in memory when requested 
by an SQL.  Increasing the buffer cache until the ratio reached 90-95% was often suggested.  Similar 
target values were suggested for other ratios such as the rowcache hit ratio or the latch hit ratio. 
 
The problem with these “ratio-based” techniques was that while the ratios usually reflected some 
measure of internal Oracle efficiency, they were often only loosely associated with the performance 
experienced by an application using the database.  For instance, while it is obviously better for a block 
of data to be found in memory, high hit ratios will often reflect very inefficient repetitive accesses to 
the same block of memory and be associated with CPU bottlenecks.  Furthermore, reducing disk IO 
might be fine, but if the application is spending 90% of it’s time waiting on locks that effort will 
ultimately be futile.  
 
The emergence of “wait” information in Oracle version 7.1 provided an alternate method of 
approaching tuning.  This wait information included the amount of time Oracle sessions spent waiting 
for resources (lock, IO, etc) to become available.  By concentrating on the wait events that were 
consuming the most wait time, we were able to target our tuning efforts most effectively. 
 
Pioneers of systematic Oracle performance tuning such as Cary Millsap promoted this technique 
vigorously.  Anjo Kolk, with his “Yet Another Performance Profiling” (YAPP) methodology is 
probably the most well known advocate of this technique.    
 
Wait based tuning took a surprisingly long time to become mainstream: 5-10 years passed between the 
original release of the wait information and widespread acceptance of the technique.   However, today 
almost all Oracle professionals are familiar with the wait-based tuning.  

Moving beyond a symptomatic approach 
The shift from the “ratio-based” to “wait-based” tuning has resulted in a radical improvement in our 
abilities to diagnose and tune Oracle-based applications.  However, as we noted earlier, simplistically 
focusing on the largest component of response time can have several undesirable consequences: 
 

• We may treat the symptoms, rather than the causes of poor performance. 
• We may be tempted to seek hardware-based solutions when configuration or application 

changes would be more cost effective. 
• We might deal with today’s pain, but fail to achieve a permanent or scalable solution. 

 
To avoid the pitfalls of a an overly simplistic wait-based analysis, we need to approach our tuning 
activities in a number of well defined stages.  These stages are dictated by the reality of how 
applications, databases and operating systems interact: 
 

1. Applications send requests to the database in the form of SQL statements (including PL/SQL 
requests).  The database responds to these requests with return code and/or result sets. 

2. To deal with an application request, the database must parse the SQL, perform various 
overhead operations (security, scheduling, isolation level management) before finally executing 
the SQL.  These operations use operating system resources (CPU & memory) and may be 
subject to contention between multiple database sessions.   
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3. Eventually, the database request will need to access some number of database blocks.  The 
exact number of blocks can vary depending on the database design (indexing for instance) and 
application (wording of the SQL for instance).   

4. Some of these blocks required will be in memory.  The chance that a block will be in memory 
will be determined mainly by the frequency with which the block is requested and the amount 
of memory available to cache such blocks.  

5. If the block is not in memory it must be accessed from disk, resulting in real physical IO.  
Physical IO is by far the most expensive of all operations so needs to be minimized at all costs.  
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Disk IO is by far the slowest operation our database performs and we want to 
avoid disk IOs whenever possible.   One of the most effective ways of doing this 
is to cache data in memory.  

Oracle uses memory to reduce IO by caching recently accessed data in the buffer 
cache and by allocating memory to support sorts and non-indexed joins.  Once 
the application workload is normalized, we should optimize these memory areas 
so at to reduce the amount of logical IO that turns into physical IO 

Oracle needs to manage concurrent access to the database so as to avoid 
internal corruption.  This can result in contention for shared resources such as 
locks, latches, freelists and so on.  This contention has the effect of reducing the 
amount of logical IO that can be performed and consequently can mask the full 
extent of the application demand.

Consequently we reduce contention as much as possible once we have 
normalized the application workload but before tuning memory or disk devices. 

Inefficiencies in the application layer – such as poor physical database design 
(missing indexes, for instance) or poorly worded SQL can result in the database 
needing to do more work (perform more logical reads) than is strictly necessary to 
respond to application requests.  

This excess of logical reads disturbs each underlying layer, exacerbating 
contention in the Oracle RDBMS, flooding the buffer cache with unwanted blocks 
and forcing a higher than necessary physical IO rate.  We therefore attempt to 
normalize the application workload prior to tuning any underlying layers.

Tuning the disk IO subsystem is absolutely critical to database performance, but 
should only be attempted once we’ve reduced the amount of IO that hits the 
subsystem by tuning the layers above.

Once the amount of physical IO is correct for the application workload, we look at 
ensuring that overall IO bandwidth is adquate (number of disk devices) and 
distributed evenly across the devices (by using disk striping or a similar 
technique) 
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Figure 1 Overview of tuning by layers2 
 

                                                 
2 As far as I know, the general concept of “tuning by Layers” was first proposed by Steve Adams 
(http://www.ixora.com.au/tips/layers.zip).     
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The way in which these layers – application-Oracle code-Oracle cache-IO subsystem – interact suggest 
that problems detected in one layer might be caused or cured by configuration in the higher layer.   In 
Figure 1, I summarize the interactions between layers and provide an overview of the optimizations 
appropriate at each layer.   I’ll elaborate on the steps we undertake at each level throughout the 
remainder of this article.    

Using the time model 
The wait interface – combined with the new “time model” table in Oracle Database 10g – is still your best friend 
when identifying tuning opportunities at a high level.    
Figure 2 shows a query that returns data from both tables.  I’ve eliminated “idle” waits and background process 
times in this query.   We can use this query throughout our tuning efforts to identify major opportunities within 
each layer.  For instance, in  
Figure 2 we see that SQL execution time dominates PL/SQL execution time and therefore that our 
priority when tuning the application layer will be to address SQL rather than PL/SQL.   
 
SQL> l 
  1  SELECT   wait_class, event, time_waited / 100 time_secs 
  2      FROM v$system_event e 
  3     WHERE e.wait_class <> 'Idle' AND time_waited > 0 
  4  UNION 
  5  SELECT   'Time Model', stat_name NAME, 
  6           ROUND ((VALUE / 1000000), 2) time_secs 
  7      FROM v$sys_time_model 
  8     WHERE stat_name NOT IN ('background elapsed time', 'background cpu time') 
  9* ORDER BY 3 DESC 
SQL> / 
 
WAIT_CLASS           EVENT                                    TIME_SECS 
-------------------- ---------------------------------------- --------- 
Time Model           DB time                                     369.75 
Time Model           sql execute elapsed time                    316.55 
System I/O           control file sequential read                157.03 
Time Model           DB CPU                                      149.22 
User I/O             db file sequential read                      74.30 
Time Model           PL/SQL execution elapsed time                56.89 
Time Model           parse time elapsed                           54.68 
Time Model           hard parse elapsed time                      51.72 
Time Model           inbound PL/SQL rpc elapsed time              42.14 
Commit               log file sync                                29.12 
System I/O           control file parallel write                  25.33 
User I/O             db file scattered read                       20.06 
 
Figure 2  Using the Time model and wait interface tables 
  

Stage 1: Normalizing the application workload 
Our first objective is to normalize the applications demand on the database.  We aim to ensure that the 
demand is appropriate for the activities that the application is attempting.  For instance, while 
relatively infrequent scans of large tables might be appropriate for weekly reconciliation reports, SQLs 
that execute many times per second should be supported by efficient indexed access paths.  
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The most useful single indicator of application demand is the logical IO rate, which represents the 
number of block reads required to satisfy application requests.  
 
Broadly speaking, there are two main techniques by which we reduce application workload: 
 

• Tuning the application code.  This might involve changing application code so that it issues 
fewer requests to the database (by using a client side cache for instance).  However, more 
often this will involve re-writing application SQL and/or PL/SQL. 

• Modifying the physical implementation of the applications schema.  This will typically 
involve indexing, de-normalization or partitioning.  

 
I’m not going to attempt to provide an overview of SQL tuning and database physical design 
optimization in this short article.  However, before you dismiss the option of re-writing SQL because 
of a “fixed” application code base (SAP for instance), make sure you are familiar with the Stored 
Outline facility which effectively allows you rewrite your SQL at the database layer without having to 
amend the application source.   

Identifying SQL tuning opportunities  
For many years, DBAs have used scripts based on queries against V$SQL to identify the “top” SQL.  
However, while SQL statements which consume the most logical IO are often good targets for tuning, 
it’s often only examination of individual steps that will pinpoint the best tuning opportunity.  In Oracle 
Database 10g, we can use cached query plan statistics to pinpoint individual steps within an SQL 
execution that might warrant attention.  The view V$SQL_PLAN shows the execution plan for all 
cached SQL statements, while V$SQL_PLAN_STATISTICS shows execution counts, IO and rows 
processed by each step in the plan3.  Figure 3 shows the essential columns in these new tables. 
  

V$SQL

SQL_ID
CHILD_NUMBER
SQL_TEXT
FETCHES
EXECUTIONS
PARSE_CALLS
DISK_READS
BUFFER_GETS
APPLICATION_WAIT_TIME
CONCURRENCY_WAIT_TIME
CLUSTER_WAIT_TIME
USER_IO_WAIT_TIME
PLSQL_EXEC_TIME
JAVA_EXEC_TIME
ROWS_PROCESSED
CPU_TIME
ELAPSED_TIME

V$SQL_PLAN

SQL_ID
CHILD_NUMBER
PLAN_HASH_VALUE
ID
OPERATION
OPTIONS
OBJECT_OWNER
OBJECT_NAME
PARENT_ID
DEPTH
POSITION
COST
CARDINALITY
OTHER_TAG
OTHER
CPU_COST
IO_COST
TEMP_SPACE

V$SQL_PLAN_STATISTICS

SQL_ID
CHILD_NUMBER
PLAN_HASH_VALUE
OPERATION_ID
EXECUTIONS
OUTPUT_ROWS
CR_BUFFER_GETS
CU_BUFFER_GETS
DISK_READS
ELAPSED_TIME

 
Figure 3 Essential SQL tuning view information 
  
Using these tables allows us to more accurately identify SQL that might be improved by tuning.  In 
Figure 4, we search for expensive index scans and also show the SQL clauses (“access predicates”) 
responsible.  This allows us to find indexes that don’t include all the columns in the WHERE clause.  In 

                                                 
3 You may have to up your STATISTICS_LEVEL from TYPICAL to ALL to get some of this new information.  
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this case a frequently executed SQL is using an index with only 2 out of 3 where clause conditions.   
Creating an index with all three columns reduced the logical IO demand for the step from 14 logical 
I/Os to only 4 and resulted in a substantial reduction is database load. 
 

 
Figure 4 Identifying expensive index range scans 

Application workload: Other things to check 
The logical read load generated by application SQL is undoubtedly the major factor governing the 
application’s demand on the database.  However, there are measures beyond SQL tuning that may 
further reduce application demand.  These include: 
 

• SQL parse time.  Parsing should be a very small part of overall demand, providing that bind 
variables, rather than literals, are used in application SQL.  If parse activity appears to be 
excessive (as shown by the “parse time elapsed” category in our time model query) then 
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you can try the “silver bullet” solutions offered by the CURSOR_SHARING and 
SESSION_CACHED_CURSORS parameters.  

• Indexes contribute to the overhead of DML operations – especially INSERT and DELETE 
statements.  You should drop any unused indexes, which you can identify by exploiting the 
MONITORING USAGE clause of ALTER/CREATE INDEX).  

• The overhead of table scans can be reduced by optimizing table storage 
(PCTFREE/PCTUSED).  You should also consider partitioning or relocating long 
infrequently used columns for tables that are subject to expensive scans that cannot be 
optimized by indexing.  Also consider the COMPRESS option which increases CPU 
utilization slightly but can significantly reduce I/O - especially for table scans.  

• Tune PL/SQL:  in particular use array processing in your stored procedures.  You can use 
the time model category “PL/SQL execution elapsed time” to determine if 
PL/SQL execution time is significant.  

Stage 2: Reducing contention and bottlenecks 
Once we’ve adjusted the application workload demand to a sensible minimum, we are ready to tackle 
contention within the Oracle server.   Application demand manifests mainly as logical IO requests 
which in turn result in some amount of physical IO.  However, contention prevents the application 
demand from being fully realized resulting in an underestimation of application load (and of course, 
poor performance for the application).  We should eliminate as much of this contention as possible 
before optimizing IO. 
 
The two most prevalent forms of contention observed in Oracle-based applications are: 
 
(a)  Contention for rows within tables (locks) and  
(b)    Contention for areas of shared memory (latches, buffer busy, free buffer,etc) 
 
Lock contention – which exhibits as waits for events which include the ‘enq:’ prefix4 - is largely a 
factor of application design:  Oracle’s locking model allows for high concurrency since readers never 
wait for locks, writers never wait for readers and locks are applied at the row level only.  Typically, 
lock contention is caused by an application design that involves very high simultaneous updates 
against a single row or in which locks are held for an excessive length of time, perhaps due to an 
overly pessimistic locking model.  This sort of contention is almost impossible to eliminate without 
application logic changes.  
 
Contention for shared memory occurs when sessions wish to read or write to shared memory in the 
SGA concurrently.   All shared memory is protected by latches – which are similar to locks except that 
they prevent concurrent access to data in shared memory rather than data in tables.  If a session needs 
to modify some data in memory it will acquire the relevant latch and if another session wants to read or 
modify the same data, then a latch wait may occur.    
 

                                                 
4 Prior to Oracle 10g, all lock waits where summarized in the ‘enqueue’ event. 



  

 9

SQL> l 
  1  SELECT   wait_class, event, time_waited / 100 time_secs 
  2      FROM v$system_event e 
  3     WHERE e.wait_class <> 'Idle' AND time_waited > 0 
  4  UNION 
  5  SELECT   'Time Model', stat_name NAME, 
  6           ROUND ((VALUE / 1000000), 2) time_secs 
  7      FROM v$sys_time_model 
  8     WHERE stat_name NOT IN ('background elapsed time', 'background cpu time') 
  9* ORDER BY 3 DESC 
SQL> / 
 
WAIT_CLASS           EVENT                                    TIME_SECS 
-------------------- ---------------------------------------- --------- 
Time Model           DB time                                    4139.88 
Time Model           sql execute elapsed time                   4138.40 
Time Model           PL/SQL execution elapsed time              1392.42 
Application          enq: TX - row lock contention              1336.25 
Time Model           parse time elapsed                          962.57 
Time Model           DB CPU                                      908.20 
Concurrency          library cache pin                           399.32 
Concurrency          latch: library cache                        204.22 
Concurrency          latch: library cache lock                    59.26 
User I/O             db file sequential read                      54.98 
System I/O           control file sequential read                 33.52 
Time Model           hard parse elapsed time                      31.52 
Concurrency          library cache lock                           23.38 
Concurrency          latch: library cache pin                     22.33 
Time Model           inbound PL/SQL rpc elapsed time              21.18 
Concurrency          cursor: mutex S                              14.03 
User I/O             db file scattered read                       11.09 
Other                rdbms ipc reply                               9.17 
 
Figure 5 Evidence of contention for latches and locks 
 
In modern versions of Oracle, the most intractable latch contention is for the ‘buffer cache 
chains’ latch that protect areas of the buffer cache.  Some degree of latch contention may be 
inevitable, but there are things you can do to reduce even apparently intractable latch contention.   In 
particular: 
 

• Often latch contention occurs because of “hot” blocks and often these blocks are index root 
or branch blocks.  Partitioning the table and associated indexes can often reduce the 
contention by spreading the demand across multiple partitions.    

• The practice of adjusting the latch “spin count’ was a frequent pastime in earlier versions of 
Oracle, but is now actively discouraged by Oracle.  However,  we’ve done research that 
suggests that adjusting spin count can be an effective measure when all else fails – see 
http://www.quest-pipelines.com/newsletter-v5/Resolving_Oracle_Latch_Contention.pdf .  

 

Other contention points 
There’s a long list of other possible contention points, but here are some we see a lot: 
 



  

 10

•  ‘buffer busy’ waits sometimes occur because of a ‘hot’ block, but probably more 
often because of tables that only have one freelist and are subject to concurrent insert.  
Modern Oracle databases (using ASSM tablespaces) should not have tables with single 
freelists, but if you’ve migrated an older database through multiple versions of Oracle, there 
may be legacy tables with freelist problems.  

• Unindexed foreign keys can cause lock contention by causing table level share locks on the 
child table when the parent is updated.   

• Sequences should be created with a CACHE size adequate to ensure that the cache is not 
frequently exhausted and should not normally use the ORDER clause.  

• SQL statements that don’t use bind variables cause latch contention ‘library cache 
latch’ as well as high parse times.  The CURSOR_SHARING parameter can help. 

Step 3: Reducing physical IO  
Now that the application demand is nominal, and contention that might otherwise mask that demand 
eliminated, we turn our attention to reducing time spent waiting for IO.  However, before we turn our 
attention to the disks themselves, we concentrate on preventing as much physical IO as possible.  We 
do this by configuring memory to cache and buffer IO requests.  
 
Most physical IO in an Oracle application occurs either because: 
 
(a) An application session requests data to satisfy a query or DML request or  
(b) An application session must sort data or create a temporary segment in order to support a large 

join, ORDER BY or similar operation.  
 
Memory allocated to the Oracle buffer cache stores copies of database blocks in memory and thereby 
eliminates the need to perform physical IO if a requested block is in that memory.   Oracle DBAs 
traditionally would tune the size of the buffer cache by examining the “buffer cache hit 
ratio” – the percentage of IO requests that were satisfied in memory.  However this approach has 
proved to be error prone, especially when performed prior to tuning the application workload or 
eliminating contention. 
 
In modern Oracle, the effect of adjusting the size of the buffer cache can be accurately determined by 
taking advantage of the Oracle advisories.  V$DB_CACHE_ADVICE shows the amount of physical 
I/O that would be incurred or avoided had the buffer cache been of a different size.   Examining this 
advisory will reveal whether increasing the buffer cache will help avoid IO, or if reducing the buffer 
cache could free up memory without adversely affecting IO.  
 
Oracle allows you to setup separate memory areas to cache blocks of different size and also allows you 
to nominate KEEP or RECYCLE areas to cache blocks from full table scans.  You can optimize your IO 
by placing small tables accessed by frequent table scans in KEEP, and large tables subject to infrequent 
table scans only in RECYCLE.   V$DB_CACHE_ADVICE will allow you to appropriately size each 
area, although this resizing will occur automatically in Oracle database 10g.  
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The buffer cache exists in the System Global Area (SGA) which also houses other important shared 
memory areas such as the shared pool, java pool and large pool.  Oracle database 10g automatically 
sizes these areas within the constraint of the SGA_MAX_SIZE parameter.   
 
In addition to disk reads to access data not in the buffer cache, Oracle may perform substantial IO 
when required to sort data or execute a hash join.   Where possible, Oracle will perform a sort or hash 
join in memory using memory configured within the Program Global Area (PGA).  However, if 
sufficient memory is not available, then Oracle will write to temporary segments in the “temporary” 
tablespace.   
 
The amount of memory available for sorts and hash joins is determined primarily by the 
PGA_AGGREGATE_TARGET parameter.  The V$PGA_TARGET_ADVICE advisory view will show 
how increasing or decreasing PGA_AGGREGATE_TARGET will affect this temporary table IO.   
 
Oracle database 10g now manages the internal memory within the PGA and SGA quite effectively.  
But Oracle does not move memory between the PGA and SGA so it’s up the DBA to make sure that 
memory is allocated effectively to these two areas.  Unfortunately, the two advisories concerned do not 
measure IO in the same units – V$DB_CACHE_ADVICE uses IO counts, while 
V$PGA_TARGET_ADVICE uses bytes of IO.  Consequently it is hard to work out if overall IO would 
be reduced if one of these areas were to be increased at the expense of another5.   Also, it’s difficult to 
associate the IO savings reported by the advisories with IO time as reported in the wait interface.  
Nevertheless, determining an appropriate trade-off between the PGA and SGA sizing is probably the 
most significant memory configuration decision facing today’s DBA and can have a substantial impact 
on the amount of physical IO that the database must perform. 

Stage 4: Optimizing disk IO 
At this point, we’ve normalized the application workload – in particular the amount of logical IO 
demanded by the application.  We’ve eliminated contention that might be blocking – and therefore 
masking - those logical IO requests.  Finally, we’ve configured available memory to minimize the 
amount of logical IO that ends up causing physical IO.   Now – and only now – it makes sense to make 
sure that our disk IO subsystem is up to the challenge.   
 
To be sure, optimizing disk IO subsystems can be a complex and specialized task; but the basic 
principles are straightforward: 
 

1. Ensure the IO subsystem has enough bandwidth to cope with the physical IO demand.  This 
is primarily determined by the number of distinct disk devices you have allocated.  Disks 
vary in performance, but the average disk device might be able to perform about 100 
random IOs per second before becoming saturated.   For most databases, this will mean 
acquiring much more disk than simple storage requirements dictate – you need to acquire 
enough disks to sustain your IO rate as well as enough disks to store all your data.  

                                                 
5 See http://www.nocoug.org/download/2004-11/Optimising_Oracle9i_Instance_Memory3.pdf.   Note also that Quest’s 
Spotlight on Oracle can calculate the optimal sizes of the PGA and SGA.  
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2. Spread your load evenly across the disks you have allocated – the best way to do this is 
RAID 0 (Striping).  The worst way – for most databases – is RAID 5 which incurs a 400% 
penalty on write IO.   

 
The obvious symptom of an overly-stressed IO subsystem is excessive delays responding to IO 
requests.  The expected delay – called service time – varies from disk to disk, but even on the slowest 
disks should not exceed about 15ms.  Most production-quality SCSI disks should have a service time 
under about 10ms while disks inside a storage array boasting a large non-volatile cache might have 
service times under 5ms.  Therefore, you need to understand your IO subsystems characteristics to 
correctly diagnose a disk IO bottleneck, since service times can vary so much.  
 
Spreading the load across spindles is best done by hardware or software striping.  Oracle’s ASM 
technology provides a simple and always available method (for 10g at least) of doing this for ordinary 
disk devices.  Alternating datafiles across multiple disks is usually less effective, though still better 
than no striping at all.  
 
For most databases, optimizing the datafiles for read activity makes the most sense, because Oracle 
sessions do not normally wait for datafile writes - the database writer process (DBWR) writes to disk 
asynchronously.  However if the DBWR cannot keep up with database activity, then the buffer cache 
will fill up with “dirty” blocks and sessions will experience “free buffer waits” or “write 
complete waits” as the DBWR struggles to write out the modified blocks.  For this reason it’s 
important to optimize the DBWR so that it can effectively write out modified blocks to the database 
files across all the disk devices simultaneously.  On most systems, this means ensuring that 
asynchronous IO is enabled.  If asynchronous IO is not available, configure multiple DBWRs. 
 
Redo log IO activity has its own pattern with sequential writes to the on-line log generated by the log 
writer process (LGWR) coupled with reads of the off-line logs by the archiver process (ARCH).  If the 
ARCH cannot keep up with the LGWR then “log switch” waits will occur while the LGWR waits for 
the ARCH to keep up.  Either configure logs and archive destinations on wide fine-grained striped 
devices, or allocate logs on alternating disks (so that ARCH is reading from one disk while LGWR is 
writing to the other).  
 

Isn’t it all about reducing I/O? 
For most databases, the ultimate aim is to reduce disk IO.  Disk IO remains the most expensive 
operation faced by the database.   
 
When faced with an obviously IO-bound database, it’s tempting to deal with the most obvious 
(symptom) – the IO subsystem – immediately.  Unfortunately, this usually results in treating the 
symptom rather than the cause, is often expensive and usually ultimately futile.  Methodically tuning 
the database layer by layer almost always leads to a healthier database, happier users and a more 
appreciated DBA. 


