
Systematic Oracle Tuning 1

Oracle performance tuning: a systematic approach

A mission critical application system is experiencing unsatisfactory performance. As an experienced
Oracle performance specialist, you are called in to diagnose the problem. You’re well versed in
modern wait-based performance profiling oriented performance diagnostics (such as “YAPP”1), so the
first thing you want to determine is which wait category is consuming the bulk of non-idle time.
Looking at V$SYSTEM_EVENT, you immediately see that the database is spending the vast majority
of it’s time within ‘db file sequential read’ events. Furthermore, the average time for each
of these events – which represent single block reads against database files – is more than 20ms which
is far higher than the service time you expect from the expensive and sophisticated disk array
supporting the application.

You suspect that the disk array might have insufficient bandwidth to support the applications demands.
Considering the average physical IO rate of 8,000 IOs per second, you determine that this corresponds
to a rate of more than 100 IOs per second for each disk in the array and you also note that the disk
devices are reporting that they are almost continuously 100% busy. You therefore conclude that the
system is IO bound and that the solution is to increase IO bandwidth. You recommend increasing the
number of disk devices in the array by a factor of four. The dollar cost is substantial as is the
downtime required to redistribute data across the new disks within the array. Nevertheless, something
has to be done, so management approve the expense and the downtime. Following the
implementation, users report they are satisfied with performance and you modestly take all the credit.

A successful outcome? You think so, until….

• Within a few months performance is again problematic and disk IO is again the culprit.
• Another Oracle performance expert is called into the case and she reports that a single

indexing change would have fixed the original problem with no dollar cost and no down
time.

• The new index is implemented, following which the IO rate is reduced to one tenth of that
observed during your original engagement. Management prepare to sell the now-surplus
disk devices on E-Bay and mark your consulting record with a “do not re-engage” stamp.

• Your significant other leaves you, and you end up shaving your head and becoming a
monk.

After years of silent mediation, you realize that while methodologies such as YAPP correctly focus
your attention on the most time consuming activities performed by the database, they fail to
differentiate between causes and effects. Consequently, you mistakenly dealt with an effect – the high
disk IO rate – while neglecting the cause (a missing index).

A brief history of Oracle tuning philosophy and practice
In the early nineties, the discipline of tuning an Oracle server was nowhere near as well established as
today. In fact, performance tuning was mostly limited to a couple of well known “rules of thumb”.

1 www.oraperf.com

 2

The most notorious of these guidelines was that you should tune the “buffer cache hit
ratio”: the ratio which describes the proportion of blocks of data found in memory when requested
by an SQL. Increasing the buffer cache until the ratio reached 90-95% was often suggested. Similar
target values were suggested for other ratios such as the rowcache hit ratio or the latch hit ratio.

The problem with these “ratio-based” techniques was that while the ratios usually reflected some
measure of internal Oracle efficiency, they were often only loosely associated with the performance
experienced by an application using the database. For instance, while it is obviously better for a block
of data to be found in memory, high hit ratios will often reflect very inefficient repetitive accesses to
the same block of memory and be associated with CPU bottlenecks. Furthermore, reducing disk IO
might be fine, but if the application is spending 90% of it’s time waiting on locks that effort will
ultimately be futile.

The emergence of “wait” information in Oracle version 7.1 provided an alternate method of
approaching tuning. This wait information included the amount of time Oracle sessions spent waiting
for resources (lock, IO, etc) to become available. By concentrating on the wait events that were
consuming the most wait time, we were able to target our tuning efforts most effectively.

Pioneers of systematic Oracle performance tuning such as Cary Millsap promoted this technique
vigorously. Anjo Kolk, with his “Yet Another Performance Profiling” (YAPP) methodology is
probably the most well known advocate of this technique.

Wait based tuning took a surprisingly long time to become mainstream: 5-10 years passed between the
original release of the wait information and widespread acceptance of the technique. However, today
almost all Oracle professionals are familiar with the wait-based tuning.

Moving beyond a symptomatic approach
The shift from the “ratio-based” to “wait-based” tuning has resulted in a radical improvement in our
abilities to diagnose and tune Oracle-based applications. However, as we noted earlier, simplistically
focusing on the largest component of response time can have several undesirable consequences:

• We may treat the symptoms, rather than the causes of poor performance.
• We may be tempted to seek hardware-based solutions when configuration or application

changes would be more cost effective.
• We might deal with today’s pain, but fail to achieve a permanent or scalable solution.

To avoid the pitfalls of a an overly simplistic wait-based analysis, we need to approach our tuning
activities in a number of well defined stages. These stages are dictated by the reality of how
applications, databases and operating systems interact:

1. Applications send requests to the database in the form of SQL statements (including PL/SQL
requests). The database responds to these requests with return code and/or result sets.

2. To deal with an application request, the database must parse the SQL, perform various
overhead operations (security, scheduling, isolation level management) before finally executing
the SQL. These operations use operating system resources (CPU & memory) and may be
subject to contention between multiple database sessions.

 3

3. Eventually, the database request will need to access some number of database blocks. The
exact number of blocks can vary depending on the database design (indexing for instance) and
application (wording of the SQL for instance).

4. Some of these blocks required will be in memory. The chance that a block will be in memory
will be determined mainly by the frequency with which the block is requested and the amount
of memory available to cache such blocks.

5. If the block is not in memory it must be accessed from disk, resulting in real physical IO.
Physical IO is by far the most expensive of all operations so needs to be minimized at all costs.

 4

Application

Oracle RDBMS software (parse & cache SQL, optimize queries,
manage locks, security, PL/SQL execution, etc)

SQ
Ls

Buffer cache (copies of datafile blocks cached in memory)
Sort and Hash areas (temporary data sets for sorting and joining)

B
lock requests D

at
a

bl
oc

ks

Disk subsystem. Table segments, index segments, temporary
segments, rollback segments, redo logs, archived logs, flashback

logs

D
isk reads

D
at

a
bl

oc
ks

Disk IO is by far the slowest operation our database performs and we want to
avoid disk IOs whenever possible. One of the most effective ways of doing this
is to cache data in memory.

Oracle uses memory to reduce IO by caching recently accessed data in the buffer
cache and by allocating memory to support sorts and non-indexed joins. Once
the application workload is normalized, we should optimize these memory areas
so at to reduce the amount of logical IO that turns into physical IO

Oracle needs to manage concurrent access to the database so as to avoid
internal corruption. This can result in contention for shared resources such as
locks, latches, freelists and so on. This contention has the effect of reducing the
amount of logical IO that can be performed and consequently can mask the full
extent of the application demand.

Consequently we reduce contention as much as possible once we have
normalized the application workload but before tuning memory or disk devices.

Inefficiencies in the application layer – such as poor physical database design
(missing indexes, for instance) or poorly worded SQL can result in the database
needing to do more work (perform more logical reads) than is strictly necessary to
respond to application requests.

This excess of logical reads disturbs each underlying layer, exacerbating
contention in the Oracle RDBMS, flooding the buffer cache with unwanted blocks
and forcing a higher than necessary physical IO rate. We therefore attempt to
normalize the application workload prior to tuning any underlying layers.

Tuning the disk IO subsystem is absolutely critical to database performance, but
should only be attempted once we’ve reduced the amount of IO that hits the
subsystem by tuning the layers above.

Once the amount of physical IO is correct for the application workload, we look at
ensuring that overall IO bandwidth is adquate (number of disk devices) and
distributed evenly across the devices (by using disk striping or a similar
technique)

D
at

a
R

ow
s

Figure 1 Overview of tuning by layers2

2 As far as I know, the general concept of “tuning by Layers” was first proposed by Steve Adams
(http://www.ixora.com.au/tips/layers.zip).

 5

The way in which these layers – application-Oracle code-Oracle cache-IO subsystem – interact suggest
that problems detected in one layer might be caused or cured by configuration in the higher layer. In
Figure 1, I summarize the interactions between layers and provide an overview of the optimizations
appropriate at each layer. I’ll elaborate on the steps we undertake at each level throughout the
remainder of this article.

Using the time model
The wait interface – combined with the new “time model” table in Oracle Database 10g – is still your best friend
when identifying tuning opportunities at a high level.
Figure 2 shows a query that returns data from both tables. I’ve eliminated “idle” waits and background process
times in this query. We can use this query throughout our tuning efforts to identify major opportunities within
each layer. For instance, in
Figure 2 we see that SQL execution time dominates PL/SQL execution time and therefore that our
priority when tuning the application layer will be to address SQL rather than PL/SQL.

SQL> l
 1 SELECT wait_class, event, time_waited / 100 time_secs
 2 FROM v$system_event e
 3 WHERE e.wait_class <> 'Idle' AND time_waited > 0
 4 UNION
 5 SELECT 'Time Model', stat_name NAME,
 6 ROUND ((VALUE / 1000000), 2) time_secs
 7 FROM v$sys_time_model
 8 WHERE stat_name NOT IN ('background elapsed time', 'background cpu time')
 9* ORDER BY 3 DESC
SQL> /

WAIT_CLASS EVENT TIME_SECS
-------------------- -- ---------
Time Model DB time 369.75
Time Model sql execute elapsed time 316.55
System I/O control file sequential read 157.03
Time Model DB CPU 149.22
User I/O db file sequential read 74.30
Time Model PL/SQL execution elapsed time 56.89
Time Model parse time elapsed 54.68
Time Model hard parse elapsed time 51.72
Time Model inbound PL/SQL rpc elapsed time 42.14
Commit log file sync 29.12
System I/O control file parallel write 25.33
User I/O db file scattered read 20.06

Figure 2 Using the Time model and wait interface tables

Stage 1: Normalizing the application workload
Our first objective is to normalize the applications demand on the database. We aim to ensure that the
demand is appropriate for the activities that the application is attempting. For instance, while
relatively infrequent scans of large tables might be appropriate for weekly reconciliation reports, SQLs
that execute many times per second should be supported by efficient indexed access paths.

 6

The most useful single indicator of application demand is the logical IO rate, which represents the
number of block reads required to satisfy application requests.

Broadly speaking, there are two main techniques by which we reduce application workload:

• Tuning the application code. This might involve changing application code so that it issues
fewer requests to the database (by using a client side cache for instance). However, more
often this will involve re-writing application SQL and/or PL/SQL.

• Modifying the physical implementation of the applications schema. This will typically
involve indexing, de-normalization or partitioning.

I’m not going to attempt to provide an overview of SQL tuning and database physical design
optimization in this short article. However, before you dismiss the option of re-writing SQL because
of a “fixed” application code base (SAP for instance), make sure you are familiar with the Stored
Outline facility which effectively allows you rewrite your SQL at the database layer without having to
amend the application source.

Identifying SQL tuning opportunities
For many years, DBAs have used scripts based on queries against V$SQL to identify the “top” SQL.
However, while SQL statements which consume the most logical IO are often good targets for tuning,
it’s often only examination of individual steps that will pinpoint the best tuning opportunity. In Oracle
Database 10g, we can use cached query plan statistics to pinpoint individual steps within an SQL
execution that might warrant attention. The view V$SQL_PLAN shows the execution plan for all
cached SQL statements, while V$SQL_PLAN_STATISTICS shows execution counts, IO and rows
processed by each step in the plan3. Figure 3 shows the essential columns in these new tables.

V$SQL

SQL_ID
CHILD_NUMBER
SQL_TEXT
FETCHES
EXECUTIONS
PARSE_CALLS
DISK_READS
BUFFER_GETS
APPLICATION_WAIT_TIME
CONCURRENCY_WAIT_TIME
CLUSTER_WAIT_TIME
USER_IO_WAIT_TIME
PLSQL_EXEC_TIME
JAVA_EXEC_TIME
ROWS_PROCESSED
CPU_TIME
ELAPSED_TIME

V$SQL_PLAN

SQL_ID
CHILD_NUMBER
PLAN_HASH_VALUE
ID
OPERATION
OPTIONS
OBJECT_OWNER
OBJECT_NAME
PARENT_ID
DEPTH
POSITION
COST
CARDINALITY
OTHER_TAG
OTHER
CPU_COST
IO_COST
TEMP_SPACE

V$SQL_PLAN_STATISTICS

SQL_ID
CHILD_NUMBER
PLAN_HASH_VALUE
OPERATION_ID
EXECUTIONS
OUTPUT_ROWS
CR_BUFFER_GETS
CU_BUFFER_GETS
DISK_READS
ELAPSED_TIME

Figure 3 Essential SQL tuning view information

Using these tables allows us to more accurately identify SQL that might be improved by tuning. In
Figure 4, we search for expensive index scans and also show the SQL clauses (“access predicates”)
responsible. This allows us to find indexes that don’t include all the columns in the WHERE clause. In

3 You may have to up your STATISTICS_LEVEL from TYPICAL to ALL to get some of this new information.

 7

this case a frequently executed SQL is using an index with only 2 out of 3 where clause conditions.
Creating an index with all three columns reduced the logical IO demand for the step from 14 logical
I/Os to only 4 and resulted in a substantial reduction is database load.

Figure 4 Identifying expensive index range scans

Application workload: Other things to check
The logical read load generated by application SQL is undoubtedly the major factor governing the
application’s demand on the database. However, there are measures beyond SQL tuning that may
further reduce application demand. These include:

• SQL parse time. Parsing should be a very small part of overall demand, providing that bind
variables, rather than literals, are used in application SQL. If parse activity appears to be
excessive (as shown by the “parse time elapsed” category in our time model query) then

 8

you can try the “silver bullet” solutions offered by the CURSOR_SHARING and
SESSION_CACHED_CURSORS parameters.

• Indexes contribute to the overhead of DML operations – especially INSERT and DELETE
statements. You should drop any unused indexes, which you can identify by exploiting the
MONITORING USAGE clause of ALTER/CREATE INDEX).

• The overhead of table scans can be reduced by optimizing table storage
(PCTFREE/PCTUSED). You should also consider partitioning or relocating long
infrequently used columns for tables that are subject to expensive scans that cannot be
optimized by indexing. Also consider the COMPRESS option which increases CPU
utilization slightly but can significantly reduce I/O - especially for table scans.

• Tune PL/SQL: in particular use array processing in your stored procedures. You can use
the time model category “PL/SQL execution elapsed time” to determine if
PL/SQL execution time is significant.

Stage 2: Reducing contention and bottlenecks
Once we’ve adjusted the application workload demand to a sensible minimum, we are ready to tackle
contention within the Oracle server. Application demand manifests mainly as logical IO requests
which in turn result in some amount of physical IO. However, contention prevents the application
demand from being fully realized resulting in an underestimation of application load (and of course,
poor performance for the application). We should eliminate as much of this contention as possible
before optimizing IO.

The two most prevalent forms of contention observed in Oracle-based applications are:

(a) Contention for rows within tables (locks) and
(b) Contention for areas of shared memory (latches, buffer busy, free buffer,etc)

Lock contention – which exhibits as waits for events which include the ‘enq:’ prefix4 - is largely a
factor of application design: Oracle’s locking model allows for high concurrency since readers never
wait for locks, writers never wait for readers and locks are applied at the row level only. Typically,
lock contention is caused by an application design that involves very high simultaneous updates
against a single row or in which locks are held for an excessive length of time, perhaps due to an
overly pessimistic locking model. This sort of contention is almost impossible to eliminate without
application logic changes.

Contention for shared memory occurs when sessions wish to read or write to shared memory in the
SGA concurrently. All shared memory is protected by latches – which are similar to locks except that
they prevent concurrent access to data in shared memory rather than data in tables. If a session needs
to modify some data in memory it will acquire the relevant latch and if another session wants to read or
modify the same data, then a latch wait may occur.

4 Prior to Oracle 10g, all lock waits where summarized in the ‘enqueue’ event.

 9

SQL> l
 1 SELECT wait_class, event, time_waited / 100 time_secs
 2 FROM v$system_event e
 3 WHERE e.wait_class <> 'Idle' AND time_waited > 0
 4 UNION
 5 SELECT 'Time Model', stat_name NAME,
 6 ROUND ((VALUE / 1000000), 2) time_secs
 7 FROM v$sys_time_model
 8 WHERE stat_name NOT IN ('background elapsed time', 'background cpu time')
 9* ORDER BY 3 DESC
SQL> /

WAIT_CLASS EVENT TIME_SECS
-------------------- -- ---------
Time Model DB time 4139.88
Time Model sql execute elapsed time 4138.40
Time Model PL/SQL execution elapsed time 1392.42
Application enq: TX - row lock contention 1336.25
Time Model parse time elapsed 962.57
Time Model DB CPU 908.20
Concurrency library cache pin 399.32
Concurrency latch: library cache 204.22
Concurrency latch: library cache lock 59.26
User I/O db file sequential read 54.98
System I/O control file sequential read 33.52
Time Model hard parse elapsed time 31.52
Concurrency library cache lock 23.38
Concurrency latch: library cache pin 22.33
Time Model inbound PL/SQL rpc elapsed time 21.18
Concurrency cursor: mutex S 14.03
User I/O db file scattered read 11.09
Other rdbms ipc reply 9.17

Figure 5 Evidence of contention for latches and locks

In modern versions of Oracle, the most intractable latch contention is for the ‘buffer cache
chains’ latch that protect areas of the buffer cache. Some degree of latch contention may be
inevitable, but there are things you can do to reduce even apparently intractable latch contention. In
particular:

• Often latch contention occurs because of “hot” blocks and often these blocks are index root
or branch blocks. Partitioning the table and associated indexes can often reduce the
contention by spreading the demand across multiple partitions.

• The practice of adjusting the latch “spin count’ was a frequent pastime in earlier versions of
Oracle, but is now actively discouraged by Oracle. However, we’ve done research that
suggests that adjusting spin count can be an effective measure when all else fails – see
http://www.quest-pipelines.com/newsletter-v5/Resolving_Oracle_Latch_Contention.pdf .

Other contention points
There’s a long list of other possible contention points, but here are some we see a lot:

 10

• ‘buffer busy’ waits sometimes occur because of a ‘hot’ block, but probably more
often because of tables that only have one freelist and are subject to concurrent insert.
Modern Oracle databases (using ASSM tablespaces) should not have tables with single
freelists, but if you’ve migrated an older database through multiple versions of Oracle, there
may be legacy tables with freelist problems.

• Unindexed foreign keys can cause lock contention by causing table level share locks on the
child table when the parent is updated.

• Sequences should be created with a CACHE size adequate to ensure that the cache is not
frequently exhausted and should not normally use the ORDER clause.

• SQL statements that don’t use bind variables cause latch contention ‘library cache
latch’ as well as high parse times. The CURSOR_SHARING parameter can help.

Step 3: Reducing physical IO
Now that the application demand is nominal, and contention that might otherwise mask that demand
eliminated, we turn our attention to reducing time spent waiting for IO. However, before we turn our
attention to the disks themselves, we concentrate on preventing as much physical IO as possible. We
do this by configuring memory to cache and buffer IO requests.

Most physical IO in an Oracle application occurs either because:

(a) An application session requests data to satisfy a query or DML request or
(b) An application session must sort data or create a temporary segment in order to support a large

join, ORDER BY or similar operation.

Memory allocated to the Oracle buffer cache stores copies of database blocks in memory and thereby
eliminates the need to perform physical IO if a requested block is in that memory. Oracle DBAs
traditionally would tune the size of the buffer cache by examining the “buffer cache hit
ratio” – the percentage of IO requests that were satisfied in memory. However this approach has
proved to be error prone, especially when performed prior to tuning the application workload or
eliminating contention.

In modern Oracle, the effect of adjusting the size of the buffer cache can be accurately determined by
taking advantage of the Oracle advisories. V$DB_CACHE_ADVICE shows the amount of physical
I/O that would be incurred or avoided had the buffer cache been of a different size. Examining this
advisory will reveal whether increasing the buffer cache will help avoid IO, or if reducing the buffer
cache could free up memory without adversely affecting IO.

Oracle allows you to setup separate memory areas to cache blocks of different size and also allows you
to nominate KEEP or RECYCLE areas to cache blocks from full table scans. You can optimize your IO
by placing small tables accessed by frequent table scans in KEEP, and large tables subject to infrequent
table scans only in RECYCLE. V$DB_CACHE_ADVICE will allow you to appropriately size each
area, although this resizing will occur automatically in Oracle database 10g.

 11

The buffer cache exists in the System Global Area (SGA) which also houses other important shared
memory areas such as the shared pool, java pool and large pool. Oracle database 10g automatically
sizes these areas within the constraint of the SGA_MAX_SIZE parameter.

In addition to disk reads to access data not in the buffer cache, Oracle may perform substantial IO
when required to sort data or execute a hash join. Where possible, Oracle will perform a sort or hash
join in memory using memory configured within the Program Global Area (PGA). However, if
sufficient memory is not available, then Oracle will write to temporary segments in the “temporary”
tablespace.

The amount of memory available for sorts and hash joins is determined primarily by the
PGA_AGGREGATE_TARGET parameter. The V$PGA_TARGET_ADVICE advisory view will show
how increasing or decreasing PGA_AGGREGATE_TARGET will affect this temporary table IO.

Oracle database 10g now manages the internal memory within the PGA and SGA quite effectively.
But Oracle does not move memory between the PGA and SGA so it’s up the DBA to make sure that
memory is allocated effectively to these two areas. Unfortunately, the two advisories concerned do not
measure IO in the same units – V$DB_CACHE_ADVICE uses IO counts, while
V$PGA_TARGET_ADVICE uses bytes of IO. Consequently it is hard to work out if overall IO would
be reduced if one of these areas were to be increased at the expense of another5. Also, it’s difficult to
associate the IO savings reported by the advisories with IO time as reported in the wait interface.
Nevertheless, determining an appropriate trade-off between the PGA and SGA sizing is probably the
most significant memory configuration decision facing today’s DBA and can have a substantial impact
on the amount of physical IO that the database must perform.

Stage 4: Optimizing disk IO
At this point, we’ve normalized the application workload – in particular the amount of logical IO
demanded by the application. We’ve eliminated contention that might be blocking – and therefore
masking - those logical IO requests. Finally, we’ve configured available memory to minimize the
amount of logical IO that ends up causing physical IO. Now – and only now – it makes sense to make
sure that our disk IO subsystem is up to the challenge.

To be sure, optimizing disk IO subsystems can be a complex and specialized task; but the basic
principles are straightforward:

1. Ensure the IO subsystem has enough bandwidth to cope with the physical IO demand. This
is primarily determined by the number of distinct disk devices you have allocated. Disks
vary in performance, but the average disk device might be able to perform about 100
random IOs per second before becoming saturated. For most databases, this will mean
acquiring much more disk than simple storage requirements dictate – you need to acquire
enough disks to sustain your IO rate as well as enough disks to store all your data.

5 See http://www.nocoug.org/download/2004-11/Optimising_Oracle9i_Instance_Memory3.pdf. Note also that Quest’s
Spotlight on Oracle can calculate the optimal sizes of the PGA and SGA.

 12

2. Spread your load evenly across the disks you have allocated – the best way to do this is
RAID 0 (Striping). The worst way – for most databases – is RAID 5 which incurs a 400%
penalty on write IO.

The obvious symptom of an overly-stressed IO subsystem is excessive delays responding to IO
requests. The expected delay – called service time – varies from disk to disk, but even on the slowest
disks should not exceed about 15ms. Most production-quality SCSI disks should have a service time
under about 10ms while disks inside a storage array boasting a large non-volatile cache might have
service times under 5ms. Therefore, you need to understand your IO subsystems characteristics to
correctly diagnose a disk IO bottleneck, since service times can vary so much.

Spreading the load across spindles is best done by hardware or software striping. Oracle’s ASM
technology provides a simple and always available method (for 10g at least) of doing this for ordinary
disk devices. Alternating datafiles across multiple disks is usually less effective, though still better
than no striping at all.

For most databases, optimizing the datafiles for read activity makes the most sense, because Oracle
sessions do not normally wait for datafile writes - the database writer process (DBWR) writes to disk
asynchronously. However if the DBWR cannot keep up with database activity, then the buffer cache
will fill up with “dirty” blocks and sessions will experience “free buffer waits” or “write
complete waits” as the DBWR struggles to write out the modified blocks. For this reason it’s
important to optimize the DBWR so that it can effectively write out modified blocks to the database
files across all the disk devices simultaneously. On most systems, this means ensuring that
asynchronous IO is enabled. If asynchronous IO is not available, configure multiple DBWRs.

Redo log IO activity has its own pattern with sequential writes to the on-line log generated by the log
writer process (LGWR) coupled with reads of the off-line logs by the archiver process (ARCH). If the
ARCH cannot keep up with the LGWR then “log switch” waits will occur while the LGWR waits for
the ARCH to keep up. Either configure logs and archive destinations on wide fine-grained striped
devices, or allocate logs on alternating disks (so that ARCH is reading from one disk while LGWR is
writing to the other).

Isn’t it all about reducing I/O?
For most databases, the ultimate aim is to reduce disk IO. Disk IO remains the most expensive
operation faced by the database.

When faced with an obviously IO-bound database, it’s tempting to deal with the most obvious
(symptom) – the IO subsystem – immediately. Unfortunately, this usually results in treating the
symptom rather than the cause, is often expensive and usually ultimately futile. Methodically tuning
the database layer by layer almost always leads to a healthier database, happier users and a more
appreciated DBA.

