
By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 1 of 1

JSP Basics Explained
Protocol, Simple, TagLib,
JSTL, DB and Deployment
With Oracle and OC4J

When you want to get started quickly with the technology and need a cook-book recipe to
get it up an running, refer to this document. I wrote this because I desired a document
that detailed pieces of the puzzle that needed to be in place for each of the technologies to
work. Even though each step is detailed, this document covers the basics and should not
be thought of as a comprehensive guide. This document assumes that you know a little
about Java already, yet it does attempt to explain in some greater detail the steps for
deploying. The document also talks about deploying to OC4J standalone server, but the
concepts apply to all the Servlet Containers I’ve worked with (Weblogic, Jboss/Tomcat,
JRun, Novell, Sun). It is best to read this document from start to finish (its short – don’t
worry), and then go back and work through the given examples.

Please send me feedback, if you like it. Enjoy!
-Joel Thompson

Date: 10/2006
Document downloadable at:
http://www.rhinosystemsinc.com/
(Under latest news on front page – see Nov 2nd speaking announcement)

Author: Joel Thompson

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com
http://www.rhinosystemsinc.com/

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 2 of 2

Table of Contents
1 Introduction... 3
2 HTTP .. 5

2.1 Protocol & Stateless... 5
2.2 GET and POST.. 5
2.3 Example FTP session with Yahoo.com .. 6

3 Servlet Basics.. 8
3.1 Basic HttpServlet ... 8
3.2 Deploying Your Servlet ... 10

4 JSP Basics ... 12
4.1 Introduction ... 12
4.2 Declarations... 13
4.3 Scriptlets.. 14
4.4 Value of Expression... 15
4.5 Includes & Import.. 16
4.6 Lifecycle of JSP... 18

4.6.1 Developer Creates File ... 18
4.6.2 Package into War File .. 19
4.6.3 Deploy War File... 21
4.6.4 Invoking your JSP.. 21
4.6.5 Viewing the precompiled Output (Java file) ... 21

5 Sample Plain JSP... 24
5.1 Introduction ... 24
5.2 Code.. 24

6 Sample JSP with TagLib ... 26
6.1 Introduction ... 26
6.2 Code.. 27

7 Sample JSP with JSTL .. 30
7.1 Introduction ... 30
7.2 Code.. 30

8 Sample JSP with Oracle RDBMS I/O .. 31
8.1 Introduction ... 31
8.2 Code.. 32

9 Extra Info .. 36
9.1 References: .. 36
9.2 Books: ... 36

10 Appendix... 37
10.1 EAR file Sample Structure... 37
10.2 Starting OC4J Standalone server... 38
10.3 UNIX Deploy Script for OC4J container.. 38

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 3 of 3

1 Introduction
 JSP stands for JavaServer Pages, aka JSP Pages The reason for the “extra” Page in the
name is simply convenience for the “developers” to indicate the difference between a JSP
Page or HTML Page, or ASP Page.

When the user enters the URL to your website with a browser (like Internet Explorer,
Netscape, or Mozilla), the brower simply requests a Web Page to be delivered to it.
Typically the browser only understands the HTML markup language – in otherwords, if
the user navigates to your website with the browser, requesting a webpage, then you as
the web administrator, must insure that the requested webpage is there in HTML format
to be returned to the browser.

As a simple example, lets say the user types in “http://www.yourwebsite.com/index.html”
into the textfield of the browser. Your browser, then requests that exact webpage from
your webserver. Your website must have the “index.html” Web Page, sitting in some
directory (as configured by your web administrator, typically referenced by the variable
“DocumentRoot” under Apache’s httpd.conf configuration file); and your webserver
must be up and running to handle the request. Once the request for that webpage is
received your webserver will read the “index.html” file and send a copy of the entire file
back to the browser as a response to the request. The browser then reads and parses all
the HTML in the file and renders the markup as a webpage that is presentable (ie, bold,
indents, bullet-items, images, ..etc. all layed out in a cohesive manner) to you (the
public).

A JSP Page is nothing more than a plain-old HTML page to the browser, but in fact
behind the scenes on the server side, it’s HTML is changed “dynamically”. A request for
a JSP Page is typically passed through by the HTTP server (ie, Apache) to another
program (something like Oracle’s OC4J or Tomcat) that can handle the JSP formatting
and markup – This “other” program is typically called a “Container”, “Servlet Container”
or “Servlet Engine”. The Servlet Engine compiles and executes the JSP, running the
“java code” that you’ve written into the JSP page and as the final step returns HTML as
the result – Exactly what the Browser needs!

BROWSER Web Server request sample.html Your Server

return HTML

Figure 1: The calling sequence for a WebPage request.

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com
http://www.yourwebsite.com/index.html

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 4 of 4

So what exactly is a JSP Page? – The answer is simply this: It is an HTML page with
embedded Java code. You (the developer) put the JSP file into a directory that your
Servlet Container knows about, and then upon first request for the JSP Page, the Servlet
Container compiles the JSP Page into a servlet. From now on the Servlet Container
executes the servlet, and responds to the browser with an HTML stream of data.

BROWSER Web Server

Servlet Container

request sample.jsp

1st read sample page
2nd compile, if needed
3rd execute servlet.
4th return HTML
response

return HTML

Your Server

Figure 2: The calling sequence for a JSP Page request.

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 5 of 5

2 HTTP
The HTTP protocol call was created in 1990 at CERN to handle sharing documents on a
network of servers. The servers needed a standard way of delivering files to the client.
HTTP, being a protocol, specifies how the calls and results should be implemented. In
this sense the HTTP protocol is nothing more than documentation describing how to do
it. Implementations of the HTTP protocol include Browsers (the client) and WebServers
(the server).

2.1 Protocol & Stateless
The HTTP protocol is a simple request-response protocol with some commands used to
specify what you are requesting. It doesn’t specify anything about maintaining state of
the client application (browser) or server, which means it is a “Stateless” protocol. The
sequence of events is as follows:

1) CLIENT: The client will “connect” to the server, via TCP/IP socket connection.
2) CLIENT: The client issues the command “GET /index.html”
3) SERVER: Since the server is waiting on a socket read, it parses the incoming

characters looking for the command “GET” and then the argument “/index.html”.
4) SERVER: The server searches the configured directory where the file

“index.html” is supposed to reside, and reads the entire file into memory, and then
writes the response back to the CLIENT.

5) CLIENT: The client is waiting on a read, and when it receives the character input
from the server. The client will read characters into its memory until EOF.

6) CLIENT: The client then parses the HTML stream of data and renders the markup
in its program for the user to view.

2.2 GET and POST
GET and POST are the two most commonly used HTTP commands. The difference
between GET and POST, is all the paramaters are passed on the command line. With
POST the parameters are passed as more input into the request itself – think of it as
name=value pairs, that follow in a stream of data after the POST command. This relates
directly to GET and POST as used in and HTML FORM “method” attribute.

client browser

Figure 3: Sample HTTP session: connection, get, response, disconnect

GET /sample.html

Server

<html>…</html>

Connect TCP/IP to port 80

disconnect

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 6 of 6

There are TWO issues: #1 with GET the Name/Value pairs are visible from the URL,
and POST they are hidden, and #2 the GET is limited on the server size of the
environment variables, and GET is virtually unlimited in size, since it is read as a stream
of data following the command.

2.3 Example FTP session with Yahoo.com
The best way to illustrate the concept of Client Server and Statelessness, is to show an
example of a client (in this case the telnet program), and the server (Yahoo’s webserver)
interacting with each other to request a page, and Yahoo’s response.

Open up a dos window and type “telnet www.yahoo.com 80” – You’ll see the screen go
blank - You are now “connected” to yahoo’s webserver at port 80. It is waiting for you to
type a command.

In the blank screen type “GET /” (without the double quotes) – you won’t see any
echo’ing on the screen (meaning you won’t see what you type). Hit return.
You can see the HTML that is returned to your “client” session.

Figure 4: open a dos window and type “telnet www.yahoo.com 80”

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com
http://www.yahoo.com
http://www.yahoo.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 7 of 7

You should see a bunch of HTML code in your window, and then the final message that
your connection is closed. The message “Connection to host lost” message informs the

user that we are not “connected” any longer to the server. This is done automatically and
can’t be adjusted at runtime by client or server. The conclusion of this lost connection is
that you don’t have State saved when you interact with the server. The client did the
following: connect, issued command, received response and was disconnected, and had
no way of issuing more command during that session. Hypothetically speaking, if it were
stateful, the session might have gone like this: connect, command, response, client-
decision, 2nd command response..etc., disconnect.

Figure 5: Window showing results of typing “GET /” into a telnet session with Yahoo.

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 8 of 8

3 Servlet Basics
Servlets can be thought of as Java code with embedded HTML – The inverse of how we
think of JSPs being HTML with embedded Java. The developer compiles his Servlet,
and then places the class file into a directory that the Servlet Container knows about. You
can call your Servlet from a Browser by specifying its name. You’ll need to configure the
Servlet Name in the web.xml. The servlet container will load your servlet class, and call
the “service” method.

When you create your Servlet you should extend HttpServlet. The HttpServlet will
forward the call from “service” to “doGet” and/or “doPost” depending on whether the
request is a GET or a POST HTTP request.

You work with two objects that are passed to you for “doGet” and “doPost” method calls:

1) HttpServletRequest request – used to get information and parameters
i. find the hostname and ip address of the client

ii. request parameters (the name=value pairs, form or url)
iii. getting and setting attributes
iv. cookies
v. getSession()

2) HttpServletResponse response – used to get output Writer.

An important thing to note is that the Servlet Engine loads only a single instance of the
Servlet. Requests run in their own thread but share the Servlet’s instance, and as such the
instance variables too. Therefore, you have to take into account that the instance variables
are not thread safe. Consider what would happen if you assigned a Database Connection
object to an instance variable.

Note: This is important to pay attention to, since in a little while, we’ll see that the JSP is
derived from the SERVLET, and we’ll be declaring “instance” variables in the JSP.

3.1 Basic HttpServlet
Here is a basic servlet that shows how you can override the “init”, doGet and doPost
methods. Notice the methods are identical, and as such is considered poor programming
style. If you don’t care wether a GET or POST is sending you the info, then you can

Figure 6: Basic call sequence of a HttpServlet

BROWSER Web Server

Servlet Container

request servlet
1st check web.xml
2nd “init” called
3rd “service” called
4th doGet, or doPost
5th write response

return HTML

Your Server

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 9 of 9

create a common routine that both doGet() and doPost() will call. This example also
shows how to get the Parameters from the URL, by calling request.getParameterNames()
and request.getParameter().

package com.rhinosystemsinc;

import java.io.IOException;
import java.io.PrintWriter;

import java.util.Enumeration;

import javax.servlet.*;
import javax.servlet.http.*;

public class srv1 extends HttpServlet {

 private static final String CONTENT_TYPE =
 "text/html; charset=windows-1252";

 //called when the servlet is first accessed to
 //to initialize the servlet
 public void init(ServletConfig config)
 throws ServletException {
 super.init(config);
 System.out.println("init called");
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 response.setContentType(CONTENT_TYPE);

 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<head><title>srv1</title></head>");
 out.println("<body>");
 out.println("<p>The servlet has received a GET. " +
 "This is the reply.</p>");
 out.println("<p>The servlet Parameters are:<table>");

 Enumeration enum2 = request.getParameterNames();
 String name = null;
 String value = null;
 while (enum2 != null && enum2.hasMoreElements()) {
 name = (String)enum2.nextElement();
 value = request.getParameter(name);
 out.println("<tr><td>" + name + "</td><td>" + value +
 "</td></tr>");
 }
 out.println("</table>");
 out.println("</body></html>");
 out.close();
 }

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 10 of 10

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 response.setContentType(CONTENT_TYPE);
 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<head><title>srv1</title></head>");
 out.println("<body>");
 out.println("<p>The servlet has received a POST."+
 " This is the reply.</p>");
 out.println("<p>The servlet Parameters are:<table>");
 Enumeration enum2 = request.getParameterNames();
 String name = null;
 String value = null;
 while (enum2 != null && enum2.hasMoreElements()) {
 name = (String)enum2.nextElement();
 value = request.getParameter(name);
 out.println("<tr>" +
 "<td>" + name + "</td><td>" + value +
 "</td>" +
 "</tr>");
 }
 out.println("</table>");
 out.println("</body></html>");
 out.close();
 }
}

3.2 Deploying Your Servlet
Here we explain how to deploy to Oracle’s default Servlet Container, however, the steps
should be similar to all containers.

You can deploy your servlet to Oracle’s default Servlet Container by doing the following:

1) Compile your servlet – make sure to have <jdev10.1.3>\ j2ee\home\lib\servlet.jar
in your classpath.

2) Copy the class file to: <jdev10.1.3>\ j2ee\home\default-web-app\WEB-
INF\classes

3) Edit the <jdev10.1.3>\ j2ee\home\default-web-app\WEB-INF\web.xml and add
the following:

 <servlet>
 <servlet-name>srv1</servlet-name>
 <servlet-class>com.rhinosystemsinc.srv1</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>srv1</servlet-name>
 <url-pattern>/srv1</url-pattern>
 </servlet-mapping>

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 11 of 11

4) Startup the OC4J container (restart, if you copied again)
5) Test the servlet at:

http://localhost:8888/srv1?height=6.1&firstname=joel

Another way of deploying your application is by building a WAR file (you would put the
class in the WEB-INF/classes directory). Please see section on “Packaging into War”
(4.6.2) later in this document.

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com
http://localhost:8888/srv1?height=6.1&firstname=joel

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 12 of 12

4 JSP Basics

4.1 Introduction
Keep in mind that a JSP is really precompiled into Servlet file. So all that we learned
from our Servlet section still applies. Some differences are calling your JSP from the url
is done directly to the name of the JSP file, and we need to deploy it differently to the
Servlet Container (on this note, you be happy to know that you don’t need to restart your
container when deploying to the default webapp directory on OC4J).

In the simplest form to create & run a JSP page, all you have to do is open up any plain-
text editor and create a normal HTML file, and name it <whatever>.jsp.

To deploy your JSP file (meaning put it in a directory that the Servlet Container knows
about), you can simply copy to the default web application directory. With Oracle’ OC4J
standalone container, that place is:

<jdev10.1.3>\j2ee\home\default-web-app

That’s it! Since the plain-old HTML file doesn’t contain any JSP features, then it won’t
do anything but display the HTML that is in the file.

As an example, create hello.jsp with the following HTML:

<html>
<body>
Hi there Mom!
</body>
</html>

And put the file in the “default-web-app” (as indicated above). Then start the OC4J
container and run it from the browser URL:

http://localhost:8888/hello.jsp

You should get:

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com
http://localhost:8888/hello.jsp

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 13 of 13

Notice that you don’t have to compile anything as you did with a Servlet. Since you
specify a “.jsp” extension, the Servlet Container knows that it needs to compile the file,
load the class file, and then run it. This process is done dynamically, and you don’t need
to restart the Servlet Container, as you did when you redeploy your Servlet’s class file.

What happens behind the scenes is the Servlet Container parses the .JSP file and creates a
Servlet dynamically (<some name>.java). Next the Servlet Container compiles the
.JAVA class into a .CLASS file and loads a shared instance of this class.

In this section we covered what is takes from a bare minimum to put in a JSP file. Next,
we’ll see what features of JSP we can put into our file…

4.2 Declarations
You can declare instance variables (remember: This is compiled into a Servlet, and
Servlet’s instance variables and methods are not thread safe). This declaration section is
also useful for creating methods that will be used in the body of the .JSP page.

Note: You can declare local variables within Scriptlets, as you’ll see in the next section.

You declare a section with
<%!
 …<some java declaration code>
%>

Example hello2.jsp:

<html>
<%!
 String sharedString="Hi Mom!";
 int thisPageCounter=0;

Figure 7: Output of simple hello.jsp file

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 14 of 14

 public String whatDinner()
 {
 return "Chicken soup";
 }
%>
<body>
Hi there Mom!
</body>
</html>

Right now these declarations aren’t used in our JSP page. We’ll see how to do that next!

4.3 Scriptlets
With Scriptlets you can access declared variables (either local or instance), the “out”,
“request” and “response” object (automatically provided for you), and do any other
business I/O or logic you’d like. In the Scriptlet you put your java code. You can have as
many Scriptlets as you’d like in one page. Each of the Scriptlets will be precompiled into
the jspService method for the Servlet.

You use Scriptlets with the following syntax:
<%
… your Java Code
%>

Notice no exclamation after the first %.

Example hello3.jsp:

<html>
<%!
 String sharedString="Hi Mom!";
 int thisPageCounter=0;
 public String whatDinner()
 {
 return "Chicken soup";
 }
%>
<body>
<%
 thisPageCounter++;
 out.println(sharedString + "
");
 out.println("What's for dinner?
");
 out.println(whatDinner() +"
");
 out.println(" You asked "+ thisPageCounter +
 " times
");
%>
</body>
</html>

You should see:

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 15 of 15

Hit refresh a bunch of times, and what the counter increase. Try it from a different
browser, do see that it is a shared instance variable!

4.4 Value of Expression

Notice that the previous example, hello3.jsp, used “out.println (…)” to create the HTML
tags and merge the values. However, there is another way. You can get the value of an
expression. Where the expression can simply be the variable name, method or more
complex boolean operations…etc. The only requirement for using an expression is that
the expression needs to be convertible to a String.

You use the following syntax in your JSP page (Notice the equals after the percent)

<%= <expression> %>

As an example, we’ll rewrite hello3.jsp.

Example hello4.jsp:
<html>
<%!
 String sharedString="Hi Mom!";
 int thisPageCounter=0;
 public String whatDinner()
 {

Figure 8: Output of simple hello3.jsp file with expressions and counter.

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 16 of 16

 return "Chicken soup";
 }
%>
<body>
<%=sharedString%>

What’s for dinner?

<%=whatDinner()%>

 You asked <%=(thisPageCounter++)%>
 times

</body>
</html>

This example is a little cleaner, and works better with HTML editors!!!

4.5 Includes & Import
Includes:
You can include other JSP files into your JSP file in two ways – this is similar in concept
to how C preprocessor #include works. It basically inlines your included file.

<%@ include file="header.jsp" %>
This is often used for building up common sections of webpages, like a header, navbar
and footer, with each being in their own JSP file. As an example, we might build a new
webpage for our site called products.jsp as follows:

Example products.jsp file:

<html>
<body>
<table border="0" cellspacing="0" cellpadding="0">
<tr><td colspan="2"><%@ include file="header.jsp" %></td></tr>
<tr><td ><%@ include file="navbar.jsp" %></td>
 <td><%@ include file="product_list.jsp"%></td>
</tr>
<tr><td colspan="2"><%@ include file="footer.jsp" %></td></tr>
</body>
</html>

Imports:
In any java file beyond the basics, you need to import other packages into your program.
This is telling the compiler that you want to use class files that are packaged in JAR files
or reside in a directory, with location determined by the CLASSPATH environment
variable.

JAR & CLASS FILE LOCATIONS:

In your OC4J Server, you have some options with where these CLASS & JAR files go.

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 17 of 17

See section “Package into War File” for a sample directory structure with classes and jar
files placed according.

 Option 1: You can place them in the WEB-INF/lib when you bundle your web
application into a WAR file or copy to the Default Web Application.

 Option 2: You can put the class files (without JAR) (with their fully qualified

package directory) in the WEB-INF/classes directory of your WAR file or Default
Web Application.

 Option 3: You can put it in the EAR file during enterprise application bundling (and

specify the location in “Class-Path:” in the META-INF/MANIFEST.MF file). The
files can be at the top-level of the EAR file, or can be subdirectoried (name of your
choosing), as long as the names in the MANIFEST.MF’s Class-Path: variable.
Sample in your MANIFEST.MF would be:

Class-Path: mylib/sqllite_lib.jar mylib/rhino_util.jar
mylib/classes12.jar

Put the above entry in a manifest.txt file and then when you create your ear, you specify
the txt file to be used as the MANIFEST.MF, instead of the generated one.
jar -cmvf manifest.txt ../bigApp.ear *

 Option 4: Put the JAR files into the shared library directory (available to the entire
container), known as <jdev10.1.3>\home\applib.

IMPORTING IN YOUR JSP:

In your JSP file you can now use the classes (as located in the JAR files), by “importing”
them into your JSP file.

The following is an example of a page declarative used to import classes:

<%@ page import="java.io.*,java.text.*,com.rhinosystems.beans.*" %>

Above we specified a list of classes to import, separated by commas. You can also
specify these on separate lines for readability.

<%@ page import="java.io.*,
 java.text.*,
 com.rhinosystems.beans.*"
 %>

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 18 of 18

4.6 Lifecycle of JSP

4.6.1 Developer Creates File
The file needs to be created with a text editor and named with a .jsp extension. The
extension is important because it indicates to the webserver and servlet container that it is
a JSP type file and needs to have it’s last-modification timestamp checked against what is
already loaded in the container and recompiled if timestamp is greater than what is
loaded.

Figure 9: Lifecyle of a JSP page

Create JSP

Deploy JSP

Does class
 exists?

no yes

Precompile
into JAVA

Compile
JAVA

Load class
into
container

Class Newer
than JSP?

no

Instance
already
loaded?

no

Run the
jspService

yes

yes

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 19 of 19

4.6.2 Package into War File

(Optionally you don’t need to create & deploy a WAR file and can simply copy the JSP
file into the default webapplication as shown in previous examples – see “JSP Basics |
Introduction” section for more details on this)

Once the file is created it can be packaged (or bundled) into a WAR file – WAR stands
for Web Archive. Basically a WAR file can be named whatever you’d like, but has a
.war extension to it. You create the WAR file by running the following JAR command
(JAR can be found in the <JDK>/bin distribution, and typically you want it in your
systems PATH environment variable). Think of JAR’ing up a WAR file as being equal
to ZIP’ing up a directory.

The directory structure and contents is critical for the WAR file, since the container will
look inside the WAR file for specific files and directory locations to extract the need
information to load it into the container. Here is a minimal directory structure w/
minimal contents starting with the “webapp” directory:

webapp/
|-- WEB-INF/
| |-- classes/
| | `-- com/
| | `-- rhinosystemsinc/
| | `-- beans/
| | `-- Employee.class
| |-- lib/
| | `-- mytools.jar
| `-- web.xml
|-- hello.jsp
`-- images/
 `-- home.jpg

The WEB-INF/classes and WEB-INF/lib directory are optional, but if you wanted to
include classes and/or jars you need to put them in these directories, since that is where
the container will look for them by inspecting the WAR file. In my example the
“images” directory is a completely arbitrary name, yet it will be the name of the directory
that your home.jsp is referencing the images it wants to use in it’s webpage. In this case
the “hello.jsp” file would reference it by relative path:

Or it can specify the entire path as in:

We can use “webapp”, since that is what we are going to name the WAR file in the next
step. But first there is the “web.xml” file that we need to address.

The web.xml file

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 20 of 20

The web.xml file contains information about your WAR file at a minimum it needs the
following information:

<?xml version = '1.0' encoding = 'windows-1252'?>
<web-app>
</web-app>

An example with a Servlet specified would be:

<?xml version = '1.0' encoding = 'windows-1252'?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4"
 xmlns="http://java.sun.com/xml/ns/j2ee">
 <description>Empty web.xml file for Web Application</description>
 <servlet>
 <servlet-name>srv1</servlet-name>
 <servlet-class>com.rhinosystemsinc.srv1</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>srv1</servlet-name>
 <url-pattern>/srv1</url-pattern>
 </servlet-mapping>
</web-app>

The attributes (ie, xmlns and xsi:schemaLocation) in the <web-app> tag, indicate what
version and format of web.xml file we are dealing with. It is best to check examples that
come with your container for what goes here. Sometimes you application will not work
properly if you don’t have this specified correctly. The <servlet> & <servlet-mapping>
tags are mapping the name of the name of the “servlet” that we showed in the earlier
example of a Servlet.

JAR UP THE WAR FILE

First CD to the “webapp” directory and then create the final war file by issuing the
following JAR command:

jar –cf webapp.war *

-c tells jar to create a new file
-f indicates that a filename for the jar follows
* is all the files in the current directory

You might be inclined to use a “.” instead “*” since “.” would get the entire directory and
contents, however you should avoid this since your classes will not be found. “.” will
create a jar with entries like “./com/rhinosystemsinc/beans/Employee.class” instead of
“com/rhinosystemsinc/beans/Employee.class”.

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd
http://java.sun.com/xml/ns/j2ee

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 21 of 21

4.6.3 Deploy War File
You need to copy the WAR file into your servers directory. In OC4J that means copying
the file to: <jdevstudio1013>\j2ee\home\applications directory and then issuing the
commands to deploy and bind in OC4J. See the OC4J manual for more details on this.

With some Servlet containers like Tomcat, you can simply copy the WAR file into the
correct directory and it will automatically deploy. For Tomcat that directory is
<tomcat>/webapps directory.

(Remember, optionally we didn’t need to deploy with a WAR file at all, we could have
simply copied the JSP to the default webapplication directory and modified the WEB-
INF/web.xml file already resident, as shown in previous examples – see “JSP Basics”
section for more details on this)

4.6.4 Invoking your JSP
After deploying your WAR file, you can invoke your JSP from a web browser. In our
example the URL would be:

http://localhost:8888/webapp/hello.jsp

Reminder: The very first time you access the JSP, the container checks to see if the
hello.jsp class file exists in the container already; and if not it precompiles the hello.jsp
into a java servlet file, and then compiles that file into a class, loads it, and then finally
run’s it. If the class file does exist, then the container checks JSP file’s modification
timestamp to see if newer than the class, and if so, repeats the precompile/compile/load
step.

The container only precompiles/compiles & loads the JSP if it doesn’t exists in the
container or the JSP is newer; else it RUN the JSP by calling the “jspService” (a method
created for your servlet during precompile time).

4.6.5 Viewing the precompiled Output (Java file)
The precompilation step that was mentioned in “Invoking your JSP” creates an
intermediate JAVA file that you can view and debug later. Here is the JAVA that was
created in our hello4.jsp

Recall that the hello4.jsp file looks like:
<html>
<%!
 String sharedString="Hi Mom!";
 int thisPageCounter=0;
 public String whatDinner()

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com
http://localhost:8888/webapp/hello.jsp

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 22 of 22

 {
 return "Chicken soup";
 }
%>
<body>
<%=sharedString%>

What’s for dinner?

<%=whatDinner()%>

 You asked <%=(thisPageCounter++)%>
 times

</body>
</html>

And the results of the container precompiling the JSP into a JAVA file. Notice the
jspService section in the file as well as the supplied variables(out,page,session,...etc.) for
your JSP program.

Note: All JSP containers will do precompile into a JAVA file, but the specifics about the
“generated” name, and other details of this file are Container specific.

import oracle.jsp.runtime.*;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;
import oracle.jsp.el.*;
import javax.servlet.jsp.el.*;

public class _hello4 extends com.orionserver.http.OrionHttpJspPage {

 // ** Begin Declarations

 String sharedString="Hi Mom!";
 int thisPageCounter=0;
 public String whatDinner()
 {
 return "Chicken soup";
 }

 // ** End Declarations

 public void _jspService(HttpServletRequest request,
HttpServletResponse response) throws java.io.IOException,
ServletException {

 response.setContentType("text/html");
 /* set up the intrinsic variables using the pageContext goober:
 ** session = HttpSession
 ** application = ServletContext
 ** out = JspWriter
 ** page = this

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 23 of 23

 ** config = ServletConfig
 ** all session/app beans declared in globals.jsa
 */
 PageContext pageContext =
JspFactory.getDefaultFactory().getPageContext(this, request, response,
null, true, JspWriter.DEFAULT_BUFFER, true);
 // Note: this is not emitted if the session directive == false
 HttpSession session = pageContext.getSession();
 int __jsp_tag_starteval;
 ServletContext application = pageContext.getServletContext();
 JspWriter out = pageContext.getOut();
 _hello4 page = this;
 ServletConfig config = pageContext.getServletConfig();
 javax.servlet.jsp.el.VariableResolver __ojsp_varRes =
(VariableResolver)new OracleVariableResolverImpl(pageContext);

 com.evermind.server.http.JspCommonExtraWriter __ojsp_s_out =
(com.evermind.server.http.JspCommonExtraWriter) out;
 try {

 __ojsp_s_out.write(__oracle_jsp_text[0]);
 __ojsp_s_out.write(__oracle_jsp_text[1]);
 out.print(sharedString);
 __ojsp_s_out.write(__oracle_jsp_text[2]);
 out.print(whatDinner());
 __ojsp_s_out.write(__oracle_jsp_text[3]);
 out.print((thisPageCounter++));
 __ojsp_s_out.write(__oracle_jsp_text[4]);
 out.print((thisPageCounter>3));
 __ojsp_s_out.write(__oracle_jsp_text[5]);

 }
 catch(Throwable e) {
 if (!(e instanceof javax.servlet.jsp.SkipPageException)){
 try {
 if (out != null) out.clear();
 }
 catch(Exception clearException) {
 }
 pageContext.handlePageException(e);
 }
 }
 finally {
 OracleJspRuntime.extraHandlePCFinally(pageContext,false);
 JspFactory.getDefaultFactory().releasePageContext(pageContext);
 }

 }
 private static final byte __oracle_jsp_text[][]=new byte[6][];
 static {
 try {
 __oracle_jsp_text[0] =
 "<html>\r\n".getBytes("ISO8859_1");
 __oracle_jsp_text[1] =

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 24 of 24

 "\r\n<body>\r\n".getBytes("ISO8859_1");
 __oracle_jsp_text[2] =
 "
\r\nWhat’s for dinner?
\r\n".getBytes("ISO8859_1");
 __oracle_jsp_text[3] =
 "
\r\n You asked ".getBytes("ISO8859_1");
 __oracle_jsp_text[4] =
 " \r\n
times
\r\n\r\n".getBytes("ISO8859_1");
 __oracle_jsp_text[5] =
 "\r\n</body>\r\n</html>\r\n".getBytes("ISO8859_1");
 }
 catch (Throwable th) {
 System.err.println(th);
 }
}
}

5 Sample Plain JSP

5.1 Introduction
This example shows a list of employees in an HTML table. The list is derived from a
static array coded directly into the JSP page. Notice the Array of Employees and how we
are looping through the results – we’ll be changing both of these out in later examples of
TagLibraries and JSTL.

5.2 Code

JSP File employees1.jsp

<%@ page import="java.io.*,
 java.text.*,
 com.rhinosystemsinc.beans.Employee"
 %>
<html>
<body>
<%
 Employee emps[]=new Employee[]{new Employee("Joel",10),
 new Employee("Bob",11),
 new Employee("Mary",12)};
%>
<table border="1">
<%
 for(int jj=0;jj<emps.length;jj++)
 {
%>
<tr>
 <td><%=emps[jj].getName()%></td>
 <td><%=emps[jj].getEmpid()%></td>
</tr>
<%
 }
%>
</table>

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 25 of 25

</body>
</html>

Reminder: The class file from this Java file needs to be in the WEB-INF/classes
directory and deployed to Default Web Application directly or deployed in WAR file with
above JSP and web.xml (as explained earlier).
Java File com\rhinosystemsinc\beans\Employee.java

ppackage com.rhinosystemsinc.beans;

public class Employee
{
 String name=null;
 int empid=-1;
 public Employee()
 {
 name="";
 empid= -1;
 }
 public Employee(String nm, int i)
 {
 name=nm;
 empid=i;
 }
 public String getName() {return name;}
 public void setName(String nm){name=nm;}
 public int getEmpid(){return empid;}
 public void setEmpid(int ei){empid=ei;}
}

Figure 10: Output of employees1.jsp simple array of Employee beans.

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 26 of 26

6 Sample JSP with TagLib

6.1 Introduction
A tag library is basically a way to create a new HTML tag to include into your JSP file
without having to write the Scriptlet sections. Most people would agree that a “best
practice” would be to hide all your Scriptlets from the JSP - Scriptlets get messy and are
not modularized and don’t work well with HTML Editors.

So, let’s create a simple tag library to create a list of Employees with a filter by name as
an attribute of the tag. We want our tag to look like this when we are finished:

<rhino:Employees filterby="Jo"/>

To create a tag library you need to do the following things:

1) CREATE TLD FILE: create a tld file and make available to the JSP file at
runtime – usually this means just placing in the WAR file or at the same directory
of the JSP file.

2) CREATE A TAGSUPPORT JAVA CLASS: create a java class that extends
TagSupport – compile class and put in your WEB-INF/classes directory.

a. IDENTIFY SUPPORTING JAR FILES: In order to compile the Java
class you created in step #2, you need to find the JAR files from your
Servlet Container that supports TagLibs, and put them in your
CLASSPATH env variable.

I typically run this command (need cygwin unix SHELL) in the Servlet
Containers root directory to find the appropriate JAR file.

for f in home/lib/*.jar; do
 jar -tvf $f |grep TagSupport;
 if [$? -eq 0]; then
 echo found in $f;
 fi;
done

In OC4J it is found in <jdev10.1.3>\ j2ee\home\lib\servlet.jar

Here is my compile command:

javac -cp .;C:\software\jdevstudio1013\j2ee\home\lib\servlet.jar
com\rhinosystemsinc\taglibs\EmployeeTag.java

You could do this from JDeveloper and the "servlet.jar" file should be in your
JDeveloper path already.

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 27 of 27

3) CREATE THE JSP FILE USING THE TAG: You now can create the JSP file
and use your tag in the JSP file.

4) DEPLOY THE FILES TO THE CONTAINER: In my case I simply wanted to
run the samples, so I copied the files into the default web application dir.
However, you can follow the directions to create a WAR file and deploy as such.
(see section “Package into War File” section 4.6.2)

Here is my copy command (the \ indicates next line should be on this line):

copy employees2.jsp \
C:\software\jdevstudio1013\j2ee\home\default-web-app

copy EmployeeTag.tld \
C:\software\jdevstudio1013\j2ee\home\default-web-app

xcopy /S /Y /Q com \
C:\software\jdevstudio1013\j2ee\home\default-web-app\WEB-
INF\classes\com

Note: there is no need to modify the web.xml for this sample.

6.2 Code
employees2.jsp file:
<%@ page import="java.io.*,
 java.text.*,
 java.util.*,
 com.rhinosystemsinc.beans.Employee"
 %>

<%@taglib prefix="rhino" uri="EmployeeTag.tld"%>

<html>
<body>

<!-- here is my custom TAG!!! It will
 store the filterd list in an Attribute of the
 request Object -->

 <rhino:Employees filterby="Jo"/>

<table border="1">
<%
 ArrayList al=(ArrayList)request.getAttribute("emps");

 for(int jj=0;jj<al.size();jj++)
 {
%>
<tr>
 <td><%=((Employee)al.get(jj)).getName()%></td>
 <td><%=((Employee)al.get(jj)).getEmpid()%></td>
</tr>
<%

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 28 of 28

 }
%>
</table>
</body>
</html>

EmployeeTag.tld file:

<?xml version="1.0" encoding="UTF-8" ?>

<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee web-
jsptaglibrary_2_0.xsd"
 version="2.0">

 <tlib-version>1.0</tlib-version>
 <short-name>Employees</short-name>
 <description>Employee Sample rhino web apps</description>

 <tag>
 <name>Employees</name>
 <tag-class>com.rhinosystemsinc.taglibs.EmployeeTag</tag-class>
 <body-content>empty</body-content>
 <attribute>
 <name>filterby</name>
 <required>true</required>
 </attribute>
 </tag>
</taglib>

com\rhinosystemsinc\taglib\EmployeeTag.java file:

package com.rhinosystemsinc.taglibs;

import javax.servlet.jsp.tagext.TagSupport;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspWriter;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;
import javax.servlet.RequestDispatcher;
import javax.servlet.ServletResponse;
import javax.servlet.ServletException;
import java.io.IOException;
import java.util.*;
import com.rhinosystemsinc.beans.*;

/**
 * Created by IntelliJ IDEA.
 * User: Joel Thompson – joel@rhinosystemsinc.com
 * All rights reserved.
*/
public class EmployeeTag extends TagSupport

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com
http://java.sun.com/xml/ns/j2ee
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/j2ee
mailto:joel@rhinosystemsinc.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 29 of 29

{
 String filterby="";

 Employee emps[]=new Employee[]{new Employee("Joel",10),
 new Employee("Joe",13),
 new Employee("Joseph",14),
 new Employee("Bob",11),
 new Employee("Mary",12)
 };

 public String getFilterby()
 {
 return filterby;
 }

 public void setFilterby(String f)
 {
 this.filterby = f;
 }

 //this method is called when the tag is found on the
 //JSP page. Our example is
 //<rhino:Employees filterby="Jo">
 //</rhino:Employees>
 //or <rhino:Employees filterby="Jo"/>
 // doStartTag is called by the processor when
 // <rhino:Employees ...> is encountered.
 public int doStartTag() throws JspException
 {
 HttpServletRequest request=
 (HttpServletRequest) pageContext.getRequest();

 ArrayList al=new ArrayList();

 //ServletResponse res=pageContext.getResponse();

 //you can get a handle to the output stream
 //if you'd like to create new HTML (msg,..etc) for the
 //response. IN our case it is not used.

 //JspWriter out=pageContext.getOut();

 //you can get a handle to the user's Session object
 //HttpSession session=request.getSession(true);

 //In our case were are going to put the filtered list
 //in a variable stored in the request object.
 for(int jj=0;jj<emps.length;jj++)
 {
 if(emps[jj].getName().toUpperCase().contains(
 filterby.toUpperCase()))
 {
 al.add(emps[jj]);
 }
 }

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 30 of 30

 //we'll pull this out later in our JSP file...with a
 //scriptlet
 request.setAttribute("emps",al);

 //tell the processor to skip the BODY of the tag, ie
 //the part between the beginnning and end of tag itself.
 return SKIP_BODY;
 }

 public int doEndTag() throws JspException
 {
 return super.doEndTag();
 }

 public int doAfterBody() throws JspException
 {
 return super.doAfterBody();
 }
}

7 Sample JSP with JSTL

7.1 Introduction
With JSTL (JSP Standard Tag Libraries), you can take advantage of TagLibraries that
already exist. This further reduces the complexity of your JSP page. In our previous
example with “employees2.jsp” we used our custom tag library to put the list of
employees that mathed the “filterby” attribute of our tag in the request’s Attribute list.
We are now going to take advantage of that with a simple JSTL tag library that

7.2 Code

employees3.jsp file:

<%@ page import="java.io.*,
 java.text.*,
 java.util.*,
 com.rhinosystemsinc.beans.Employee"
 %>

 <%@taglib prefix="rhino" uri="EmployeeTag.tld"%>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>
<body>

<!--
 here is my custom TAG!!! It filters by
 the filter attribute and stores the
 filterd list in an Attribute of the
 request Object, named "emps".

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com
http://java.sun.com/jsp/jstl/core

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 31 of 31

-->

 <rhino:Employees filterby="Jo"/>

<table border="1">
<!--
 "emps" is stored as a request Attribute
 The items in emps is iterable and each item
 Supports the java bean symantics with getters
 And setters. JSTL will look in request, page,
 session, and application for the attribute
 with this name "emps".
-->
 <c:forEach var="e" items="${emps}">
 <tr> <!-- notice the two different ways to get to the Employee's
 attributes – one is with . notation and the other is
 by array with string name. Either way, doesn't matter.
 -->
 <td><c:out value='${e["name"]}'/> </td>
 <td><c:out value="${e.empid}"/></td>
 </tr>
 </c:forEach>
 </table>

</table>
</body>
</html>

Deployment Notes: In order to deploy this, make sure the Employee class and the
EmployeeTag.tld are deployed from previous example. Also note, that some containers
don’t support the JSTL by default and you may need to provide the JAR files that
implement these tags. The two needed jar files are standard.jar and jstl.jar and must be
in the containers lib directory or in your WAR file (under WEB-INF/lib). OC4J does
provide these libraries.

8 Sample JSP with Oracle RDBMS I/O

8.1 Introduction
Here we build on the previous example and place the JDBC code into the Tag Library.
You should replace the connection code that is called from the “doStartTag()” method
with JNDI lookups into a connection pool. One other consideration would be to nest
tags, ie have an outter <dbconnect> tag that evaluates it’s body elements, which would be
the tags rendering the table-HTML with the items retrieved from the database. Although
nesting tags gets a bit complicated and beyond the scope of an “introduction” to
TagLibraries. If you’d like to pursue the “nesting” approach then look into extending
your Tag class from BodyTagSupport – this way you can get the content of the Body.
There is a good tutorial on JSP Tags at:

 http://java.sun.com/products/jsp/tutorial/TagLibrariesTOC.html

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com
http://java.sun.com/products/jsp/tutorial/TagLibrariesTOC.html

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 32 of 32

Note: You could use JSTL SQL Tag Library to do this example. See the tutorial on
Sun’s website: http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JSTL7.html

One other thing to consider now is that you have to make sure Oracle’s JDBC library
(ojdbc14.jar) is in the container. For OC4J it is by default, as you’d expect.

8.2 Code

employees4.jsp file:

<%@ page import="java.io.*,
 java.text.*,
 java.util.*,
 com.rhinosystemsinc.beans.Employee"
 %>

<%@taglib prefix="rhino" uri="EmployeeDBTag.tld"%>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>
<body>

<!-- here is my custom TAG!!! It will
 store the filterd list in an Attribute of the
 request Object -->

 <rhino:Employees filterby="Jo"/>

<table border="1">
<c:forEach var="e" items="${emps}">
 <tr>
 <td><c:out value='${e["name"]}'/> </td>
 <td><c:out value="${e.empid}"/></td>
 </tr>
 </c:forEach>
 </table>

</table>
</body>
</html>

EmployeeDBTag.tld file:

<?xml version="1.0" encoding="UTF-8" ?>

<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee web-
jsptaglibrary_2_0.xsd"
 version="2.0">

 <tlib-version>1.0</tlib-version>

Only change from previous to
“EmployeeDBTag”

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JSTL7.html
http://java.sun.com/jsp/jstl/core
http://java.sun.com/xml/ns/j2ee
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/j2ee

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 33 of 33

 <short-name>Employees</short-name>
 <description>Employee Sample rhino web apps</description>

 <tag>
 <name>Employees</name>
 <tag-class>com.rhinosystemsinc.taglibs.EmployeeDBTag</tag-
class>
 <body-content>empty</body-content>
 <attribute>
 <name>filterby</name>
 <required>true</required>
 </attribute>
 </tag>
</taglib>

com\rhinosystemsinc\taglibs\EmployeeDBTag.java file:

package com.rhinosystemsinc.taglibs;

import javax.servlet.jsp.tagext.TagSupport;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspWriter;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;
import javax.servlet.RequestDispatcher;
import javax.servlet.ServletResponse;
import javax.servlet.ServletException;
import java.io.IOException;
import java.util.*;
import com.rhinosystemsinc.beans.*;

//added for DB support
import java.sql.*;
import java.io.IOException;

/**
 * Created by IntelliJ IDEA.
 * User: Joel Thompson
 * Date: Nov 30, 2005
 * Time: 3:16:41 PM
 */
public class EmployeeDBTag extends TagSupport

{
 Connection conn = null;
 String filterby="";

 public String getFilterby()
 {
 return filterby;
 }

 public void setFilterby(String f)

Only change from previous to
“EmployeeDBTag”

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 34 of 34

 {
 this.filterby = f;
 }

 public void getConnection()
 {
 System.out.println("getConnection called");
 try
 {

 Class.forName("oracle.jdbc.driver.OracleDriver").newInstance();
 conn = DriverManager.getConnection(
 "jdbc:oracle:thin:joel/welcome@localhost:1521:SID2");
 conn.setAutoCommit(false);
 System.out.println("got connection");
 }
 catch (SQLException sqle)
 {
 System.out.print("Sorry, the database is " +
 " not available.");
 System.out.print("Exception: " + sqle);
 System.out.println("getConnection.jsp:SQLException: "
 + sqle);
 }
 catch (Exception e)
 {
 System.out.print("Exception occured: " + e);
 System.out.println("getConnection.jsp:Exception: " +
 e);
 }
 }
 public ArrayList findEmpsByName()
 {
 ArrayList al=new ArrayList();
 if(conn!=null)
 {
 PreparedStatement ps=null;
 ResultSet rs=null;
 String name="";
 int id=0;
 try
 {
 System.out.println("prepareStatement");
 ps=conn.prepareStatement("select name,empid " +
 " from employee " +
 " where UPPER(name) like '%' || UPPER(?) || '%'");
 ps.setString(1,filterby);
 System.out.println("executeQuery");
 rs=ps.executeQuery();
 System.out.println("executed query");

 while(rs!=null&&rs.next())
 {
 name=rs.getString("NAME");
 System.out.println("found emp, by " + name);
 id=rs.getInt("EMPID");

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 35 of 35

 al.add(new Employee(name,id));
 }
 }catch(SQLException se)
 {
 System.out.println("Could not excute query ERROR:" +
 se.getMessage());
 }finally
 {
 if(rs!=null) try{rs.close();}catch(SQLException e){}
 if(ps!=null) try{ps.close();}catch(SQLException e){}
 if(conn!=null) try{conn.close();}catch(SQLException e){}
 }

 }
 return al;
 }
 //this method is called when the tag is found on the
 //JSP page. Our example is
 //<rhino:Employees filterby="Jo">
 //</rhino:Employees>
 //or <rhino:Employees filterby="Jo"/>
 // doStartTag is called by the processor when
 // <rhino:Employees ...> is encountered.

 public int doStartTag() throws JspException
 {
 System.out.println("doStartTag called");
 getConnection();
 HttpServletRequest request=
 (HttpServletRequest) pageContext.getRequest();

 ArrayList al=findEmpsByName();

 //we'll pull this out later in our JSP file...with a
 //scriptlet
 request.setAttribute("emps",al);

 //tell the processor to skip the BODY of the tag, ie
 //the part between the beginnning and end of tag itself.
 return SKIP_BODY;
 }

 public int doEndTag() throws JspException
 {
 return super.doEndTag();
 }

 public int doAfterBody() throws JspException
 {
 return super.doAfterBody();
 }
}

SQL to create table and populate it:

Besides the function
getConnection() and
findEmpsByName(),
this is the only change

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 36 of 36

create table Employee
(
 name varchar2(32),
 empid number
);
insert into Employee values('Joel',10);
insert into Employee values('Bob',11);
insert into Employee values('Joseph',12);
insert into Employee values('Mary',13);
insert into Employee values('Joe',14);
commit;

9 Extra Info

9.1 References:
Sun’s Java site

http://java.sun.com

JSTL Main Page (current Version 1.2)

http://java.sun.com/products/jsp/jstl/index.jsp

TagLibrary Tutorial

http://java.sun.com/products/jsp/tutorial/TagLibrariesTOC.html
http://java.sun.com/javaee/5/docs/tutorial/backup/doc/JSPIntro9.html

JSTL

Core: http://java.sun.com/jsp/jstl/core

XML: http://java.sun.com/jsp/jstl/xml

Internationalization: http://java.sun.com/jsp/jstl/fmt

SQL: http://java.sun.com/jsp/jstl/sql

Functions: http://java.sun.com/jsp/jstl/functions

JSTL SQL Tags tutorial
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JSTL7.html

OC4J 10.1.3 Manual

http://download-
west.oracle.com/otn_hosted_doc/ias/preview/web.1013/b14433.pdf

9.2 Books:
“JSP - The Complete Reference”, by Phil Hanna

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com
http://java.sun.com
http://java.sun.com/products/jsp/jstl/index.jsp
http://java.sun.com/products/jsp/tutorial/TagLibrariesTOC.html
http://java.sun.com/javaee/5/docs/tutorial/backup/doc/JSPIntro9.html
http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/xml
http://java.sun.com/jsp/jstl/fmt
http://java.sun.com/jsp/jstl/sql
http://java.sun.com/jsp/jstl/functions
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JSTL7.html

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 37 of 37

10 Appendix

10.1 EAR file Sample Structure
This is a sample ear file that shows what files need to be include (and directory location)
and a description of the files.

• application.xml – is needed to inform the container what WAR files it will load.
• app.war – this is a JAR file with WAR directory format – see contents below.
• lib/tools.jar – this contains my classes – jar’d up and put in the lib dir (the

lib/tools.jar is referenced in the manifest.txt file so that it will be put in classpath
for my webapplication to use)

• manifest.txt – used to create the EAR file (used in the jar command, see below).

Sitting in the testear directory the contents look like:

.
|-- META-INF
| |-- MANIFEST.MF
| `-- application.xml
|-- app.war
|-- lib
| `-- tools.jar
`-- manifest.txt

application.xml file:

<?xml version = '1.0' encoding = 'windows-1252'?>
<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE
Application 1.3//EN" "http://java.sun.com/dtd/application_1_3.dtd">
<application>
 <display-name>My Application</display-name>
 <module>
 <web>
 <web-uri>app.war</web-uri>
 <context-root>myapp</context-root>
 </web>
 </module>
</application>

manifest.txt file:

Class-Path: lib/tools.jar
Created-By: Joel@RHINOSYSTEMSINC.com

JAR command to create EAR:
cd testear
jar –cvf ../testear.ear *

WEB APPLICATION (WAR FILE)
Don’t worry about the MANIFEST.MF in the WAR file – it is automatically generated
when you JAR up the WAR file.

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com
http://java.sun.com/dtd/application_1_3.dtd
mailto:Joel@RHINOSYSTEMSINC.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 38 of 38

app.war structure:
.
|-- META-INF
| `-- MANIFEST.MF
|-- WEB-INF
| `-- web.xml
`-- hello.jsp

web.xml file:
<?xml version = '1.0' encoding = 'windows-1252'?>
<web-app>
 <description>Empty web.xml file for Web Application</description>
</web-app>

JAR command to create EAR:
cd myapp
jar –cvf ../myapp.war *

10.2 Starting OC4J Standalone server
On windows:
cd <jdevstudio1013>jdev\bin
start_oc4j.bat

On UNIX I had to create a script, start_oc4j.sh:

#!/bin/sh
p=`echo $0 | sed 's%\(.*/\).*%\1%g'`

cd $p/../j2ee/home

JAVA_OPTS="-server -Xms128m -Xmx512m \
-Djbo.debugoutput=console \
-Djava.awt.headless=true \
-Dhttp.session.debug=true \
-Ddatasource.verbose=true \
-Dhttp.request.debug=true \
-Dhttp.error.debug=true"

java $JAVA_OPTS -jar oc4j.jar -verbosity 10

10.3 UNIX Deploy Script for OC4J container
#!/bin/sh
p=`echo $0 | sed 's%\(.*/\).*%\1%g'`

#typical usage:
deploy_app.sh –d eapp webapp

where eapp.ear exists in <jdev>/j2ee/home
and webapp.war is a war file in the eapp.ear w/context

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 39 of 39

root defined as "webapp"

usage ()
{
 echo "Usage:"
 echo "`basename $0` -u app_ear"
 echo "`basename $0` -d app_ear [webapp_name]"
 echo "`basename $0` -b webapp_name app_ear"
 echo "-u undeploys application"
 echo "-d will deploy the application ear file and you can"
 echo " optionally specify the war file to bind".
 echo "else use"
 echo "-b to bind the war to the ear application"
 echo "where app_ear is name of ear file, without hte .ear
extension"
 echo "and webapp_name is the name of the webapplication"
}
earName=""
deployAndBind=""
bindOnly=""
deployOnly=""
webapp=""
undeploy=""

while getopts u:d:b: c
do
 case $c in
 u) undeploy="$OPTARG";;
 d) earName=$OPTARG;;
 b) webapp=$OPTARG;;
 \?) usage
 exit 2;;
 esac
done

shift `expr $OPTIND - 1`

ENVIRONMENT VARIABLES
OPTARG
stores the value of the option argument found by getopts.

OPTIND
contains the index of the next argument to be processed.

if user passed -b, to bind webapp
if ["$1" != ""] && ["$webapp" != ""]; then
 earName=$1
shift
 bindOnly="true";
fi

#if the -d to deploy ear file was given
if ["$1" != ""] && ["$earName" != ""]; then

 webapp=$1
 deployAndBind="true";

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 40 of 40

elif ["$bindOnly" != "true"] && ["$earName" != ""]; then

 deployOnly="true";

fi

echo "undeploy=$undeploy"
echo "webapp=$webapp"
echo "earName=$earName"
echo "deployOnly=$deployOnly"
echo "deployAndBind=$deployAndBind"
echo "bindOnly=$bindOnly"
echo "OK?(hit return or ctrl-C to cancel)"
read ans
cd $p/../j2ee/home
#set -x

if ["$undeploy" != ""]; then
 java -jar admin.jar ormi://localhost:23791 admin mypasswd \
 -undeploy $undeploy
 if [$? -eq 0];then echo "undeployed $undeploy"; fi
 exit 0;
fi
if ["$deployOnly" = "true"] || ["$deployAndBind" = "true"]; then
 java -DApplicationServerDebug=true -Dhttp.error.debug=true \
 -Dhttp.method.trace.allow=true \
 -jar admin.jar ormi://localhost:23791 admin mypasswd \
 -deploy -file ${earName}.ear -deploymentName $earName
 status=$?
 if [$status -eq 0]; then
 echo "deploy success"
 else
 echo "deploy failed"
 exit -2;
 fi
else
 echo "skipping deploy"
fi

#-bindWebApp [application deployment name] [web-app name]
[web-site name] [context root]

if ["$bindOnly" = "true"] || ["$deployAndBind" = "true"]; then
 java -DApplicationServerDebug=true -Dhttp.error.debug=true \
 -Dhttp.method.trace.allow=true \
 -jar admin.jar ormi://localhost:23791 admin mypasswd \
 -bindWebApp $earName $webapp http-web-site /$webapp
 status=$?
 if [$status -eq 0]; then
 echo "binding success"
 else
 echo "binding failed"
 fi
else
 echo "failed deployment"

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com

By joel@rhinosystemsinc.com 10/2006 - copyright 2006 – all rights reserved.
http://www.rhinosystemsinc.com
Page 41 of 41

fi
#java -jar admin.jar ormi://localhost:23791 admin oc4j4adg -deploy -
file $1 -deploymentName $2

Binding the Web Application
To make your J2EE Web application accessible from the OC4J Web
server,
bind the Web application to the OC4J server using the -bindWebApp
option as follows:
java -jar admin.jar ormi://oc4j_host:oc4j_ormi_port username
password
-bindWebApp app_name web_app_name web_site_name context_root
where the following are the values for -bindWebApp:
. app_name is the application name, which is the same name used in
-deploymentName on the -deploy option. In addition, note that this is
the same
name that is saved in the <application name=app_name /> attribute in
the
server.xml file.
. web_app_name is the name of the WAR file contained within the EAR
file.without the .war extension.
. web_site_name is the name of the *-web-site.xml file that denotes
the Web
site to which this Web application should be bound. This is the file
that will receive
the Web application definition.
. context_root is the root context for the Web module. The Web
context defines
how the Web application is accessed.

mailto:joel@rhinosystemsinc.com
http://www.rhinosystemsinc.com

	1 Introduction
	2 HTTP
	2.1 Protocol & Stateless
	2.2 GET and POST
	2.3 Example FTP session with Yahoo.com

	3 Servlet Basics
	3.1 Basic HttpServlet
	3.2 Deploying Your Servlet

	4 JSP Basics
	4.1 Introduction
	4.2 Declarations
	4.3 Scriptlets
	4.4 Value of Expression
	4.5 Includes & Import
	4.6 Lifecycle of JSP

	5 Sample Plain JSP
	5.1 Introduction
	5.2 Code

	6 Sample JSP with TagLib
	6.1 Introduction
	6.2 Code

	7 Sample JSP with JSTL
	7.1 Introduction
	7.2 Code

	8 Sample JSP with Oracle RDBMS I/O
	8.1 Introduction
	8.2 Code

	9 Extra Info
	9.1 References:
	9.2 Books:

	10 Appendix
	10.1 EAR file Sample Structure
	10.2 Starting OC4J Standalone server
	10.3 UNIX Deploy Script for OC4J container

