
1

Page 1

2

Page 2

Essentials of Real Application Clusters
with

Some Nice Illustrations
and

Various Discursive Asides

David Austin
Server Technologies RAC/Grid Documentation

Oracle Corporation

3

Page 3

Agenda

Definitions and Architecture
– Cluster
– Network
– Disk
– Memory

Cluster Ready Services
Real Application Clusters (RAC)

– Installation
– Configuration
– Monitoring
– Tuning

Migrating from single instance to RAC

4

Page 4

Cluster

Private Network

A computer cluster is a set of two or more machines that can run in
standalone mode, but which are joined through a network and are provided
the capability to work together. The network could be a public network but for
efficiency and synchronization, it is typically a high-speed private network. In
Oracle Real Application Clusters, the only certified configurations involve
private networks.
The graphic shows two networks. It is good practice to provide a second,
redundant private network to provide continuous service following the failure
of one of the networks.

5

Page 5

Network Configuration –
Private Networks

Carries
– Node participation and state info used by cluster manager
– Cache fusion traffic

Optionally
– Access to shared storage when using NAS

Recommendation
– At least one private network (preferably 1 gigabit or more)
– Additional private network if NAS used
– Additional redundant network for high availability

At least one private network is required to carry the cache fusion and other
internode traffic for RAC. A second private network is required for network
attached storage access, if used.
A redundant private network, that can replace the network carrying the cache
fusion and other Oracle messages, is recommended to help avoid downtime
in the case the primary interconnect fails. Access to this network is typically
controlled by the vendor’s software.

6

Page 6

Cluster with Shared Disks

Private Network

Private Network (NAS) or
direct connections

Storage using ASM, CFS,
RAW

Most clusters are built to work on the same problem (program, application,
database, and so on) concurrently. This typically requires sharing data and,
therefore, dictates shared storage. Access to these shared disks can be
shared using disk management software provided by the storage vendor, by
the cluster hardware vendor, or by the software running on the cluster. In the
case of Oracle RAC databases, the database software manages the access
to the disks and works with a variety of storage architectures.

7

Page 7

Disk Configuration –
Overview

Instance 1 Instance 2

CRS & RAC
Database

Local

Disk
Local

Disk
Oracle Software

Archive Logs (if using RAW
for shared storage)

Oracle Software

Archive Logs (if using
RAW for shared storage)Voting Disk, Oracle Cluster Registry

Data Files, Control Files

Redo Logs, Archive Logs (CFS, NAS)

SPFILE

Disks can be connected using:
•Direct dual-ported connections to host bus adapter (if using 2 nodes only)
but not a recommended method
•Hub/Switch fabric to host bus adapter (generally required if using >2 nodes)
- recommended
•Network – if using NAS

Datafiles, Control files, Redo Log Files, SPFILE need to be placed on shared
disks so that they can be accessible by all instances.

Oracle Software needs to be placed on local file system.
Note: OracleCFS does not currently support Oracle Executables (because
most I/O on OCFS is synchronous, and this is not good for regular file
system files such as ORACLE_HOME and Oracle configuration files. This is
expected to change in the 10i release timeframe, when caching support will
be added. This is not a bug in the current OCFS release)

Archive logs should be on local file system if using RAW, or can be shared if
using CFS/NAS

8

Page 8

Cluster Disk Storage Options

jitsu
USTER

n Fu
ECL

NFS o
PRIM

Other

SPShare
Raw

ormsPlatf
(SP)

SomeVendor
CFS

OCFS

ASM

RecoveryDBCRSRecoveryDBVoting
Disk

OCR
& Linuxows WindIXUNOPTIONS

OPTIONS: The possible disk storage options, which are:
•ASM: Automatic Storage Management (required for RAC installed on Standard Edition Oracle
Database 10g)
•OCFS: Oracle Cluster File System, available only on Windows and LINUX clusters
•Vendor CFS: Vendor-provided cluster file system, available from some UNIX vendors
•Shared Raw: Shared raw storage which includes shared raw disks, shared raw logical volumes,
and shared raw partitions, one of more of which are available from most vendors
•Other: NFS file system, which is only supported with Fujitsu PRIMECLUSTER and a certified
NAS device on Solaris with SPARC 64-bit-based systems
UNIX: The UNIX platforms for which this table is valid include:
•IBM AIX
•hp HP-UX PA-RISC (64-bit)
•hp Tru64 UNIX
•Solaris Operating System (SPARC 64-bit)
Windows and Linux: The operating systems for which this table is valid include:
•Windows 2000
•Windows 2003
•Red Hat Enterprise Linux AS/ES 2.1 (Update 3 or higher)
•Red Hat Enterprise Linux AS/ES 3 (Update 2 or higher)
•SuSE Linux Enterprise Server (SLES) 8 (service pack 3 or higher)

9

Page 9

Comparison of Cluster and Grid
Architectures

Public Network

Data and application
code is transferred as
needed from one node to
another

In Grid computing, the nodes in the system can be dispersed geographically.
The private network architectures are not designed for the distances involved
and are replaced with public networks. Storage is also not shareable due to
the distances involved and the resulting latency in disk reads and writes.

10

Page 10

Cluster Ready Services

Private Network and
Cluster Ready
Services

Private Network (NAS) or
direct connections

Storage using ASM, CFS,
RAW

Tracks installed cluster components:
nodes, databases, instances
Registers instance and services at
startup
Manages active cluster (to avoid split-
brain syndrome, and so on)

Cluster Ready Services (CRS) is software that manage the cluster and the
interaction between the nodes. The main functions of the CRS clusterware
include:
•Tracking the installed components for RAC
•Identifying the nodes that belong to a cluster and to a specific database
•Registering an instance with the correct database when it starts up and
ensuring it starts up the services that are required to support Cache Fusion
and related cluster activities
•Ensuring that only one set of nodes is included in the active cluster for a
given database (avoids split-brain syndrome, a situation when an
interconnect failure causes two sets of nodes, which are no longer in
communication with each other, to believe the other set is inactive, thus they
work independently of each other, potentially overwriting each other’s work,
causing data contamination).

11

Page 11

Cache Fusion

Private Network for
Cache Fusion

Private Network (NAS) or
direct connections

Shared Cache

Storage using ASM, CFS,
RAW

Allows each instance to obtain a required
block image from the most efficient location

– Another instance’s buffer cache
– A read-consistent image from another instance
– Disk

The set of instances appear to share a single
buffer cache

Cache Fusion is the technology that allows multiple instances, each on its
own node, to share database blocks as if there were a single database buffer
cache. This is accomplished by transmitting messages about block status,
and block images themselves if necessary, between instances using the
high-speed, private interconnect. The graphic shows this concept as a single
shared cache. As with non-clustered databases, some blocks may have
many different versions in memory at the same time. In a RAC database,
these block versions can be in the same or in different instance buffer
caches.
In most cases, an instance can acquire a block image from another instance
faster than it could read the block fresh from disk. Therefore, the Cache
Fusion process may be used to move current blocks between instances
rather than having them re-read from disk. When a consistent block is
needed, or a changed block is required on another instance, the Cache
Fusion process efficiently transfers the block image directly between the
involved instances.
You can use the same options to partition your buffer cache into caches for
different uses (keep, recycle, or default) or different block sizes when using a
RAC database. The block images are moved into the correct cache on the
instance where it is used just as in single instance databases.
Distributed block status records and local information kept by each instance
about the blocks in its buffers ensure that an instance failure will not cause
any committed transactions to be lost and, in most cases, will allow ongoing
queries to obtain required read-consistent versions of data blocks within the
shared cache.

12

Page 12

User Access

Users

Public NetworkPrivate Network for
Cache Fusion and
Cluster Ready Services

Private Network (NAS) or
direct connections

Shared Cache

Storage using ASM, CFS,
RAW

Users can be connected in client-server configuration, through one or more
middle tiers, with or without connection pooling. Users may may be DBAs,
developers, application users, power users (for example, data miners
creating their own searches), and so on.
The public network is typically TCP/IP but can be built on any supported
hardware and software combination. It is important not to use the private
network for regular user traffic keep user traffic away from the private
network otherwise cache fusion and other inter-instance activity will become
backlogged, reducing the overall effectiveness of the cluster.

13

Page 13

Virtual IP Addresses

Standard connections through
public network if not using
Virtual IP (VIP) addresses
VIP addresses

– Require an unused IP address
in addition to public address

– Defined during installation
– Provide improved failover

capabilities while maintaining
load balancing options

Users

Public Network

A Virtual IP address is a second public address that your connections use in
place of the standard public IP address. To configure VIP addresses, you
need to reserve a “spare” IP address, which matches the subnet of the
public network, for each node in the cluster. RAC will maintain these IPs as
Virtual IP addresses. Each one will be assigned to a node, and client
programs use the VIP to access Oracle on that node. If the node fails, the
VIP fails over to another node where it won't accept connections, which
means that clients trying to connect receive a quick connection-refused error
instead of waiting for a relatively slow TCP connect timeout.

14

Page 14

VIP TNSNAMES Entries

Configuration when not using TAF

ERP= (DESCRIPTION=
(LOAD_BALANCE=on)
(ADDRESS=(PROTOCOL=TCP) (HOST=clusnode-1vip) (PORT=1521))
(ADDRESS=(PROTOCOL=TCP) (HOST=clusnode-2vip) (PORT=1521))
(ADDRESS=(PROTOCOL=TCP) (HOST=clusnode-3vip) (PORT=1521))
(ADDRESS=(PROTOCOL=TCP) (HOST=clusnode-4vip) (PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=ERP)))

The slide shows the entries for a four-node cluster using VIP aliases to
identify each host with Transparent Application Failover (TAF).The only
difference between what you see here and what you would see for a non-
VIP-oriented cluster is the use of the VIP aliases in the ADDRESS entries.

15

Page 15

VIP TNSNAMES Entries

Configuration when using TAF

ERP= (DESCRIPTION=
(LOAD_BALANCE=on)
(ADDRESS=(PROTOCOL=TCP) (HOST=clusnode-1vip) (PORT=1521))
(ADDRESS=(PROTOCOL=TCP) (HOST=clusnode-2vip) (PORT=1521))
(ADDRESS=(PROTOCOL=TCP) (HOST=clusnode-3vip) (PORT=1521))
(ADDRESS=(PROTOCOL=TCP) (HOST=clusnode-4vip) (PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=ERP))
(FAILOVER_MODE=(BACKUP=ERP) (TYPE=SELECT)
(METHOD=BASIC) (RETRIES=180) (DELAY=5)))

Here, the same information as seen for the non-TAF case but with the
additional FAILOVER_MODE entry which provides failover capability. The
connection to a failed node will be attempted on one of the surviving nodes
when the VIP is moved. This avoids the long wait for a TCP timeout to occur
when attempting to connect to a normal IP address.

16

Page 16

Services in Oracle Database 10g

In previous releases, the SERVICE_NAMES
parameter and TNS entries identified a set of
nodes in a cluster for failover and load
balancing, as seen in previous example
In Oracle Database 10g, services can be

– Associated with service levels set in Resource
Manager

– Identified in callouts
– Enabled and disabled on different nodes of the

cluster
– Allocated to preferred and available instances

Oracle 10g provides a more sophisticated type of service than was available
in previous releases. A service is an entity that can be managed with
service-level commands that apply to the whole service regardless of the
number of nodes with which the service is associated. Some of the features
of services in Oracle Database 10g include:
•Enabling service level agreements by application. This is accomplished by
setting resource limits in Resource Manager for an application-related
service.
•Providing application APIs that allow a program to react to a changed
condition in a service.
•Allowing you to associate a service with one or more nodes in a cluster and
to change one or many of these associations without disabling the service on
the unaffected nodes.
•Allowing you to define an instance for a service as preferred or available. A
preferred instance is one where the service will attempt to run when started
up; an available instance is one to which the service will migrate if it stops
running on a preferred instance due to some type of failure.

17

Page 17

Example

srvctl add service -d ORADB -s ERP -r RAC01,RAC02
-a RAC03,RAC04
srvctl add service -d ORADB -s CRM -r RAC03,RAC04
-a RAC01,RAC02
srvctl add service -d ORADB -s SELF_SERVICE
-r RAC01,RAC02,RAC03,RAC04
srvctl add service -d ORADB -s HOT_BATCH -r RAC01
-a RAC02,RAC03,RAC04
srvctl add service -d ORADB -s STD_BATCH
-r RAC01,RAC02,RAC03,RAC04

Add application-specific services

The example shows five services being added to the ORADB database as
follows:
ERP: Service for the Enterprise Resource Planning application which runs
on instances RAC01 and RAC02 by default and on instances RAC03 or
RAC04 in failover situations.

Note: ERP is the service for which example TNS connection
descriptions were shown earlier.

CRM: Service for the Customer Relationship Management application which
runs on instances RAC03 and RAC04 by default and on instances RAC01 or
RAC02 in failover situations.
SELF_SERVICE: Service for interactive user supports which runs on all four
instances, RAC01, RAC02, RAC03, and RAC04, by default.
HOT_BATCH: Service for critical batch processing that has a limited period
in which to complete. This service runs on RAC01 by default and can failover
to any of the other three instances if necessary, RAC02, RAC03, and
RAC04.
STD_BATCH: Service for non-critical batch processing which runs on all
four instances by default and doesn’t attempt to failover.

18

Page 18

Example

LISTENER_CLUSNODE-1 =
(ADDRESS = (PROTOCOL = TCP)(HOST = clusnode-1vip)
(PORT = 1521))

SID_LIST_LISTENER_CLUSNODE-1 =
(SID_LIST =

(SID_DESC =
(SID_NAME = PLSExtProc)
(ORACLE_HOME = $ORACLE_HOME)
(PROGRAM = extproc)

)
)

Create dual addresses for each listener on each
cluster node, one for the node VIP address (or
name) and one for the host's physical IP address
(or name).

You should cross-register your listeners using your REMOTE_LISTENERS
initialization parameter so that all of your listeners know about all of your services
and the instances on which they run. The listeners should use server side load
balancing, optionally based on session count for connection. The listeners must be
listening on the VIPs and on the cluster aliases, when available. The listeners must
not listen on the host name - listening on the host name will result in disconnected
sessions when VIPs are relocated automatically back to their owning nodes.

This list shows the interconnect data for the example.

Public physical node names: clusnode-1, clusnode-2, clusnode-3, clusnode-4

Public IP addresses: 139.184.101.201, 139.184.101.202, 139.184.101.203,
139.184.101.204

Physical interface name(s): hme0 [, hme1] (the same for all four nodes)

Public virtual IP names: clusnode-1vip, clusnode-2vip, clusnode-3vip, clusnode-
4vip

Virtual IP addresses: 139.184.201.1, 139.184.201.2, 139.184.201.3,
139.184.201.4

Logical interface names: hme0:1 [, hme1:1] (the same for all four nodes)

Private interconnect IP address: 172.16.0.1, 172.16.0.2, 172.16.0.3, 172.16.0.4

Physical interface name: qfe0 (the same for all four nodes)

19

Page 19

Example

TNS alias entry maps to REMOTE_LISTENER
initialization parameter:
LISTENERS_ORADB=
(ADDRESS_LIST =
(ADDRESS=(PROTOCOL=TCP)(HOST=clusnode-1vip)(PORT=1521))
(ADDRESS=(PROTOCOL=TCP)(HOST=clusnode-2vip)(PORT=1521))
(ADDRESS=(PROTOCOL=TCP)(HOST=clusnode-3vip)(PORT=1521))
(ADDRESS=(PROTOCOL=TCP)(HOST=clusnode-4vip)(PORT=1521)))

Sample remote listener.ora entries

20

Page 20

Example
Oracle instance parameters, matching those
defined earlier in the example

-- TNS entry listing the virtual IP address for
-- node CLUSNODE-1
local_listener=LISTENER_CLUSNODE-1

-- TNS entry listing the virtual IP addresses
-- used by database ORADB
remote_listener=LISTENERS_ORADB

Ensure that the LOCAL_LISTENER, REMOTE_LISTENER, and ACTIVE_INSTANCE_COUNT
initialization parameter values are valid to use the VIPs for your services. You must ensure
that the ACTIVE_INSTANCE_COUNT parameter is left at its default value - this parameter
must not be set.

21

Page 21

Manual Configuration for Workload
Management

There are 4 steps to configure services for
workload management
1. Add service priorities
2. Add job classes
3. Add service performance thresholds
4. Enable service, module, and action monitoring

The steps enumerated in the slide are discussed, with examples, on the next
few pages.

22

Page 22

Example: Add Service Priorities

Create required consumer groups

Create service to consumer group mappings

execute dbms_resource_manager.create_pending_area;
execute DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP
(CONSUMER_GROUP => 'HIGH_PRIORITY',
COMMENT => 'High priority consumer group');

execute DBMS_RESOURCE_MANAGER.SET_CONSUMER_GROUP_MAPPING
(ATTRIBUTE => DBMS_RESOURCE_MANAGER.SERVICE_NAME,
VALUE => 'ERP',
CONSUMER_GROUP => 'HIGH_PRIORITY');
execute dbms_resource_manager.submit_pending_area;

For each level of service that you wish to use, create a related consumer
group. For example, the five applications shown earlier, ERP, CRM,
SELF_SERVICE, HOT_BATCH, and STD_BATCH, you decide on three
levels of service, high priority, standard priority, and low priority. You then
must associate the applications to the desired level of service by mapping
them to the corresponding consumer group. In the examples above, the high
priority consumer group is created and then the ERP application is mapped
to this group.

23

Page 23

Example: Add Job Classes

The batch processes need to be associated with an
appropriate batch job queue.
Assume the database employs two batch queues
managed by the Job Scheduler, called HOT_BATCH and
STD_BATCH, corresponding to job classes with services
of the same name. Create the required job classes with
PL/SQL code as in this example:

execute DBMS_SCHEDULER.CREATE_JOB_CLASS(JOB_CLASS_NAME =>
'HOT_BATCH', RESOURCE_CONSUMER_GROUP => NULL,
SERVICE => 'HOT_BATCH', LOGGING_LEVEL =>
DBMS_SCHEDULER.LOGGING_RUNS, LOG_HISTORY => 30,
COMMENTS => 'P1 batch');

You can query the database for information about your job classes and
service associations with a SQL*Plus query such as the following:

col service format a30 trunc

select JOB_CLASS_NAME, SERVICE from
DBA_SCHEDULER_JOB_CLASSES;

The query output would be similar to this:
JOB_CLASS_NAME SERVICE

------------------------------ -------------------

DEFAULT_JOB_CLASS

AUTO_TASKS_JOB_CLASS

HOT_BATCH HOT_BATCH

STD_BATCH STD_BATCH

The jobs executing in these job classes execute on instances offering the
service.

24

Page 24

Example: Add Service Performance
Thresholds

Add call elapsed time thresholds for the ERP
and HOT_BATCH services on RAC01 as follows

REM ERP service, warn at 0.5 secs, critical at 0.75 secs:
execute DBMS_SERVER_ALERT.SET_THRESHOLD(
dbms_server_alert.elapsed_time_per_call,
dbms_server_alert.operator_ge, '500000',
dbms_server_alert.operator_ge,'750000', 1, 5, 'RAC01',
dbms_server_alert.object_type_service, 'ERP');
REM HOT_BATCH service, warning at 1.0s, critical at 1.5s:
execute DBMS_SERVER_ALERT.SET_THRESHOLD(
dbms_server_alert.elapsed_time_per_call,
dbms_server_alert.operator_ge, '1000000',
dbms_server_alert.operator_ge, '1500000', 1, 5, 'RAC01',
dbms_server_alert.object_type_service, 'HOT_BATCH');

You can add performance thresholds for all of your services and for all
parameters that can be set in Resource Manager. In the above example the
DBMS_SERVER_ALERT.SET_THRESHOLD package is called twice to set
elapsed time per call thresholds on RAC0, once for ERP and once for
HOT_BATCH. To set the thresholds for all nodes where these services run,
you need to issue an additional call for each service on each node.
The thresholds being set are for a warning level and for a critical level. In the
case of ERP, the warning level is set to half a second, converted to 500,000
microseconds (millionths of a second), and the critical level to three quarters
of a second, converted to 750,000 microseconds. Similarly, the warning
level for the HOT_BATCH service is 1 second (1,000,000 microseconds) and
the critical level is one and half seconds (1,500,000 microseconds).
In both cases, the values of 1 and 5 are for the observation_period,

designated in minutes, and the consecutive_occurrences count
respectively. The former determines how often the metrics are computed for
the threshold in question and the latter determines many times the computed
results can exceed the specific threshold before the alert is issued.

25

Page 25

Example: Enable Service, Module, and
Action Monitoring

Enable performance data and tracing for important
modules and actions within each service.
Query V$SERV_MOD_ACT_STATS for performance statistics
This example enables monitoring for the exceptions pay action in
the module, payroll, under the ERP service

Enable monitoring for the all actions in the module, posting, under
the HOT_BATCH service

execute DBMS_MONITOR.SERV_MOD_ACT_STAT_ENABLE(
SERVICE_NAME => 'ERP', MODULE_NAME=>'PAYROLL',
ACTION_NAME => 'EXCEPTIONS PAY');

execute DBMS_MONITOR.SERV_MOD_ACT_STAT_ENABLE(
SERVICE_NAME => 'HOT_BATCH',
MODULE_NAME =>'POSTING', ACTION_NAME => null);

You can enable performance data and tracing for important modules and
actions within each service. The performance statistics are available in
the V$SERV_MOD_ACT_STATS view. The following commands,
executed in a SQL*Plus session, perform these actions:
1. Enable monitoring for the exceptions pay action in the module, payroll,

under the ERP service
2. Enable monitoring for the all actions in the module, payroll, under the

ERP service
3. Enable monitoring for the all actions in the module, posting, under the

HOT_BATCH service
4. Confirm the configuration by querying DBA_ENABLED_AGGREGATIONS
You can validate your monitoring setup by executing the following
commands in a SQL*Plus session:
col AGGREGATION_TYPE format a20 trunc heading

'AGGREGATION'
col PRIMARY_ID format a9 trunc heading 'SERVICE'
col QUALIFIER_ID1 format a7 trunc heading 'MODULE'
col QUALIFIER_ID2 format a14 trunc heading 'ACTION'
select * from DBA_ENABLED_AGGREGATIONS ;

The query output would look like:
AGGREGATION SERVICE MODULE ACTION
-------------------- ------- ------- --------------
SERVICE_MODULE_ACTIO ERP PAYROLL EXCEPTIONS PAY
SERVICE_MODULE_ACTIO ERP PAYROLL
SERVICE_MODULE_ACTIO HOT_BATCH POSTING

26

Page 26

Example: Using Services with Job
Scheduler

Use the DBMS_SCHEDULER.CREATE_JOB procedure to
define jobs to execute under the job classes.
This statement sets up the MY_NAME.MY_PROC procedure
to run in the HOT_BATCH service as a result of the job
class assignment defined earlier.

execute DBMS_SCHEDULER.CREATE_JOB(JOB_NAME =>
'my_report_job',
JOB_TYPE => 'stored_procedure', JOB_ACTION =>
'my_name.my_proc();',
NUMBER_OF_ARGUMENTS => 4,START_DATE => SYSDATE+1,
REPEAT_INTERVAL => 5,
END_DATE => SYSDATE+30, JOB_CLASS => 'HOT_BATCH',
ENABLED => TRUE, AUTO_DROP => false,
COMMENTS => 'my report on daily status');

Use the DBMS_SCHEDULER.CREATE_JOB procedure to define jobs to
execute under the job classes. In this example, the MY_NAME.MY_PROC
procedure will run in the HOT_BATCH service because of the job class
assignment defined earlier.

27

Page 27

Using Callouts for Fast Application
Notification

Custom-written application callouts are programs or shell script
wrappers used to start and stop

– on- or off-cluster applications
– connection pools managed by middleware

Callouts are immediately executed by RAC when a service or any part
of the service starts, stops or fails to automatically restart.
Actions that can be encoded as callouts (besides restarting
applications) include:

– restarting applications
– logging fault tickets
– e-mailing or paging administrators
– invoking third-party event systems or clusterware components

Callouts are not a requirement to deploy RAC-HA on CRS, but Oracle
strongly recommends that you build notification mechanisms using
callouts.

Custom-written application callouts are programs or shell script wrappers
that can be used to start and stop on- or off-cluster applications, or
connection pools managed by middleware. They are immediately executed
by RAC when a service or any part of the service starts, stops or fails to
automatically restart. Other actions that can be encoded as callouts (besides
restarting applications) include: logging fault tickets, e-mailing or paging
administrators, and invoking third-party event systems or clusterware
components.
Callouts are not a requirement to deploy RAC-HA on CRS, but Oracle
strongly recommends that you build notification mechanisms using callouts.
Unless your CRS home directory is shared across the network, you must
deploy each new callout under /private/oracle/crs/racg/usrco
directory on each RAC node.

28

Page 28

RAC Installation Steps

Set kernel parameters
Configure shared storage
Install Cluster Ready Services on shared disk
Install database software from one node

– If not using shared disks, the installer will identify other
cluster nodes and copy executables there

Create Database
– Use DBCA

Configure Oracle Net
For Enterprise Manager support

– Can use local or grid management
– Required processes automatically started by DBCA

The extra steps required for RAC that are not needed for a single instance
are:
Configure shared storage
Install Cluster Ready Services
Other than that, RAC is as simple as single instance and there is no longer
any need to be a RAC-expert (so all those DBAs can remove that specialty
from their resume!).

29

Page 29

Server Control Utility (srvctl)

Command line tool for managing
– Real Application Cluster databases
– RAC instances
– Services
– Node applications (e.g. listeners)

Fully documented in the “Oracle Real Application
Clusters Administrator’s Guide”

SRVCTL provides a command line interface for managing the Oracle
software on your cluster, including the database, its instances, node
applications (listeners, and so on). It can add information to the cluster
registry, start and stop individual or database-wide instances, associate
services with instances, and similar activities.
Examples of SVRCTL commands include:

srvctl add database –d mgrt –o $ORACLE_HOME

srvctl add instance –d mgrt –i mgrt1 –n node1

srvctl start/stop –p mgrt –s mgrt1

30

Page 30

RAC Configuration –
Some Interesting RAC Parameters

Control File Parameters:
• MAXINSTANCES = 16

– Specifies maximum number of instances that can access a database
concurrently

Initialization Parameters:
• CLUSTER_DATABASE = true

– If true, Oracle starts in shared mode

• CLUSTER_DATABASE_INSTANCES = 2
– Used for default memory calculations

• THREAD = 2
– Specifies the log thread for instance at startup
– If not set, can change based on which instance starts first

** Note DBCA configures all these parameters automatically **

The parameters listed above are not all the parameters that impact RAC
instances but they are only useful in a RAC instance. They are set by default
or as the result of dialogs in the DBCA when you create your database with
that tool.

31

Page 31

RAC Configuration –
Instance Specific parameters
• Use SPFILE for RAC

– Not necessary to copy between nodes – file is raw device or
cluster file system file

– Maintains dynamically changed parameters
• For RAC, one parameter file can contain both common

and instance specific parameters
– SID.parameter_name = value

• Can combine cluster wide parameters with instance
specific parameters:

– *.db_cache_size=200M
– SID1.db_cache_size=400M
– Instance with SID1 will have a cache size of 400M
– All other instances will have a cache size of 200M

Note that the SPFILE is a binary file and cannot be edited directly. The
examples with the SID prefixes are what you will see when you create a
editable text version of the SPILE.

32

Page 32

Monitoring RAC

Use Oracle Enterprise Manager
– Performance Manager has cluster-wide charts
– Console has cluster-wide startup / shutdown

interfaces
Statspack

– RAC aware
• GV$ views

– Global Views based on V$ views

The catclustdb.sql script creates the GV$ views – you should run
this script following database creation in earlier releases where it is
not automatically for you when using DBCA to create your database.

33

Page 33

Tuning RAC –
Features Simplify Tuning Efforts

Dynamic Resource Allocations
– No tuning parameters for Cache Fusion
– Resources needed for shared resource management are dynamically allocated as

needed
– Dynamic mastering of resources improves performance by keeping resources local

to data blocks

Cache Fusion Enables Easier Tuning Methodology
– Application-level tuning not necessary
– Bottom up approach with virtually no impact to existing applications

More Detailed Performance Statistics
– More views for RAC performance monitoring

OEM Performance Pack Integrated with RAC

The point is you do not need to do special tuning for RAC – it scales out of
the box!
However, the following slides talk about generic database tuning which may
be of interest when deploying RAC – especially if you are looking for
scalability across a greater number of CPUs.
Beware of applications that do not scale on an SMP platform – moving to
RAC will not necessarily help and may even cause performance
degradation.

34

Page 34

Tuning Steps During Development
No special application design or coding required for RAC. All applications that run
well in a single instance environment should run well on RAC
But….contention problems in single instance environment can be worse in
a RAC environment.
During the development of a new system, the recommended order in which to
implement tuning is as follows:

1. The design
2. The application
3. The memory
4. Input/output (I/O)
5. Contention
6. Operating system

Repeat the process if your goals have not yet been achieved.
The rationale for this structure is that improvements early in the sequence may
save you from having to deal with problems later. For example, if your
applications are using a lot of full table scans, this may show up as excessive
I/O. However, there is no point in resizing the buffer cache or redistributing disk
files, if you can rewrite the queries so that they access only four blocks instead of
four thousand.
The first two steps are typically the responsibility of the system architects and
application developers; however, the DBA may also be involved in application
tuning.

Tuning Steps During Development

1. Tune the design
2. Tune the application
3. Tune memory
4. Tune IO
5. Tune contention
6. Tune operating system

APPLICATION DESIGN FOR RAC IS THE SAME AS A SINGLE INSTANCE,

BUT ...

35

Page 35

Top Ten "Gotchas"

1. Bad Connection Management
Maintain database connection from middle tier

2. Bad Use of Cursors and the Shared Pool
Use bind variables, keep cursors open and shareable

3. Getting Database I/O Wrong
Use async I/O and ASM or S.A.M.E methodology

4. Redo Log Setup Problems
Ensure there are enough redo logs and that they are
adequately sized

continued …

1.Bad Connection Management
The application connects and disconnects for each database interaction. This
problem is common with stateless middleware in application servers. It has over
two orders of magnitude impact on performance, and it is totally unscalable.
2.Bad Use of Cursors and the Shared Pool
Not using cursors results in repeated parses. If bind variables are not used, then
there is hard parsing of all SQL statements. This has an order of magnitude
impact in performance, and it is totally unscalable. Use cursors with bind
variables that open the cursor and re-execute it many times. Be suspicious of
applications generating dynamic SQL.
3.Getting Database I/O Wrong
Many sites lay out their databases poorly over the available disks. Other sites
specify the number of disks incorrectly, because they configure disks by disk
space and not I/O bandwidth.
4.Redo Log Setup Problems
Many sites run with too few redo logs that are too small. Small redo logs cause
system checkpoints to continuously put a high load on the buffer cache and I/O
system. If there are too few redo logs, then the archive cannot keep up, and the
database will wait for the archive process to catch up.

36

Page 36

5. Serialization of data blocks in the buffer cache due
to lack of free lists, free list groups, transaction
slots (INITRANS), or shortage of rollback
segments

Implement automatic segment free space management
and system managed UNDO

6. Long Full Table Scans
Verify indexes, consider materialized views

7. Disk Sorting
Review execution plans and use automated user
memory management (PGA_AGGREGATE_TARGET)

continued …

Top Ten "Gotchas"

5.Serialization of data blocks in the buffer cache due to lack of free lists, free list
groups, transaction slots (INITRANS), or shortage of rollback segments.
This is particularly common on INSERT-heavy applications, in applications that
have raised the block size to 8K or 16K, or in applications with large numbers of
active users and few rollback segments.
6.Long Full Table Scans
Long full table scans for high-volume or interactive online operations could
indicate poor transaction design, missing indexes, or poor SQL optimization.
Long table scans, by nature, are I/O intensive and unscalable.
7.In Disk Sorting
In disk sorts for online operations could indicate poor transaction design,
missing indexes, or poor SQL optimization. Disk sorts, by nature, are I/O-
intensive and unscalable.

37

Page 37

8. High Amounts of Recursive (SYS) SQL
Typical causes might include space management
activities so ensure use of automatic segment space
management

9. Schema Errors and Optimizer Problems
Automate collection of statistics

10. Use of Nonstandard Initialization Parameters
Review any nonstandard initialization parameters,
particularly hidden parameters

Top Ten "Gotchas"

8.High Amounts of Recursive (SYS) SQL
Large amounts of recursive SQL executed by SYS could indicate space management activities,
such as extent allocations, taking place. This is unscalable and impacts user response time.
Recursive SQL executed under another user ID is probably SQL and PL/SQL, and this is not a
problem.
9.Schema Errors and Optimizer Problems
In many cases, an application uses too many resources because the schema owning the tables
has not been successfully migrated from the development environment or from an older
implementation. Examples of this are missing indexes or incorrect statistics. These errors can
lead to sub-optimal execution plans and poor interactive user performance. When migrating
applications of known performance, export the schema statistics to maintain plan stability using
the DBMS_STATS package.
Likewise, optimizer parameters set in the initialization parameter file can override proven optimal

execution plans. For these reasons, schemas, schema statistics, and optimizer settings should
be managed together as a group to ensure consistency of performance.
10.Use of Nonstandard Initialization Parameters
These might have been implemented based on poor advice or incorrect assumptions. In
particular, parameters associated with SPIN_COUNT on latches and undocumented optimizer
features can cause a great deal of problems that can require considerable investigation.

38

Page 38

Additional Tuning Opportunities

For heavy insert OLTP applications consider HASH
partitioning

– Helps with single or multi instance databases
– Reduces contention on concurrent inserts into single

database structure
– Most noticeable effect is on sequence-based indexes when

index locally partitioned with table and table partitioned on
sequence-based key

– Transparent to application

Using sequence numbers?
– Always use cache option

HASH partitioning tables/indexes for OLTP can give great benefit in RAC or
single instance.
Note that Index range scans can not be used on an index with hash
partitioning.
Sequence numbers – with cache option be aware that:

• Sequence numbers can be lost
• No guarantee of order (even with ORDER option)

39

Page 39

40

Page 40

