CRACLE®

SOFTWARE POWERS THE INTERNET™

Services for a DBA

May Your Workloads RIP (Run In Peace)

David Austin

Manager
Technical Writing for RAC and Grid

Oracle USA, Inc.

What, When, Why, Where, How?

- Connection load balancing
- Client-Side load balancing
- Server-Side load balancing
- Runtime connection load balancing
- Listener load balancing
 - Session load balancing
 - Client-Side connect time failover
- Transparent application failover
- Automatic Workload Management

Connection Load Balancing

- Each new connection is routed to the "best" server to maintain balance across workloads
- Two types of connection load balancing
 - Client-Side connection load balancing
 - Server-Side connection load balancing
- Can use both in a Real Application Clusters (RAC) environment

Client-Side Connection Load Balancing


```
sales.us.acme.com=
 (DESCRIPTION=
  (ADDRESS LIST=
  (LOAD BALANCE=on)
  (ADDRESS=
   (PROTOCOL=tcp)
   (HOST=app1)
   (PORT=1521))
  (ADDRESS=
   (PROTOCOL=tcp)
   (HOST=app2)
   (PORT=1521)))
  (CONNECT DATA=
   (SERVICE NAME=HR)))
     tnsnames.ora
```

Client-Side Connection Load Balancing

Client-Side Connection Load Balancing

Server-Side Connection Load Balancing

Parameters

 For all listeners to recognize all available instances set the LOCAL_LISTENER and REMOTE_LISTENER parameters in the instance parameter file(s). For example:

Considerations

- Available since Oracle9i
- Can use for RAC or Data Guard logical standby database connections
- Logon storms can overwhelm the algorithms
 - May overload one instance regardless of settings
 - More likely with a small number of listeners and instances

Application

OCI Library

Net Services

Application

OCI Library

Net Services

ORACLE"

ORACLE

ORACLE"

ORACLE

ORACLE"

ORACLE"

ORACLE

ORACLE

Transparent Application Failover: 108 Overview

ORACLE"

Basic TAF

```
HR =
 (DESCRIPTION =
  (FAILOVER=ON) (LOAD BALANCE=ON)
  (ADDRESS=(PROTOCOL=TCP)(HOST=N1VIP)(PORT=1521))
  (ADDRESS=(PROTOCOL=TCP)(HOST=N2VIP)(PORT=1521))
  (CONNECT DATA =
   (SERVICE NAME = HR)
   (FAILOVER MODE =
   (TYPE=SESSION)
   (METHOD=BASIC)
   (RETRIES=180)
   (DELAY=5))))
```

Considerations

- Reconnection time depends on:
 - Nature of failure
 - Net services delay
 - Number of connections to be made
- All applications switch to another instance
 - If only one, it must have reserve capacity for all users on primary instance
 - If multiple instances, logon storm may prevent loadbalancing algorithms from working correctly

Preconnect TAF

```
CRM =
 (DESCRIPTION =
  (FAILOVER=ON) (LOAD BALANCE=ON)
  (ADDRESS=(PROTOCOL=TCP) (HOST=N1VIP) (PORT=1521))
  (ADDRESS=(PROTOCOL=TCP) (HOS T=N2VIP) (PORT=1521))
  (CONNECT DATA =
   (SERVICE NAME = CRM)
   (FAILOVER MODE =
   (TYPE=SESSION)
   (METHOD=PRECONNECT)
   (RETRIES=180)
   (DELAY=5))))
```

Considerations

- Reconnection time depends on:
 - Nature of failure
 - Net services delay

NOTE: Not dependent on number of connections

- All applications switch to another instance
- Typically only useful in a two-instance system
- Secondary instance capacity is reduced by preconnected sessions

How Can Services Help?

- Allow distribution of service across desired instances
- Choice of connection routing defined by type of workload
- Identify any instances for use in failovers
 - Enable dynamic reallocation of application connections depending on workload

Traditional Workload Management

ORACLE

Traditional Workload Management

ORACLE

Grid Workload Management

Grid Workload Management

Workload is Managed with Services

- Are an integral part of Oracle Database 10g
- Group sessions doing similar work
- Provide new tuning options
- Manage multiple instances like a single instance
 - Provide base for balanced and highly available connections

Attributes of a Service: Single Instance

- Identified with a globally unique name
- Network identifier to provide access by clients
- Threshold values (which you set) for response time and CPU consumption alerts
- Priority value (which you set) to determine relative resource use compared with competing services

Attributes of a Service: RAC Instances

- All of single-instance attributes plus
 - Load balancing advisory goal to determine if connections are made for quality (service response time) or for best throughput (how much work is completed in a unit of time)
 - Flag to identify if service will use distributed transactions
 - Flag to turn on RAC high availability event propagation to OCI and ODP.NET clients via Advanced Queuing
 - Transparent application failover characteristics
 - Connection load balancing goal to determine if connections are made for open or closed workloads (that is, using load balancing advisory goal or using session counts)
 - High availability option by instance primary (aka Preferred) or failover (aka Available)

Service Types and Characteristics

Application services

- Default service created by DBCA (named after instance full name for single instance, stem for RAC)
- Others created as needed for workload management
- Service names must be 64 characters or less

Internal services

- SYS\$BACKGROUND (for use by background processes)
- SYSSUSERS (for use by sessions not assigned to an application service)
- Cannot be deleted, changed, or disabled
- Limit of 64 application services per database (including the 2 internal services)


```
execute dbms service.create service(
  service name => 'hr.mycompany.com',
 network name => 'hr.mycompany.com',
  goal => dbms service.goal service time,
  dtp => false,
  aq ha notifications => true,
  failover method =>
    dbms service.failover method basic,
  failover type =>
    dbms service.failover type select,
  failover retries => 180,
  failover delay => 5.
  clb goal => dbms service.clb goal long);
```

```
execute dbms service.create service(
  service name => 'hr.mycompany.com',
  network name => 'hr.mycompany.com',
  goal => dbms service.goal service time,
  dtp => false,
                                         Unique name and
  ag ha notifications => true,
                                         Net Service client
  failover method =>
                                          connection are
                                            identical
    dbms service.failover method basi
  failover type =>
    dbms service.failover type select,
  failover retries => 180,
  failover delay => 5.
  clb goal => dbms service.clb goal long);
```

```
execute dbms service.create service(
  service name => 'hr.mycompany.com',
 network name => 'hr.mycompany.com',
 goal => dbms service.goal service time,
 dtp => false,
  aq ha notifications => true
  failover method =>
    dbms service.failover met
  failover type =>
    dbms service.failover typ
  failover retries => 180,
  failover delay => 5.
  clb goal => dbms service.cl
```

Load balancing advisory goal (quality, i.e. response time) best for unpredictable workloads. Other options are goal throughput - best for work with fixed execution times or serial processing, such as batch jobs, and goal none for applications that don't use active load balancing.

```
execute dbms service.create service (
  service name => 'hr.mycompany.com',
  network name => 'hr.mycompany.com',
  goal => dbms service.goal service time,
  dtp => false,
  aq ha notifications => true,
  failover method =>
                                  Indicates that the service
    dbms service.failover met
                                    is not for use with
  failover type =>
                                  distributed transactions.
                                  This is a Boolean value,
    dbms service.failover tyr
                                  with TRUE being the other
  failover retries => 180,
                                        option.
  failover delay => 5.
  clb goal => dbms service.clb goal long);
```

```
execute dbms service.create service (
   service name => 'hr.mycompany.com',
  network name => 'hr.mycompany.com',
  goal => dbms service.goal service time,
  dtp => false,
  aq ha notifications => true,
   failover method =>
     dbms service.failover/method basic,
HA events are to be sent via
                     failover type select,
Advanced Queuing to OCI
and ODP.NET clients. Set to \Rightarrow 180,
 FALSE to prevent event
                     > 5.
     propagation.
                     service.clb goal long);
```

```
This TAF method is
execute dbms service.create service
                                          the only one
  service name => 'hr.mycompany.co
                                          supported –
  network name => 'hr.mycompany.co
                                          Preconnected
                                       sessions are not valid
  goal => dbms service.goal servic
                                        for services created
  dtp => false,
                                          with PL/SQL
  aq ha notifications => true,
  failover method =>
    dbms service.failover method basic,
  failover type =>
    dbms service.failover type select,
  failover retries => 180,
  failover delay => 5.
  clb goal => dbms service.clb goal long);
```

```
Use this TAF type or
execute dbms service.create ser
                                      FAILOVER TYPE SESSION
                                        to enable TAF for the
  service name => 'hr.mycompany
                                       session, which overrides
  network name => 'hr.mycompany
                                        client connection TAF
  goal => dbms service.goal ser
                                     settings. Note that TAF works
  dtp => false,
                                      only with OCI. Session type
                                      just connects, Select type
  aq ha notifications => true,
                                      resumes interrupted query.
  failover method =>
    dbms service.failover method basic,
  failover type =>
    dbms service.failover type select,
  failover retries => 180,
  failover delay => 5.
  clb goal => dbms service.clb goal long);
```

```
execute dbms service.create service(
  service name => 'hr.mycompany.com',
  network name => 'hr.mycompany.com',
  goal => dbms service.goal service time,
                                  Number of times TAF tries to
  dtp => false,
                                     reconnect and time (in
  aq ha notifications =>/true,
                                    seconds) to wait between
  failover method =>
                                       each attempt.
    dbms service.failover method pasic,
  failover type =>
    dbms service.failover type select,
  failover retries => 180,
  failover delay => 5,
  clb goal => dbms service.clb goal long);
```

```
Connection goal for long-lasting
execute dbms service.cre
                                connections, such as connection pools
                                and SQL*Forms applications. The other
  service name => 'hr.my
                                   option is CLB GOAL SHORT for
  network name = ≯ 'hr.my⟨
                                 activities that will not stay connected
  goal => dbms service.g
                                   long enough to be impacted by
  dtp => false,
                                  changing loads on the connected
  aq ha notifications =>
                                 instance. NOTE: the tnsnames.ora
                                 LOAD BALANCE=ON entry is required
  failover method =>
                                  for these goals to be instantiated.
     dbms servide.failove:
  failover type =>
     dbms service.failover type select,
  failover retries => 180,
  failover delay => 5,
  clb goal => dbms service.clb goal long);
```

Other Ways to Create and Manage 108 Services

- Additional procedures in the DBMS_SERVICE
 PL/SQL package
- Database Configuration Assistant (DBCA)
 - Create during database creation
 - Create and manage after installation from the Service Management screen under the Oracle Real Application Clusters option
- Enterprise Manager
 - Create and manage from the Cluster Managed Database Services page
 - The SRVCTL tool
 - Create and manage services by database or instance
 - Requires Oracle Clusterware

SRVCTL Commands for Services: 108 Add Syntax

```
srvctl add service -d db_unique_name -s service_name
-r preferred_list [-a available_list] [-P TAF_policy]
```

where

- -d db unique name
- -s service name
- -r preferred list
- -a available list
- -P TAF policy

- identifies the unique name for the database
- identifies the service name
- identifies the list of preferred instances
- identifies the list of available instances
- identifies the TAF policy (NONE, BASIC, or PRECONNECT). The BASIC and PRECONNECT settings affect the content of the TNS string that Oracle generates automatically when the command is executed

SRVCTL Commands for Services: 10⁸ Add Example

```
srvctl add service -d db unique name -s service name
-r preferred list [-a available list] [-P TAF policy]
where
                       identifies the unique name for the database
-d db unique name
                       identifies the service name
-s service name
                       identifies the list of preferred instances
-r preferred list
                       identifies the list of available instances
a available list
                                             These options are identical to
                       identifies the TAF police those in the dbms service
-P TAF policy
                       PRECONNECT). The
                                                      package
                       settings affect the content or the TNS string
               that Oracle generates automatically when the
       command is executed
```

ORACLE

SRVCTL Commands for Services: 108 Add Example

```
srvctl add service -d db unique name -s service name
                                  These options are not provided in the
-r preferred list [-a ava
                                       dbms services package.
                               Preferred instances are where service always
where
                             runs on startup; available instances are used for
                       identi
-d db unique name
                                  failover when preferred instances fail.
                       identimes the service name
-s service name
                       identifies the list of preferred instances
-r preferred list
                       identifies the list of available instances
a available list
                       identifies the TAF policy (NONE, BASIC, or
-P TAF policy
                       PRECONNECT). The BASIC and PRECONNECT
                       settings affect the content of the TNS string
               that Oracle generates automatically when the
       command is executed
```

SRVCTL Commands for Services: 108 Add Syntax

```
srvctl add service -d db unique name -s service name
                                         This option is provided in the
-r preferred list [-a availabl
                                        dbms service package but the
                                     Preconnect value is not; it is used here
where
                                     to create failover-ready connections to
                       identifies the
-d db unique name
                                            the available instances.
                       identifies the service name
-s service name
                       identifies the list of preferred instances
-r preferred list⊄
                       identifies the list of available instances
a available list
                       identifies the TAF policy (NONE, BASIC, or
-P TAF policy
                        PRECONNECT). The BASIC and PRECONNECT
                       settings affect the content of the TNS string
               that Oracle generates automatically when the
       command is executed
```

Create Active/Spare Configuration


```
srvctl add service -d ACME_DB -s CRM
-r RAC01 -a RAC03 -P PRECONNECT
```

```
srvctl add service -d ACME_DB -s HR
-r RAC02 -a RAC03 -P PRECONNECT
```

Create Active/Symmetric Configuration


```
srvctl add service -d ACME_DB -s CRM
-r ("RAC01,RAC02,RAC03")
```

```
srvctl add service -d ACME_DB -s HR
-r ("RAC01,RAC02,RAC03")
```


Create Active/Asymmetric Configuration


```
srvctl add service -d ACME_DB -s CRM -r RAC01
-a ("RAC02,RAC03") -P PRECONNECT
```

```
srvctl add service -d ACME_DB -s CRM
-r ("RAC02,RAC03") -a RAC01 -P PRECONNECT
```

- Sessions are tracked by the services to which they connect
- Automatic Workload Repository (AWR) manages the performance of services and records the service performance, including
 - SQL execution times
 - Wait classes
 - Resources consumed by service
- AWR sends alerts when service response time thresholds are exceeded
- Database Resource Manager can prioritize application workloads within an instance by service

Sessions are tracked by the services to which they connect

CONNECT APPUSR1/pass1@CRM

CONNECT APPUSR2/pass2@HR

- Sessions are tracked by the services to which they connect
- Automatic Workload Repository (AWR) manages the performance of services and records the service performance, including
 - SQL execution times
 - Wait classes
 - Resources consumed by service
- AWR sends alerts when service response time thresholds are exceeded
- Database Resource Manager can prioritize application workloads within an instance by service

- Sessions are tracked by the services to which they connect
- Automatic Workload Repository (AWR) manages the performance of services and records the service performance, including
 - SQL execution times
 - Wait classes
 - Resources consumed by service
 - AWR sends alerts when service response time thresholds are exceeded
- Database Resource Manager can prioritize application workloads within an instance by service

Set thresholds on each instance supporting the service

```
exec DBMS_SERVER_ALERT.SET_THRESHOLD

(METRICS_ID => dbms_server_alert.elapsed_time_per_call,
WARNING_OPERATOR => dbms_server_alert.operator_ge,
WARNING_VALUE => '500000',
CRITICAL_OPERATOR => dbms_server_alert.operator_ge,
CRITICAL_VALUE => '750000',
OBSERVATION_PERIOD => 15,
CONSECUTIVE_OCCURRENCES => 3,
INSTANCE_NAME => 'APP1',
OBJECT_TYPE => dbms_server_alert.object_type_service,
OBJECT_NAME => 'CRM');
```

```
Can also be CPU_TIME_ PER_CALL
```

```
exec DBMS_SERVER_ALERT.SET_THRESHOLD
(METRICS_ID => dbms_server_alert.elapsed_time_per_call,
WARNING_OPERATOR => dbms_server_alert.operator_ge,
WARNING_VALUE => '500000',
CRITICAL_OPERATOR => dbms_server_alert.operator_ge,
CRITICAL_VALUE => '750000',
OBSERVATION_PERIOD => 15,
CONSECUTIVE_OCCURRENCES => 3,
INSTANCE_NAME => 'APP1',
OBJECT_TYPE => dbms_server_alert.object_type_service,
OBJECT_NAME => 'CRM');
```

```
Can also be CPU_TIME_ PER_CALL
```

Warning when call time exceeds 0.5 secs (500000 msecs)

```
exec DBMS_SERVER_ALERT.SET_THRESHOLD
(METRICS_ID => dbms_server_alert.elapsed_time_per_call,
WARNING_OPERATOR => dbms_server_alert.operator_ge,
WARNING_VALUE => '500000',
CRITICAL_OPERATOR => dbms_server_alert.operator_ge,
CRITICAL_VALUE => '750000',
OBSERVATION_PERIOD => 15,
CONSECUTIVE_OCCURRENCES => 3,
INSTANCE_NAME => 'APP1',
OBJECT_TYPE => dbms_server_alert.object_type_service,
OBJECT_NAME => 'CRM');
```

```
Can also be CPU_TIME_ PER_CALL
```

Warning when call time exceeds 0.5 secs (500000 msecs)

```
exec DBMS_SERVER_ALERT.SET_THRESHOLD
(METRICS_ID => dbms_server_alert.elapsed_time_per_call,
WARNING_OPERATOR => dbms_server_alert.operator_ge,
WARNING_VALUE => '500000',
CRITICAL_OPERATOR => dbms_server_alert.operator_ge,
CRITICAL_VALUE => '750000',
OBSERVATION_PERIOD => 15,
CONSECUTIVE_OCCURRENCES => 3,
INSTANCE_NAME => 'APP1',
OBJECT_TYPE => dbms_server_alert.object_type_service,
OBJECT_NAME => 'CRM');
```

Averaged over 15 minutes

```
Can also be CPU_TIME_ PER_CALL
```

Warning when call time exceeds 0.5 secs. (500000 msecs.)

Three times in a row

```
exec DBMS_SERVER_ALERT.SET_THRESHOLD
  (METRICS_ID => dbms_server_alert.elapsed_time_per_call,
WARNING_OPERATOR => dbms_server_alert.operator_ge,
WARNING_VALUE => '500000',
CRITICAL_OPERATOR => dbms_server_alert.operator_ge,
CRITICAL_VALUE => '750000',
OBSERVATION_PERIOD => 15,
CONSECUTIVE_OCCURRENCES => 3,
INSTANCE_NAME => 'APP1',
OBJECT_TYPE => dbms_server_alert.object_type_service,
OBJECT_NAME => 'CRM');
```

Critical alert when 15 minute avg call time exceeds 0.75 secs. In three consecutive periods

```
exec DBMS_SERVER_ALERT.SET_THRESHOLD
(METRICS_ID => dbms_server_alert.elapsed_time_per_call,
WARNING_OPERATOR => dbms_server_alert.operator_ge,
WARNING_VALUE => '500000',
CRITICAL_OPERATOR => dbms_server_alert.operator_ge,
CRITICAL_VALUE => '750000',
OBSERVATION_PERIOD => 15,
CONSECUTIVE_OCCURRENCES => 3,
INSTANCE_NAME => 'APP1',
OBJECT_TYPE => dbms_server_alert.object_type_service,
OBJECT_NAME => 'CRM');
```

- Alert messages written to log
- Visible through Enterprise Manager screens
- Use alert information to change service allocation, for example by
 - Relocating service to faster server
 - Adding new instances for service
 - Removing lower priority service from server
 - Changing priority of workload (discussed in next section)

- Sessions are tracked by the services to which they connect
- Automatic Workload Repository (AWR) manages the performance of services and records the service performance, including
 - SQL execution times
 - Wait classes
 - Resources consumed by service
 - AWR sends alerts when service response time thresholds are exceeded
 - Database Resource Manager can prioritize application workloads within an instance by service

Services with Resource Manager

```
execute DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP
  (CONSUMER_GROUP => 'HIGH_PRIORITY')
exec DBMS_RESOURCE_MANAGER.SET_CONSUMER_GROUP_MAPPING
  (ATTRIBUTE => DBMS_RESOURCE_MANAGER.SERVICE_NAME,
    VALUE => 'CRM', CONSUMER_GROUP => 'HIGH_PRIORITY')
```

```
execute DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP
  (CONSUMER_GROUP => 'LOW_PRIORITY')
exec DBMS_RESOURCE_MANAGER.SET_CONSUMER_GROUP_MAPPING
  (ATTRIBUTE => DBMS_RESOURCE_MANAGER.SERVICE_NAME,
    VALUE => 'HR', CONSUMER_GROUP => 'LOW_PRIORITY')
```

Services with Resource Manager

```
CRM =
 (DESCRIPTION =
  (ADDRESS=(PROTOCOL=TCP) (HOST=ACME1) (PORT=1521))
  (CONNECT DATA = (SERVICE NAME = CRM)))
HR =
 (DESCRIPTION =
  (ADDRESS=(PROTOCOL=TCP) (HOST=ACME1) (PORT=1521))
  (CONNECT DATA = (SERVICE NAME = HR)))
                                           CRM
                                                  HIGH PRIORITY
 CONNECT APPUSR1/pass1@CRM
                                            HR
 CONNECT APPUSR2/pass2@HR
                                                  LOW_PRIORITY
```


- Jobs can now run under a service, as opposed to a specific instance
- Parallel slave processes inherit the service of their coordinator
- The RAC High Availability framework keeps services available within a site
- Dynamic performance views report current service status with one hour of history
- Performance-related statistics and wait events tracked by services
- Data Suard Broker migrates the primary service across Data Guard sites for disaster tolerance


```
DBMS_SCHEDULER.CREATE_JOB_CLASS(
JOB_CLASS_NAME => 'HOT_BATCH_CLASS',
SERVICE => 'CRM',
RESOURCE_CONSUMER_GROUP => 'HIGH_PRIORITY',
LOGGING_LEVEL => DBMS_SCHEDULER.LOGGING_RUNS,
LOG_HISTORY => 30, COMMENTS => 'P1 batch');
```

```
DBMS_SCHEDULER.CREATE_JOB(
JOB_NAME => 'my_report_job',
JOB_CLASS => 'HOT_BATCH_CLASS', ENABLED => TRUE,
JOB_TYPE => 'stored_procedure',
JOB_ACTION => 'my_name.my_proc();',
NUMBER_OF_ARGUMENTS => 4, START_DATE =>SYSDATE+1,
REPEAT_INTERVAL => 5, END_DATE => SYSDATE+30,
AUTO_DROP => false, COMMENTS => 'daily status');
```

```
DBMS_SCHEDULER.CREATE_JOB_CLASS(
JOB_CLASS_NAME => 'HOT_BATCH_CLASS',
SERVICE => 'CRM',
RESOURCE_CONSUMER_GROUP => 'HIGH_PRIORITY',
LOGGING_LEVEL => DBMS_SCHEDULER.LOGGING_RUNS,
LOG_HISTORY => 30, COMMENTS => 'P1 batch');
```

```
DBMS SCHEDULER.CREATE JOB (
JOB NAME => 'my report job',
JOB CLASS => 'HOT BATCH CLASS', ENABLED => TRUE,
JOB TYPE => 'stored procedure'
JOB ACTION => 'my name.
                                 JOB TABLE
NUMBER OF ARGUMENTS =>
REPEAT INTERVAL => 5, E NOT THE
AUTO \overline{DROP} => false, COM JOB
                                                 SERVICE
                                  JOB CLASS
                             HOT BATCH CLASS
                                                   CRM
                       Job 1
                       Job 2 HOT BATCH CLASS
                                                   CRM
                       Job 3 LOW BATCH CLASS
                                                    HR
```

ORACLE!

```
A job is
DBMS SCHEDULER.CREATE JOB CLASS (
                                       associated with a
JOB CLASS NAME => 'HOT BATCH CLASS',
SERVICE => 'CRM',
                                            service
RESOURCE CONSUMER GROUP /=> 'HIGH PRIO
LOGGING LEVEL => DBMS SCHEDULER. LOGGING RUNS,
LOG HISTORY => 30, COMMENTS => 'P1 batch');
DBMS SCHEDULER.CREATE JOB (
JOB NAME => 'my report job'
JOB CLASS => 'HOT BATCH CLASS', ENABLED => TRUE,
JOB TYPE => 'stored procedure'
JOB ACTION => 'my name.
                                  JOB TABLE
NUMBER OF ARGUMENTS ⇒>
REPEAT INTERVAL => 5, FINE LIAIS
AUTO \overline{DROP} => false, COM
                         JOB
                                                   SERVICE
                                   JOB CLASS
                              HOT BATCH CLASS
                        Job 1
                                                    CRM
                        Job 2 | HOT BATCH CLASS
                                                    CRM
                              LOW BATCH CLASS
                        Job 3
                                                     HR
```

ORACLE!

```
A job is
DBMS SCHEDULER.CREATE JOB CLASS (
                                        associated with a
JOB CLASS NAME => 'HOT BATCH CLASS',
SERVICE => 'CRM'
                                             service
RESOURCE CONSUMER GROUP /=> 'HIGH PRIO
LOGGING LEVEL => DBMS SCHEDULER. LOGGI
                                           through its
LOG HISTORY => 30, COMMENTS => 'P1 ba
                                         affiliation with a
DBMS SCHEDULER.CREATE JOB (
                                            job class
JOB NAME => 'my report job'
                                 ENABLED => TRUE,
JOB CLASS => 'HOT BATCH CLASS'
JOB TYPE => 'stored procedure
JOB ACTION => 'my name.
                                  JOB TABLE
NUMBER OF ARGUMENTS ⇒>
REPEAT INTERVAL => 5, ENLIGH
AUTO \overline{DROP} => false, COM
                                                   SERVICE
                         JOB
                                   JOB CLASS
                              HOT BATCH CLASS
                        Job 1
                                                    CRM
                              HOT BATCH CLASS
                        Job 2
                                                     CRM
                              LOW BATCH CLASS
                        Job 3
                                                     HR
```

```
A job is
DBMS SCHEDULER.CREATE JOB CLASS (
                                        associated with a
                   'HOT BATCH CLASS',
JOB CLASS NAME =>
            'CRM'
                                              service
RESOURCE CONSUMER GROUP /=> 'HIGH PRIO
LOGGING LEVEL => DBMS SCHEDULER. LOGGING
                                            through its
LOG HISTORY => 30, COMMENTS => '/P1 ba
                                         affiliation with a
DBMS SCHEDULER. CREATE JOB (
                                             job class
JOB NAME => 'my report job'
             'HOT BATCH CLASS
JOB CLASS =>
                                  ENABL
                                            which was
JOB TYPE => 'stored procedure
JOB ACTION => 'my name.
                                           defined on a
                                   JOE
NUMBER OF ARGUMENTS ⇒>
REPEAT INTERVAL => 5,
                                              service
AUTO \overline{DROP} => false, COM
                                    JOE
                          JOB
                               HOT BATCH CLASS
                         Job 1
                                                      CRM
                               HOT_BATCH_CLASS
                                                      CRM
                         Job 2
                               LOW BATCH CLASS
                         Job 3
                                                      HR
```


- Jobs can now run under a service, as opposed to a specific instance
- Parallel slave processes inherit the service of their coordinator
- The RAC High Availability framework keeps services available within a site
- Dynamic performance views report current service status with one hour of history
- Performance-related statistics and wait events tracked by services
- Data Suard Broker migrates the primary service across Data Guard sites for disaster tolerance

Services with Parallel Operations

CONNECT APPUSR2/pass2@HR SELECT * FROM huge table...

Services with Parallel Operations

CONNECT APPUSR2/pass2@HR SELECT * FROM huge_table...

Connects to preferred instance for HR where query coordinator will run

Services with Parallel Operations

Query coordinator can spawn query processes on any running instance – whether it is preferred, available or neither for the attached service

Services with Parallel Operations

This is because the query process inherits the service of the coordinator, so the service need not be present on the target instance

Now You Have Services...

- Jobs can now run under a service, as opposed to a specific instance
- Parallel slave processes inherit the service of their coordinator
- Performance-related statistics and wait events tracked by services
- Dynamic performance views report current service status with one hour of history
- The RAC High Availability framework keeps services available within a site
- Data Guard Broker migrates the primary service across Data Guard sites for disaster tolerance

Trace binds

Database-wide tracing:

Apply only to this RAC instance

Trace binds

Database-wide tracing:

Apply only to this RAC instance

Session level tracing:

Disable requires only session ID and serial number

```
DBMS_MONITOR.DATABASE TRACE ENABLE(
session_id IN BYNARY_INTEGER DEFAULT NULL,
serial_num IN BINARY_INTEGER DEFAULT NULL,
waits IN BOOLEAN DEFAULT TRUE,
binds IN BOOLEAN DEFAULT FALSE)
```


Trace binds

Service level tracing:

Apply only to this RAC instance

```
DBMS_MONITOR.SERV_MOD_ACT_TRACE_ENABLE(
    service_name IN VARCHAR2)

DBMS_MONITOR.SERV_MOD_ACT_TRACE_DISABLE(
    service_name IN VARCHAR2)
```

Service level tracing with module & action:

Hierarchical statistics gathering under a service:

```
DBMS_MONITOR.SERV_MOD_ACT_STAT_ENABLE(
    service_name IN VARCHAR2,
    module_name IN VARCHAR2,
    action_name IN VARCHAR2 DEFAULT ALL_ACTIONS)
```

- Useful for tuning systems using shared sessions
- MODULE and ACTION names are set by the application by using the DBMS_APPLICATION_INFO package or OCI calls
 - To analyze performance from aggregated statistics, use the tresess tool

Services with Tracing: trcsess

Services with Tracing: trcsess

Now You Have Services...

- Jobs can now run under a service, as opposed to a specific instance
- Parallel slave processes inherit the service of their coordinator
- Performance-related statistics and wait events tracked by services
- Dynamic performance views report current service status with one hour of history
- The RAC High Availability framework keeps services available within a site
- Data Guard Broker migrates the primary service across Data Guard sites for disaster tolerance

Services with Performance Views

- Service, module, and action information in:
 - V\$SESSION
 - V\$ACTIVE SESSION HISTORY
- Call times and performance statistics listed in:
 - V\$SERVICE_STATS
 - V\$SERVICE EVENT
 - V\$SERVICE_WAIT_CLASS
 - V\$SERVICEMETRIC
 - V\$SERVICEMETRIC_HISTORY
 - V\$SERV_MOD_ACT_STATS shows performance measures for each instance when statistics are collected by module and action

Services with Performance Views

- V\$SYSSTAT
 - Of its 300 performance-related statistics 28 are tracked for services
 - To see the statistics measured for services, run

```
SELECT DISTINCT stat_name
FROM v$service stats
```

- DBA_ENABLED_AGGREGATIONS displays information about enabled on-demand statistic aggregation
 - DBA_ENABLED_TRACES displays information about enabled traces

Now You Have Services...

- Jobs can now run under a service, as opposed to a specific instance
- Parallel slave processes inherit the service of their coordinator
- Performance-related statistics and wait events tracked by services
- Dynamic performance views report current service status with one hour of history
- The RAC High Availability framework keeps services available within a site
 - Data Guard Broker migrates the primary service across Data Guard sites for disaster tolerance

