
14
August 2006

15
The NoCOUG Journal

Summary

I
n the first part of this multi-part article, we explained
that SQL is what is called a “non-procedural” language;
i.e., an SQL query simply identifies a subset of data
in the database without specifying how to go about how to go about how

extracting that data. This has led to the pervasive belief that
ap pli cation programmers have no responsibility for SQL
per formance. In this installment, we dive into the theoretical
underpinnings of the SQL language—an understanding of
which is crucial to taking responsibility for SQL performance.
In the next installment, we will put everything together.

Dangerous Beliefs

The non-procedural nature of the SQL language has led
to many dangerous beliefs centered around the theme that
application programmers have no responsibility for the per-
formance of the SQL statements they write. Here is a repre-
sentative list.

 Dangerous Belief #1: DBAs bear chief responsibility
for the performance of SQL statements.

 Dangerous Belief #2: Applications should be designed
without reference to the way data is stored, e.g., index-
organized tables, hash clusters, partitions, etc.

 Dangerous Belief #3: Application programmers should
not tailor their SQL statements to make use of existing
indexes. DBAs should instead create traps to catch badly
performing SQL at runtime and create new indexes as
necessary to make them perform better.

 Dangerous Belief #4: It is not necessary to review the
Query Execution Plan of an SQL statement before re-
leasing it into a production environment. It is further

not necessary to freeze the Query Execution Plan of an freeze the Query Execution Plan of an freeze
SQL statement before releasing it into a production
environment. It is desirable that Query Execu tion Plans
change in response to changes in the statistical informa-
tion that the query optimizer relies upon. Such changes
are always for the better.

 Dangerous Belief #5: The most common cause of
poorly performing SQL is the failure of the DBA to
collect statistical information on the distribution of
data for the use of the query optimizer.1 This statistical
information should be refreshed frequently.2

A True Story

I grub for my living in a dusty corner of a mighty tele-
communications company, babysitting a brood of databases
and feeding them whenever they are hungry for disk space.
One day an irate developer submitted a high-priority request
that we find out why Oracle was “not responding to simple
queries.”

We found that that the developer had submitted a seven-
way join without any joining criteria whatsoever, i.e., a query
of the form “SELECT . . . FROM Table#1, Table#2, Table#3,
Table#4, Table#5, Table#6, Table#7!” Poor Oracle was gamely
trying to perform a seven-way Cartesian product of the tables
but probably needed 100 years to complete the task since
the estimated query cost recorded in the V$sqlplan view was
9,275,840,000,000,000!

When we asked the developer why he had not specified
any joining criteria, he said that he first wanted to determine
if Oracle could handle a “simple” query before submitting a
complex query. We offered to send him the Query Execution
Plan for his “simple” query but he said that he did not know

SQL CORNER

Iggy Fernandez

1 Consider, for example, the following statement found in an article published in a recent issue of the journal of the IOUG: One of the
greatest problems with the Oracle cost-based optimizer was the failure of the Oracle DBA to gather accurate schema statistics. . . The issue
of stale statistics and the requirement for manual analysis resulted in a “bum rap” for Oracle’s cost-based optimizer, and beginner DBAs
often falsely accused the CBO of failing to generate optimal execution plans when the real cause of the sub-optimal execution plan was
the DBA’s failure to collect complete schema statistics—the DBA’s failure to collect complete schema statistics—the DBA’s failure to collect complete schema statistics www.ingentaconnect.com/content/ioug/sj/2006/00000013/00000001/art00003—www.ingentaconnect.com/content/ioug/sj/2006/00000013/00000001/art00003—

2 The following statement by Donald Burleson puts the fi nger on the dangers of collecting fresh statistical information for the use
of the query optimizer: It astonishes me how many shops prohibit any un-approved production changes and yet re-analyze schema stats
weekly. Evidently, they do not understand that the purpose of schema re-analysis is to change their production SQL execution plans, and
they act surprised when performance changes!—they act surprised when performance changes!—they act surprised when performance changes! www.dba-oracle.com/art_orafaq_cbo_stats.htm—www.dba-oracle.com/art_orafaq_cbo_stats.htm—

SQL Sucks! – Part II
by Iggy Fernandez

Man is timid and apologetic; he is no longer upright; he dares not say “I think,” “I am,” but quotes Man is timid and apologetic; he is no longer upright; he dares not say “I think,” “I am,” but quotes M

some saint or sage . . . We are like children who repeat by rote the sentences of grandames and tutors,

and, as they grow older, of the men of talents and character they chance to see,—painfully recollecting

the exact words they spoke; afterwards, when they come into the point of view which those had who

uttered these sayings, they understand them and are willing to let the words go; for at any time they can

use words as good when occasion comes. —Ralph Waldo Emerson

14
August 2006

15
The NoCOUG Journal

Lies, Damn Lies,
and SQL!

Sumit Sengupta from Columbus, OH, sent us this puzzle.
Describe a combination of circumstances in which the
COUNT function could produce the anomalous results

seen in the example below.

SQL> DESCRIBE employees;
Name Null? Type
--------------- -------- ---------------
NAME NOT NULL VARCHAR2(25)
SALARY NOT NULL NUMBER(8,2)
COMMISSION_PCT NOT NULL NUMBER(4,2)

SQL> SELECT COUNT(name) FROM employees;
COUNT(NAME)

 3
SQL> SELECT COUNT(salary) FROM employees;
COUNT(SALARY)

 2
SQL> SELECT COUNT(commission_pct) FROM
employees;
COUNT(COMMISSION_PCT)

 1
SQL> SELECT COUNT(1) FROM employees;
COUNT(1)

 0

The prize offered for the most thorough answer is a
SanDisk Sansa M240 1 GB MP3 Player. The SanDisk Sansa
M240 is the most popular flash-based MP3 player sold by
Amazon.com, ahead of the iPod Nano, and can be used with
music subscription services such as Napster and Rhapsody.

The contest is open to all NoCOUG members. Send your
answers to journal@nocoug.org by August 30. The de-
cision of the judges is final. 

3 Steve Feuerstein, the guru of PL/SQL, said, in an interview for
the NoCOUG Journal: NoCOUG Journal: NoCOUG Journal Java and .Net and VB programmers should
never write SQL. They generally don’t have much respect for the
language and don’t do a very good job writing it.

4 Duplicates are eliminated from the result.

5 Duplicates are eliminated from the result.

how to interpret Query Execution Plans. He probably did not
know much about SQL either!3

Relational Algebra

SQL is largely based on the “algebra of relations,” i.e., the
ways in which relations (tables) can be combined with each
other to form new relations. An SQL statement then is an
alge braic expression in which the “operands” are tables in-
stead of numbers. Here are five examples of relational op-
erations.

“Selection” Form another relation by extracting a
sub set of the rows of a relation of inter-
est using some criteria.

“Projection” Form another relation by extracting a
subset of the columns of a relation of
interest.4

“Union” Form another relation by selecting all
rows from two relations of interest. If the
first relation has 10 rows and the second
relation has 20 rows, then the resulting
relation will have at most 30 rows.5

“Difference” Form another relation by extracting only
those rows from one relation of interest
that do not occur in a second relation.

“Join” Form another relation by concatenating
records from two relations of interest.
For example, if the first relation has 10
rows and the second relation has 20
rows, then the resulting relation will
have 200 rows—and if the first relation
has 10 columns and the second relation
has 20 columns, then the resulting re-
lation will have 30 columns.

It is possible to create new operations by combining the
“primitive” operations in the above table. For example, “Na-
tural Join” is a combination of Join and Selection.

We illustrate the five operations defined in the above table
with an example. Consider the following table definitions.

 Suppliers is a table that contains SupplierName as its
only column.

 Parts is a table that contains PartName as its only column.PartName as its only column.PartName

 SuppliedParts is a table that contains SupplierName and
PartName as its two columns. The occurrence of a cer-
tain combination of SupplierName and PartName in

16
August 2006

17
The NoCOUG Journal

this table indicates that the supplier in question supplies
the indicated part. Here is some sample data.

Suppliers
SupplierName
Ashley
Bertram
Carlton

Parts
PartName
Hammer
Nail
Screw

SuppliedParts

SupplierName PartName
Ashley Hammer
Ashley Nail
Ashley Screw
Bertram Hammer
Bertram Nail
Carlton Screw

The question we try to answer is “Which suppliers supply
all parts?” The answer is that only Ashley supplies all parts.
Here is how we can formally obtain this answer with the help
of the five relational operations defined previously. We create
several intermediate result tables along the way.

1. First we use the Join operation and form an interme di-
ate result table by concatenating records from the
Suppliers table and the Parts table. All combinations
of SupplierName and PartName occur in this table.

SupplierName PartName
Ashley Hammer
Ashley Nail
Ashley Screw
Bertram Hammer
Bertram Nail
Bertram Screw
Carlton Hammer
Carlton Nail
Carlton Screw

2. Next we use the Difference operation and form a second
intermediate result table by extracting only those rows
from the table obtained in the previous step that do not
occur in the SuppliedParts table. The occurrence of a cer-
tain combination of SupplierName and PartName in this
new intermediate table indicates that the supplier in ques-
tion does not supply the indicated part.

SupplierName PartName
Bertram Screw
Carlton Hammer
Carlton Nail

3. Next we use the Projection operation and form yet an-
other intermediate result table by extracting only the first
column from the table obtained in the previous step. This
is the list of suppliers who do not supply at least one part.

SupplierName
Bertram
Carlton

4. Finally we use the Difference operation again and obtain
the final result we were seeking by extracting only those
rows from the Suppliers table that do not occur in the
intermediate result table of the previous step. This is the
required list of suppliers who do supply all parts!

SupplierName
Ashley

SQL Solution

Here is the SQL language solution of the question, “Which
suppliers supply all parts?” Once again we derive the result in
stages to aid understanding. At each stage, we highlight the
partial formulation of the previous stage.

1. First we “join” the Suppliers and Parts tables to obtain
all combinations of SupplierName and PartName. We
use the following language.

select SupplierName, PartName
from Suppliers, Parts

2. We next eliminate all combinations of SupplierName and
PartName that do not occur in the SuppliedParts table.

select SupplierName, PartName
from Suppliers, Parts
minus
select SupplierName, PartName
from SuppliedParts

3. We then extract supplier names from the intermediate
result obtained in the previous step, thus yielding the
list of suppliers who do not supply not supply not at least one part.at least one part.at least one

select SupplierName from
(
select SupplierName, PartName
from Suppliers, Parts
minus
select SupplierName, PartName
from SuppliedParts

)

4. Finally, we remove suppliers obtained in the previous
stage from the list of suppliers in the Suppliers table, thus
yielding the list of suppliers who do supply do supply do all parts!all parts!all

select SupplierName from Suppliers
minus
select SupplierName from
(
select SupplierName, PartName
from Suppliers, Parts
minus
select SupplierName, PartName
from SuppliedParts

)

The author can be reached at iggy_fernandez@hotmail.com.
Copyright © 2006 by Iggy Fernandez

