
14
May 2006

15
The NoCOUG Journal

Summary

I
n the first part of this multi-part article, we argue
that query optimizers (including the Oracle query
optimizer) are severely handicapped in their ability
to generate good query execution plans and that,

therefore, the promise of relational technology has gone
largely unfulfilled. In the second part of this article, we
will discuss the workarounds.

A Personal Note

In a previous issue of the Journal, I wrote a couple of
articles extolling the power of SQL and received the following
comment from Ravi Kulkarni of Phoenix, AZ.

“I think it is a stretch to say that the Oracle optimizer can
optimize every possible SQL statement written using convo-
luted but severely limited syntax, the same way as an expert
DBA with a procedural language.”

Subsequent to the publication of those articles, I had
occasion to participate in a major SQL tuning effort for a
Fortune 500 company and encountered many cases in which
the Oracle query optimizer was generating poor query execu-
tion plans. It appeared that Ravi was right!

Technical Background

SQL is what is called a “nonprocedural” language; i.e.,
an SQL query simply identifi es a subset of data in the data-
base without specifying how to go about extracting that
data. The promise of relational technology was that the promise of relational technology was that the promise
SQL programmer would be relieved from most of the re-most of the re-most
sponsibility for making the best use of computer resources
and would only need to consider the “logical data model,”
not the “physical data model.” The intention was that the
major responsibility would be divided as follows:

1. First, the responsibility would devolve to the database
engine, which would provide a selection of data pro-
cessing algorithms (e.g., merge join, hash join, parallel
processing, etc.), data storage methods (e.g., index-
organized tables, table clusters, data partitioning), and
indexing methods (e.g., b-tree indexes, bitmap indexes,
function-based indexes).

2. Second, the responsibility would devolve to the data-
base administrator who, in partnership with the appli-
cation architect, would convert the “logical” database
design into a “physical” database design and choose
storage methods and indexing methods geared to the
requirements of the application. The database ad-
ministrator would also work with the users of the appli-
cation to ensure that there was sufficient computer
capacity (CPU, memory, I/O bandwidth, and network
bandwidth) to meet the current and future needs.

3. Finally, the responsibility would devolve to a special
component of the database engine called the “Query
Optimizer,” which would rely on statistical information
such as row counts and histograms to make decisions
about table processing order and index usage and
to choose from among available data processing
algorithms. The goal being to identify the “query
execu tion plan” that minimizes the consumption of
compu ter resources and the time required.

In this article, we will present certain defects of the query
optimizer and argue that these defects are incurable. Note
that we are not singling out Oracle in particular. The same
defects exist in the technology of every other vendor.

Incurable Defects!

We really need to prepare the ground adequately with
an overview of the inner workings of the query optimizer,
but we only have space for the barest minimum of exam-
ples. Suppose that A is a “parent table” and B is a “child
table” and that the optimizer is presented with a query of
the following sort.

select * from A, B
where <filtering criteria to be applied to A>
 and <filtering criteria to be applied to B>
 and <criteria to match records of A and B>

The optimizer can use either table A or table B as the
“driving table” for the query. It will instruct the database
engine fi rst to fi lter the chosen table using the applicable
filtering criteria and then to match the resulting record
set with matching records from the other table using the

SQL CORNER

Iggy Fernandez

SQL Sucks! – Part I
by Iggy Fernandez

The other terror that scares us from self-trust is our consistency; a reverence for our past act or word, be-

cause the eyes of others have no other data for computing our orbit than our past acts, and we are loath

to disappoint them. . . . Bring the past for judgment into the thousand-eyed present, and live ever in a new

day. . . . A foolish consistency is the hobgoblin of little minds, adored by little statesmen and philosophers

and divines. . . . Speak what you think now in hard words, and tomorrow speak what tomorrow thinks

in hard words again, though it contradict every thing you said today. —Ralph Waldo Emerson—Ralph Waldo Emerson—Ralph W

14
May 2006

15
The NoCOUG Journal

applicable matching criteria. It is obvious that the key to the
choice of the driving table is the size of the record sets that
result from applying the applicable fi lters to each table. For
exam ple, if the optimizer knew in advance that the fi lters on
table B were very restrictive, then it would be wise to choose
table B to be the driving table.

Now consider an example involving three tables.

select * from A, B, C
where <filtering criteria to be applied to A>
 and <filtering criteria to be applied to B>
 and <filtering criteria to be applied to C>
 and <criteria to match records of A and B>
 and <criteria to match records of B and C>
 and <criteria to match records of A and C>

Since only two tables can be processed at a time, the opti-
mizer must decide which two tables to process fi rst, and the
resulting record set must then be joined with the remaining
table. For example, if the optimizer had some way of know-
ing that the matching criteria to be used to associate records
of table B with those of table C were very restrictive, then it
would be wise to process those tables fi rst, so as to reduce the
work required in fi nding matching records in table A. Once
again, we see that estimation of the number of qualifying records
at each step of query processing is the key to the problem.

The optimizer attempts to solve the problem by using
statistical information such as row counts and histograms.
A histogram is a summary of the data values in any one
column of a table; e.g., we might have a histogram that tells
us that California is the most populous state in the Union.
How ever, histogram summaries for single columns are of no
use when we are faced with more than one fi lter. Similarly,
histograms offer no help in assessing how many rows in one
table will match rows of another table.

Consider the following two examples.

select * from CarSales
where Manufacturer = ’Toyota’
 and Model = ’Celica’;

select * from CarSales
where Manufacturer = ’Toyota’
 and ModelYear < 1975;

Now, the Oracle optimizer can use histograms to estimate the
percentage of sales satisfying any single one of the criteria listed
in the above SQL queries but has no way of accurately estimating
what percentage of sales satisfy two or more criteria. To us it
is ob vious that all Celicas are Toyotas and that, therefore, the
percentage of Celicas manufactured by Toyota equals the per-
centage of cars that are Celicas. It is also obvious to us that
Toyota was not making cars prior to 1975 and that, therefore,
the percentage of Toyotas sold before 1975 is, in fact, zero.
Oracle, on the other hand, assumes that there is never any
correlation between data items and, therefore, uses the
follow ing formulae.

Probability(Manufacturer = ’Toyota’ and Model =
’Celica’) =
 Probability (Manufacturer = ’Toyota’)
 x Probability(Model = ’Celica’)

Probability(Manufacturer = ’Toyota’ and
ModelYear < 1975) =
 Probability(Manufacturer = ’Toyota’)
x Probability(ModelYear < 1975)

In the fi rst case, Oracle has underestimated the size of the
result, and, in the second case, it has overestimated.

The error worsens as the number of fi lters increases, as in
the following query, in which Oracle will further underesti-
mate the number of rows in the result set.

select * from CarSales
where Manufacturer = ’Toyota’
 and Model = ’Celica’
 and ModelYear >= 1975

Finally, consider what might happen if we encounter an
“OR” conjunction such as the one in the following example.

select * from CarSales
where Manufacturer = ’Toyota’
 or Model = ’Celica’

Let X, Y, and Z be any three fi lters. For readers familiar
with the language of probability and statistics, we state the
following results.

Probability(X and Y) =
 Probability(X) x Probability(Y given X)1

Probability(X and Y and Z) =
 Probability(X)
x Probability(Y given X)
x Probability(Z given X and Y)2

Probability(X or Y) =
 Probability(X) + Probability(Y)
- Probability(X and Y)

Probability(X or Y or Z) =
 Probability(X)
+ Probability(Y)
+ Probability(Z)
- Probability(X and Y)
- Probability(X and Z)
- Probability(Y and Z)
+ Probability(X and Y and Z)

Since Oracle has no knowledge of “conditional probabili-
ties,” it uses the following alternatives (which are accurate if
and only if X and Y are so-called “independent events”) and
consequently exposes itself to the dangers of underestimation
and overestimation.

Probability(X and Y) =
 Probability(X) x Probability(Y)

Probability(X and Y and Z) =
 Probability(X) x Probability(Y) x
Probability(Z)

Probability(X or Y) =
 Probability(X) + Probability(Y)
 - Probability(X) x Probability(Y)

Probability(X or Y or Z) =
 Probability(X)
 + Probability(Y)
 + Probability(Z)
 - Probability(X) x Probability(Y)
 - Probability(X) x Probability(Z)
 - Probability(Y) x Probability(Z)
 + Probability(X) x Probability(Y) x
Probability(Z)

1 The probability that the second fi lter is also satisfi ed when the
fi rst fi lter is satisfi ed.

2 The probability that the third fi lter is also satisfi ed when the
fi rst and second fi lters are both satisfi ed.

16
May 2006

17
The NoCOUG Journal

We now turn our attention to the problem of joining
tables using record matching criteria to associate records
from one table with those of another. Let A and B be two
tables and let NR_A and NR_B represent the number of NR_B represent the number of NR_B
rows in A and B respectively. Further, let NDV_A represent NDV_A represent NDV_A
the number of distinct values in the joining column of A
and let NDV_B represent the number of distinct values in NDV_B represent the number of distinct values in NDV_B
the joining column of B. In the absence of better informa-
tion, we could assume that each distinct value of the joining
column in B is equally represented; i.e., it occurs exactly (NR_B
/ NDV_B) times. If we could further assume that every
value in the joining column of A is represented in the joining
column of B, then the number of records resulting from
the joining operation would be NR_A x (NR_A x (NR_A x NR_B / NDV_B). A
symmetric argument could be used to estimate the answer
to be NR_B x (NR_B x (NR_B x NR_A / NDV_A). Oracle chooses the mini-
mum of these two answers, which can be expressed as
(NR_A x NR_B) / maximum(NDV_A, NDV_B).

Once again, we see that Oracle is using assumptions that
may be far from the truth. As the number of fi lter criteria
and the number of tables grow, the errors also grow and the
query optimizer’s strategy is undermined.

A participant on the “Ask Tom” website expressed the
prob lem perfectly with the following comment.

“I became interested in the CBO’s selectivity calculations try-
ing to understand why it comes up with some of the ridicu-
lously low cardinality estimates (like 1 when in reality there are
80,000+) which then lead to disastrous access plans that take
hours, provided they fi nish at all, instead of minutes or seconds.”3

Concluding Remarks

We should warn the reader that the opinions we expressed
in this article don’t have mainstream support. The mainstream
opinion is that most, if not all, failures of Oracle’s query opti-
mizer can be remedied by improving the quality of the statis-
tical information on which the optimizer relies. Here, for
example, is a quote from an article published this year in
the journal of the Independent Oracle Users Group (IOUG).

“One of the greatest problems with the Oracle Cost-based
optimizer was the failure of the Oracle DBA to gather accurate
schema statistics. . . . The issue of stale statistics and the re-
quirement for manual analysis resulted in a “bum rap” for
Oracle’s cost-based optimizer, and beginner DBAs often falsely
accused the CBO of failing to generate optimal execution
plans when the real cause of the sub-optimal execution plan
was the DBA’s failure to collect complete schema statistics.”4was the DBA’s failure to collect complete schema statistics.”4was the DBA’s failure to collect complete schema statistics.”

Further Reading

Document 68992.1 in the Oracle knowledge base (Metalink)
is a good source of information on the formulae and assump-
tions used by the Oracle query optimizer.

Iggy Fernandez is a DBA for the Verizon phone company. You
can reach him at iggy_fernandez@hotmail.com.

Copyright © 2006, Iggy Fernandez

3 asktom.oracle.com/pls/ask/f?p=4950:8:::::F4950_P8_
DISPLAYID:4344365159075.

4 www.ingentaconnect.com/content/ioug/sj/2006/00000013/
00000001/art00003.

Oracle Consulting Solutions Specialists

With over 10 years of Oracle consulting excellence,
Quovera has performed more than 300 engage-

ments for over 200 clients. Quovera’s specialized
Oracle consulting services include:

 11i E-Business Suite implementations and
upgrades

 Full lifecycle custom and web development
and data warehousing

 Business intelligence, reporting and business per-
formance management

Quovera also provides expert mentoring and training
on JDeveloper, Developer and Designer with its team
of renowned Oracle Press Authors and Certified Masters.

Quovera brings the experience of its Oracle consulting
staff to work with you to improve your Information
Technology processes and achieve your business goals.

Quovera, Inc.
800 West El Camino Real, Suite 100

Mountain View, CA 94040
Tel. (650) 962-6319 · www.quovera.com

