I Love the Java Jive: J2EE Overview for Oracle Technologists

I Love the Java Jive:
J2EE for Oracle Technologists

Peter Koletzke, Technical Director and
Principal Instructor, Quovera

I love coffee, I love tea

I love the java jive and it loves me

—The Ink Spots (1940), The Java Jive
music by Ben Oakland, lyrics by Milton Drake
Java 2 Platform, Enterprise Edition (J2EE) is an underlying architecture and basis for best practices in creating robust, enterprise-quality applications. It is something that developers and DBAs in Oracle technology need to pay attention to because it has wide support from many companies including Oracle Corporation. Many experts in the Oracle technology arena are a bit baffled when they try to absorb the jive—the terminology and details of J2EE.

This paper presents an overview of J2EE features and architectures and acts as a high-level introduction to the concepts of J2EE. Since the architectural concepts become more real when you examine actual application programming technology and examples of the architectures, the paper then concentrates on the details, benefits, and drawbacks of two popular styles of Java deployment – Java client (Java applications and applets) and web technologies such as JavaServer Pages (JSP) applications.
Most of the discussion in this paper is generic and does not apply to specific products. However, many readers are Oracle technologists and rely on Oracle tools as well as the Oracle database. Therefore, the paper also puts J2EE application development into context of Oracle tools and describes how Oracle9i JDeveloper, Oracle’s Java development environment, supports various aspects of the J2EE standards.

Overview of the Java “Platforms”

J2EE is not a product. It is a combination of technology and specifications that is available on the Sun Microsystems website. Many vendors including Oracle have seen the value of the direction that J2EE provides and have developed products that supplement or, at least, comply with the basic features provided by Sun. Two other Java 2 platforms offer some of the features of J2EE—Java 2 Platform, Micro Edition (J2ME) and Java 2 Platform, Standard Edition (J2SE). All specifications, guidelines, and Java language software included in these editions are available for browsing or download at the Sun Microsystems Java website (java.sun.com). The Sun website also includes free tutorials, quizzes, newsletters, and developer community forums that you can use to learn about the features of the Java 2 editions. This following section describes the distinguishing features of the three editions and concentrates on J2EE which is the subject of this paper.

Note
At the heart of all these editions is the Java language. At this writing, the Java Software Development Kit (SDK) is available in version 1.4. Any version from 1.2 is considered “Java 2.”

J2ME

The Java 2 Platform, Micro Edition (J2ME) defines how applications are developed and deployed to devices such as cell phones, pagers, and personal digital assistants (PDAs). The keywords for J2ME are “small” and “light.” J2ME supports client applications that have less than one megabyte (MB) of memory and/or a lightweight processor. Applications built with J2ME can be run on many platforms. More information about J2ME is at the Sun website java.sun.com/j2me/.

J2SE

Sun has also published Java 2 Platform, Standard Edition (J2SE), which consists of components such as the following:

· Java language libraries for writing and compiling Java applications and applet code in Java using Java Foundation Classes (JFC) Swing and Abstract Windowing Toolkit (AWT) library controls.

· Java Database Connectivity (JDBC) classes that provide a standard API to any database with a JDBC driver. Connecting to an Oracle database using BC4J or EJB relies on these classes.

· Remote Method Invocation (RMI), which allows your program to call operations available in objects in a different program that is running under another Java Virtual Machine potentially on a separate machine.

J2EE

The J2EE environment provides a corporation-wide (enterprise) strategy for distributing application code into a multi-tier architecture. Code may reside in the database, in application servers, or on the client. A variety of products and communication protocols enable these options. J2EE has several major components: blueprints, specifications, software, and an application architecture model.

J2EE BluePrints

The J2EE BluePrints provide guidelines and best practices for working with a specific environment such as enterprise, wireless, high-performance, and web services. These BluePrints are available online at java.sun.com. They discuss the considerations and requirements of the specific environment. BluePrints make work within a particular environment easier by explaining the features and services that you need to use for effective deployments in each environment.

Design Patterns

The J2EE BluePrints include J2EE patterns, also called “design patterns” (such as Data Access Object and Front Controller) that describe a solution to a common design problem. One way to understand design patterns is to examine one of the most pervasive and popular of all J2EE patterns—Model-View-Controller (MVC).

Model-View-Controller (MVC)

MVC is a design pattern that was inherited from the Smalltalk language. It defines a rigorous separation between these three components of an application:

Model This layer represents the data and values portion of the application.

· View This layer represents the screen and user interface components.

Controller This layer represents the user interface events that occur as the user interacts with the interface (view).

The separation between layers allows the switching of one layer without affecting the other layers. For example, if your application were built using the MVC pattern, you could switch the user interface from a Java application to a mobile cell phone interface and still use the underlying controller and model. This kind of flexibility is the key benefit of the MVC pattern.

The separation of layers also allows different developers to work on different parts of the application code. In addition, design areas for data structures, interface screens, and processes affect the code in the model, view, and controller layers, respectively.

Another benefit of MVC is that testing of each layer can occur independently. Thus, the final code assembly requires only an integration test to ensure that the code works as a complete unit.

Specifications

The J2EE specifications describe all features of the platform and provide details about standards for security, transaction management, naming, APIs, interoperability, application assembly and deployment, application clients, and service provider interfaces.

Also part of J2EE are specifications for Java Servlet, JavaServer Pages, Enterprise JavaBean (EJB), JDBC, JavaMail, and other technologies. More information about J2EE is available on the Sun website java.sun.com/j2ee/.

Software

The software that comprises J2EE is primarily the Software Development Kit (SDK), formerly called the Java Development Kit (JDK). It contains development and runtime software for Java programming.

J2EE vs .NET

.NET is a set of standards and architectures published by Microsoft Corporation. It is an alternative to J2EE and does not use J2EE components. .NET has at its core a number of Microsoft products such as the following:

· Windows (operating system)

· Internet Information Services or IIS (application server)

· SQL Server (the database)

· Visual Studio (the development environment for programming languages such as Visual Basic and C#)

.NET offers all of the major services and strategies offered by J2EE. It is popular in corporations that have a large existing investment in and experience with Microsoft products. It is looked at with caution by others because it is a single-vendor solution, is less mature, and requires a specific operating system and, therefore, specific hardware. Java and J2EE is designed to be platform independent. A very attractive benefit of J2EE to these companies is Java’s multi-vendor support. In addition, shops that are heavily invested in the Oracle database prefer J2EE over .NET because of Oracle Corporation’s interest in Java as a flexible, cross-platform solution. .NET is still a strong competitor to J2EE, however, and may be the right choice for some corporations.

Application Architecture Model

J2EE defines a conceptual application architecture model that is divided into multiple tiers, each of which is responsible for a specific function. Figure 1 depicts the architectural model. The model contains four logical tiers as follows:

Client Tier This tier, also called the Client-Side Presentation Tier, contains code and processes that run on the client machine and with which the user interacts. For example, this tier can contain a Java application that runs in a Java Virtual Machine (JVM) on the client and presents a user interface.

Web Tier This tier, also called Server-Side Presentation Tier, contains user interface code and processes that run on a common application server (J2EE server). For example, this tier can contain a JavaServer Pages application that constructs a user interface on the server and sends it to the browser on the client.

Business Tier This tier, also called the Server Business Logic Tier, contains data access code and, optionally, validation and business rule enforcement. This tier also resides on a J2EE (web) server. There is no user interface function housed on this tier.

EIS Tier The Enterprise Information System (EIS) Tier contains the persistent data storage mechanism—usually a relational database such as Oracle9i. The databases can be distributed across many servers, but serve the function of an EIS server.

Note
The diagram in Figure 1 shows Business Components for Java (BC4J) in the Business Tier. BC4J is a product of Oracle Corporation, not Sun Microsystems as is EJB. Oracle JDeveloper offers extensive support for development of BC4J.

The J2EE tiers in Figure 1 show some examples of what the tier may contain. One application style will use at most one part from each tier. Some application styles do not use all four tiers. The discussions in this paper of Java clients and web clients (such as JSP pages) will use this diagram as a basis for explaining the communications between tiers and the components used for each application style.

Any technologies introduced in the future should fit into one of these tiers. The reason that this is a conceptual division of tiers is that a tier on the diagram does not necessarily represent a physical machine. One or more machines could be allocated to each tier. Alternatively, tiers can be combined on one machine.

[image: image1.png]Client Tier Web Tier Business Tier EIS Tier
e :)
Java
Standalone
Runtime JSP Enterprise
- Pages JavaBeans
Database
Browser
- Business
Servlets Components
- for Java
= . J

Figure 1. J2EE conceptual architecture model

About the Java Virtual Machine

The Java Virtual Machine (JVM) is a program that runs Java class files. There are a number of variations on the basic JVM but all are able to interpret and execute Java files. For example, if you run a Java application from the command line, you use java.exe to run the class file. This starts a JVM session and interprets the bytecode (compiled version) for the Java program. If you run a Java program such as an applet inside a browser, the browser session is in charge of running the JVM. If you are running Java web tier code, the JVM may be started in a different way but the idea of an executable program running Java code is the same. In the case of a Java client, the JVM is installed when you install the Java Software Development Kit (or SDK, also called the JDK—Java Development Kit). In the case of a Web Tier or Business Tier JVM, the web server container installation will establish the appropriate runtime files. Much of the discussion about different Java architectures centers on the location of the JVM and the way that it is run.
Oracle and J2EE

Oracle products are focusing strongly on Java because of benefits such as platform independence, wide vendor support, and a very large open source and user group base. The primary technology products—database, application server, and development tools suite—are all focused on and provide deep support for the design, development, and deployment of Java and J2EE applications.

Design Support—JDeveloper
Oracle offers a number of Java frameworks such as the MVC library included with Oracle9iAS application server and Business Components for Java framework included with JDeveloper. These frameworks implement J2EE design patterns and allow you to more easily develop application code. In addition, JDeveloper 9i contains two Unified Modeling Language (UML) diagrammers (the Class Diagram and Activity Diagram). JDeveloper 10g will offer additional UML tools such as a use case diagrammer and expanded class diagrammers. UML is an object-oriented diagramming “language” (set of symbols) that works well with Java (an object-oriented language). The diagrammers in JDeveloper create Java code that you can deploy in a J2EE environment.

Note
At this writing, the Oracle Technology Network website (otn.oracle.com) offers a preview of JDeveloper 10g which is scheduled to be in production by the time of this conference. Where this paper mentions JDeveloper, it does so in the context of JDeveloper 9i but the basic concepts discussed will apply equally to JDeveloper 10g. Since JDeveloper 10g contains a new application framework, some of the techniques will change, however.

Database Support—Oracle9i and 10g
The Oracle8i and Oracle9i databases allow running Java classes as stored triggers and classes (corresponding to PL/SQL packages, procedures, and functions). The database also allows calling methods in those classes from PL/SQL or other Java front-end or back-end code.

Application Server Support—Oracle Application Server
The Oracle9iAS application server (and now Oracle Application Server 10g) offers a complete J2EE deployment environment. You need no products other than iAS’s OC4J (Oracle Containers for Java) to deploy JSP or servlet applications (web tier code) or business components (BC4J or EJB in the business tier).
Oracle Portal, a part of Oracle Application Server, provides the ability to host J2EE applications as well as other styles of code.
Development Support—JDeveloper

Oracle9i JDeveloper is Oracle’s premier Java development tool. It is part of the Oracle9iDS (Developer Suite) and is also available as a standalone purchase. JDeveloper provides rich support for all types of code that you can deploy into the J2EE tiers. It is worthwhile examining in a bit of depth the features that JDeveloper offers for J2EE support.

Specific features of JDeveloper categorize it as a J2EE development tool:

· The ability to create standard code that complies with the latest Enterprise JavaBean (EJB), servlet, and JSP standards.

· J2EE deployment files required by the J2EE specifications can be generated in JDeveloper.
· Full integration with Oracle9iAS Containers for J2EE (OC4J), a J2EE-compliant application server. This integration means that JDeveloper is integrated with Oracle9iAS because OC4J is a part of Oracle9iAS.

· Incorporation of MVC as a coding standard for Java client as well as JSP applications. The JClient feature of JDeveloper separates the model and view layers in a Java client application. When developing a JSP application, the model is also separated from the UI components with a link through the client data model. The conceptual support for MVC is strengthened in JDeveloper 10g.
· Wizards to generate J2EE deployment files—Java Archive (JAR), Enterprise JavaBean Java Archive (EJB JAR), web application archive (WAR), or enterprise application archive (EAR). (WAR and EAR files are explained in the following sidebar “WAR and EAR Files”.)
Deploying J2EE Applications with JDeveloper

You can deploy a web application from JDeveloper by setting up an application server connection, generating the deployment profiles that contain details about the server and the application, and selecting Deploy in the right-click menu. In the case of a web deployment (applet or JSP page), a WAR file and JAR file will be created automatically. These files will then be automatically copied across the network to the correct location in the OC4J or BEA WebLogic application server, and the

WAR and EAR Files

As part of the deployment process, JDeveloper creates J2EE standard enterprise application archive (EAR also called “enterprise archive”) and web application archive (WAR also called “web archive”) files. The WAR file contains all files required for the application’s run time. If the web application is a set of JSP pages, it will contain the JSP files in a root directory (that appears as a project subdirectory under the j2ee\home\applications directory). The WAR file also contains a number of files and directories inside a WEB-INF directory. These files are a combination of standard J2EE.xml descriptor files (such as web.xml) and packages of BC4J files. The deployment process expands the WAR file into its component files and directories. A copy of the WAR file is kept in the project root directory.

The EAR file is used for standard J2EE deployments. It provides a single archive that contains all other archive and other files needed for an entire enterprise (many applications). The EAR file can contain one or more WAR files, JAR files, and EJB JAR files as well as several deployment descriptor files (files containing configuration information for a particular aspect of the server). One of these deployment descriptor files is application.xml, which provides the context-root virtual directory for one or more applications. You use this virtual directory to construct the URL for a JSP application. For example, the LocJSP project is contained within the LocDeptWS workspace. The connection URL for files in the application directory is http://host:port/ LocDeptWS-LocJSP-context-root/file.jsp, where “host: port” is the server name and JSP container port; file.jsp is the name of your JSP file; and LocDeptWS-LocJSP-context-root represents the context-root directory. For BC4J projects in JDeveloper, application.xml contains a list of runtime files. Another configuration file in the EAR is data-sources.xml, which contains database connection information for the JDeveloper connections objects. The other deployment descriptor is orion-application.xml. This file provides application information to OC4J.

server will be configured to recognize the application. The deployment process makes working with a J2EE server relatively simple. If your server is not OC4J or WebLogic, you can deploy to an appropriate JAR, EJB JAR, WAR, or EAR file. Since these are standard J2EE files, any server that is J2EE compliant will be able to use the archives.

Java application and applet files contain .deploy file right-click menu options for JAR and EAR. The WAR file is not appropriate for a Java client deployment.
Business Components for Java in JDeveloper

Oracle’s Java database framework, called Business Components for Java (BC4J), offloads much responsibility from the application programmer. It provides a set of .class files that you can use to easily hook into database objects such as tables and views. Without BC4J, you have to write low-level Java database connectivity (JDBC) code that connects your Java code to database objects. BC4J hides these low-level calls in a more abstract layer and allows you to concentrate on the application logic instead of Java database access mechanics. BC4J also provides a non-database area for data validation, data caching, and session management. Creating a default, but functional BC4J layer in JDeveloper is easily accomplished by means of running the Business Components Package Wizard. JDeveloper also helps in creating a deployment package that contains the many .class files that this wizard creates. A single BC4J project can service many applications and is not specific to a particular deployment style.
Deployment Architecture - Java Client

To better understand some of the J2EE strategies, it is useful to examine different application styles that are supported by the application architecture model and are documented in J2EE specifications. The two styles this paper examines are Java Client and JavaServer Pages (JSP) web technology.

As used in this paper, the term “Java Client” refers to both Java application and applet styles of deployment. Java Client means that the JVM used to run an application is a process on the client tier—either in a browser session or as a standalone session. Although there are similarities in the development steps, there are architectural differences between the two styles, so this section will discuss their architectures separately.

Java Application

The term “Java application” refers to a particular style of Java code. In Java terms, the code is really just an “application,” but since that term is a common one in the IT world, it is more clearly preceded by the word “Java.” A Java application runs on the client machine in a standalone JVM runtime process. The source code .java files are compiled into bytecode (.class) files and stored on the client machine, or on a local or wide area network server. There is no web server required, and the runtime environment is located on the client machine outside of a browser. Therefore, a Java application runs using a typical client/server model.

If the Java application uses BC4J, the BC4J objects may be located on a web server. The Java application runtime uses the architecture shown in the J2EE architecture model in Figure 2:

1. The application’s .class files run locally in a client JVM and access BC4J objects on a web server.

2. The BC4J objects communicate with the database and send results to the client.

[image: image2.png]Business Tier

Standalone
Java Runtime

-

Enterprise
JavaBeans

Business
Components
for Java

~N

Database

Figure 2. Java application runtime

It is also possible to locate the BC4J objects on the client machine but this does not allow other users to connect to a common set of BC4J files.

Java applications have a method called main() (as shown in the calling sequence in Figure 3). This method is automatically executed when the class is run and usually calls a constructor method (named the same as the class). The constructor method creates the first object, such as a frame (window). All requests for data flow from the application’s frame through the BC4J layer.

To deploy a Java application, you install java.exe (the Java runtime JVM) and supporting Java libraries on the client machine. You also install the .class files for the application and data access (BC4J) objects and set up the client’s CLASSPATH so that the JVM can find these .class files. To run the application, the user enters the following at the command line (or in a shortcut icon):

java DeptEmpFrame

In this example, “DeptEmpFrame” is the compiled .class file that contains the main() method that starts the application. The client machine would likely use a shortcut icon instead of requiring the user to type a command-line string.

When to Use Java Applications

Java applications are indicated for intranet or small-department solutions with a small number of clients. When the number of clients grows, you will experience all of the same problems and resource drains as in client/server applications because, for each new client, a new software installation is required. If you do not want to worry about browser limitations and firewall restrictions and are able to easily manage local client-side installations, the Java application is the proper style.

[image: image3.png]Microsoft Windows 2000 [Version 5.00E
(C) Copyright 1985-2000 Microsoft Co

C:\>java deptemp.DeptEmpFrame.

DeptEmpFrame.class

main ()

1]

DeptEmpFrame ()

=

File Database Help

[[=] E3

MADPMEx0 [GF

Deptno: (20 J
Dname: [RESEARCH |

Loc: [cHICAGO

Empno|Ename| Job | Mor |Hiredatd Sal |Comm [Deptno| |

7369 | SMITH CLERK 7902 |1980-.. 800
7566 JONES MANA.. 7833 |1981-..|2975
7788 |SCOTT ANAL.. 7566 |1987-.. 3000
7876 |ADAMS [CLERK 7788 [1987-.. 1100

20
20
20
20

[COEE 3 I SIS)

fow 2 Modified: false Navigating: Deptview

-/

Figure 3. Java application calling sequence

Advantages of Java Applications

If you are accustomed to client/server deployments, Java applications provide you with an easy architecture in which to deploy Java code. The user interface responds to user events quickly because the code is running on the client machine. You gain all of the benefits of the Java language, such as object orientation and portability, without the need to learn about and configure the application server.

GUI Controls

Java applications provide rich GUI possibilities. The available libraries of GUI controls, mainly Swing (based on the Abstract Windowing Toolkit (AWT)) provide all of the functionality of traditional windowed applications but allow you the flexibility of modifying each aspect of the control.

Layout Managers

In addition to the AWT and Swing components, you can also use a Java feature called layout managers to manipulate components at run time. A layout manager is an object that you define and attach to a container (such as a panel) using the layout property. It is responsible for resizing and repositioning the components inside that container when the user resizes the outer window. This is useful because you can deploy the Java application on diverse platforms and be assured that the layout manager will maintain your design regardless of differences in the hardware or JVM used for display.

There are many layout managers, and each has a different behavior. For example, the FlowLayout manager is responsible for wrapping components to the next line if the window width is narrowed. You define the outer container (usually a panel) with the FlowLayout manager, and it takes care of this wrapping feature automatically. Another layout manager, GridLayout, is used for a grid effect (such as a calendar) where all areas are maintained at the same width and height regardless of the outer container’s size. Layout managers are strength of Java applications and you can take advantage of them in your code with minimal effort.
Disadvantages of Java Applications

Java applications also come with all of the drawbacks of client/server architecture. One main problem is that runtime and application code must be maintained and installed on the client machine. WAN servers promise to ease the burden, but the reality is that they are often not responsive enough, so companies use LANs instead. The LAN solution for a large application is still not responsive and requires installation of the same code on more than one machine. This takes a lot of time and effort, as those who support client/server applications have experienced. In addition, the client machine needs a large amount of resources because the application is running in its memory and using its disk space.

When the number of users grows, this architecture scales poorly. More users may require additional installations and further decentralization of the runtime code. The architecture makes no use of the benefits of web server technology for centralized installation and maintenance, although the Java Web Start utility (described later) mitigates this effect somewhat.

Applets

Applets are an alternative that better leverages the strengths of web technology. With a Java applet, when the application is first run, the applet is copied from the application server to the client machine and run within a browser session. In subsequent executions of the same version of the applet, a copy of the applet located on the client machine is run. Applets give you all of the functionality of a Java application as if you were deploying client/server, but allow you to maintain it over the Web. As with Java applications, you are working entirely in a Java environment and can use JDeveloper to create the code.

As with Java applications, applets allow you to use the rich user interface components that are offered by AWT and Swing libraries. The applet differs from the Java application only in the way it is started (from a browser) and in the initial location of the code, which is an application web server. The steps in the applet startup and runtime process depicted in Figure 4 follow:

1. The client browser requests an HTML file from the web server through a standard URL. The HTML file may be static or dynamically generated from another application. This HTML file contains a special applet tag such as the following:
<APPLET CODE = "empappjsp.DeptApplet"
 CODEBASE = "/applet_code/"
 WIDTH = 400
 HEIGHT = 400
 ALIGN = middle >
</APPLET>

1. The applet tag signals the browser to start an applet window for the JVM session and load the application’s .class file named by the code attribute. The applet tag’s CODEBASE attribute specifies the location of the applet’s .class files relative to the physical location of the HTML file. If the HTML file is in the same directory, the CODEBASE attribute is set to “.” (The same directory). The CODE attribute identifies a specific .class file that starts the applet. The application’s .class files download (the first time) from the application server and are presented in the applet window. The .class files will be cached (in Java version 1.3 or later) on the PC’s hard drive and not downloaded the next time the applet is run.
3. Communication occurs between the browser JVM and the BC4J objects as with the Java application.
4. Database operations are triggered from the BC4J objects as with the Java application.
As with the Java application, the BC4J files may alternatively be located on the client machine. Figure 5 depicts the calling sequence for an applet.

When to Use Applets

Applets are indicated for use within an organization. An applet gives you a client/server-style application without the overhead of maintaining a client/server environment. An intranet environment may also provide adequate bandwidth to provide a workable initial load time for large Java applets. Since an intranet system is a controlled environment, you will likely be operating behind the firewall, thus eliminating the security restrictions.

Advantages of Applets

For the most part, the same advantages that apply to Java applications apply equally to applets. An applet has the additional advantage of allowing you to use the web application server to store a common set of runtime files. Although the client still needs to have the JVM runtime files installed, they are included with all popular browsers. This means that the burden of installing software on the client machine is greatly reduced. The main installation requirement is the client’s browser, which is standard issue these days.

[image: image4.png]Client Tier

Standalone
Java Runtime

Web Tier

JSP
Pages

Browser

Servlets

Business Tier

Enterprise
JavaBeans

Business
Components
for Java

EIS Tier

Figure 4. Applet startup and runtime process

Disadvantages of Applets

Java applets can be very large, so the initial download time may be lengthy. Once the application loads, unless there is a lot of required database access, the performance will be excellent. For e-commerce purposes, the load time for the applet is likely to be unreasonable.

In addition, the actions that the Java applet can perform on the client machine are restricted by the built-in security mechanisms. If those features are circumvented, Java applets can be written to perform tasks on the client machine such as writing to the file system. In many organizations, client machines reside behind a firewall that prohibits the downloading of Java applets.

Another disadvantage is that an applet uses an HTML browser to start up the JVM. Browsers do not universally support the Swing class libraries, which have more functionality than AWT libraries. AWT classes are fully supported but require much more coding to connect to the data layer. The impact on applet technology is that you must ensure that your users can access and install the Swing class plug-in offered by Sun Microsystems. This requires a one-time step to download and install the plug-in.

Although one of the advantages of the applet architecture is its use of the web application server to store and serve the HTML file and applet .class files, this is also one of its disadvantages. The application server requires additional configuration and maintenance, which, in turn, requires extra human resources and skills. While this requirement is manageable, it is one that must be taken into account.

Because of the disadvantages and security issues of applets and because of the ability to deploy Java applications through a browser with Java Web Start (described next), they are not as popular as the alternatives.

[image: image5.png]Go to: |http: /Awww.co.com/app/DeptE mp. html

-

Browser

DeptEmp.html

HEIGHT=250 WIDTH=300 />

<APPLET CODE VALUE = ”DeptEmpApplet”

4 N\
K< PHEXa " GH
DeptEmpApplet.class Department10____ |
Name ACCOUNTING
P Location [NEW YORK
init()
Empno | Ename | Job | Mgr [Hiredate| Sal | Comm |
7782 [CLARK |MANAG..7839 1981-0.. 2450
7639 KNG PRESI 1981-1... 5000
7934 MILLER (CLERK [7782 1982-0.. 1301
K< DM &Xa . GH
Fow 1Modified: false [Editing : Deptview
\. -/

Figure 5. Applet calling sequence

Java Web Start

Java Web Start (a Sun Microsystems technology) is an alternative to applets that allows you to deploy a Java application on a Web server that will pass it to a client machine upon request. The client browser is required only to download the application. The JVM that runs the application is independent of the browser. Therefore, once the download is complete, the browser may be shut down because the Java application will be running in a separate process.

Java Web Start provides the power of centralization that applets offer. The distribution of the application is accomplished through the browser accessing a centralized code server. The files are downloaded to the client machine as they are with applets. The application is run inside a standalone JVM (unlike applets that run inside a browser JVM).

JDeveloper 9i supports deployment to the Java Web Start method. After creating the deployment profile, you open the New gallery (File | New) and select Java Web Start Launcher from the General\Deployment Descriptors category. This wizard steps through the creation of several XML files that are required for this alternative. The Java Web Start method will probably serve most of your purposes for client-side Java code.

Note
This technology requires that you and your users have the Java Web Start software installed.

Creating Java Client Applications in JDeveloper

JDeveloper offers a number of wizards to create the initial code for Java applications and applets. The wizard-created code is a good starting point for the work you need to do for a production application. The Client Tier node in the New gallery (File | New) is the launchpad for the wizards. Once you have created the starting code, you can use the Code Editor, UI Editor, and Property Inspector windows to modify the generated components and to add your own components and code. The most commonly used Swing components are easily available in the JDeveloper Component Palette. In general, the Code Editor, Structure window, UI Editor, and Property Inspector windows are synchronized and a change to one changes the others. For example, dropping components from the Component Palette onto the Structure window or UI Editor creates code that you can edit in the Code Editor.

Deployment Architecture - Web Client
Web client deployment is a very popular architecture. One main technology that is used to deploy J2EE applications on the web—JavaServer Pages technology—is a choice of many corporations these days. This section explores the architecture and benefits of JSP technology and discusses how to create them using Oracle9i JDeveloper. JSP pages are different in two basic ways from Java applications and applets:

· They do not require a JVM on the client; and

· They output HTML that is displayed in a browser.

Servlets

JSP technology is an extension of servlet technology, so it is useful to briefly examine what a servlet is before discussing JSP pages. A servlet is a program stored and run on the web application server that accepts requests from a client browser through an HTTP data stream (posted data or URL). Servlets can be used as backend server processes or as user-interface programs. If a servlet is used for a user interface, it constructs an HTML page by querying the database and constructing an HTTP response containing HTML tags mixed with data from the queries. The program constructs the entire page dynamically in a similar way to a common gateway interface (CGI) program.

The advantage of servlets over CGI programs is that they only require a new thread, not an entirely new process like CGI programs. This is a significant resource saver for the application server. In addition, unlike CGI output, servlets are cached, which provides performance benefits such as allowing the database connections to stay open. Servlets are coded entirely in Java and are therefore portable; they do not need a CGI language such as Perl.

JSP Pages

JSP technology is a variation on servlet technology that mixes HTML language and Java language in the same source file. JSP pages have both a dynamic and static element to them, usually represented by the Java and HTML code, respectively. This mix allows the developer to easily code the parts of the application that do not change. For example, JSP code would include the <html> tag at the beginning and the </html> tag at the end of the page. It would also include boilerplate graphics and text as well as other HTML layout elements.

When coding servlets, you need to include a println() print statement for each HTML tag, for example, println("<body>"). A JSP program presents the static tag exactly as it will be output, for example, "<body>" without the print method. In reality, the HTML tags in JSP pages are converted to Java println() calls because the JSP page is translated to servlet code when they are compiled and run. However, the clarity of the JSP code provides many developers an advantage over the servlet style.

Here is an example of the default JSP code that JDeveloper creates when you select JSP Page from the Web Tier\JavaServer Pages (JSP) category of the New gallery (File | New):

<%@ page contentType="text/html;charset=US-ASCII"%>
<HTML>
 <HEAD>
 <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=US-ASCII">
 <TITLE>Hello World</TITLE>
 </HEAD>
 <BODY>
 <H2>The current time is: </H2>
 <P><% out.println((new java.util.Date()).toString()); %>
 </P>
 </BODY>
</HTML>

This sample mixes standard HTML tags (“< >”) and JSP/Java servlet tags (“<% %>”). The file extension .jsp indicates to the web server that the page requested is a JSP file. The web server passes the interpretation of the page to a JSP container program that runs in a JVM on the server. The JSP container processes the JSP-specific tags, some of which may create additional HTML‑formatted output. The container then mixes the static HTML tags (wrapped in print statements) with the output generated by the JSP tags and sends the entire page back to the browser.

Figure 6 shows the main elements of the JSP runtime architecture as described here:

5. The browser sends an HTTP request containing a URL to the web application server.

6. The web server sends the request to the JSP container because the file type is set as a JSP and the file extension is .jsp. The JSP container can accept requests from multiple clients. The JSP container processes the file and accesses the JSP application and library files on the web server.

7. The JSP files request data from the BC4J files on the business tier server. BC4J returns results to the web tier code.

8. The BC4J files access the database and the database returns the results.

9. An HTML page is sent to the client browser as a result of the print statements that result from JSP code.

[image: image6.png]Client Tier

Business Tier

Standalone
Java Runtime

Browser

-

Enterprise
JavaBeans

Business
Components|

\

for Java

Database

Figure 6. JSP runtime

The first time a JSP page is accessed, the server process creates a Java servlet file and compiles that file into bytecode in a .class file. For subsequent accesses, the .class file is cached on the server so that this compilation is not required unless the code is changed. The JSP container runs the .class file in its JVM session. The Java and .class files are generated dynamically from the JSP source code file. The BC4J layer sits on the application server and communicates with the database as in the other models. Figure 7 shows the calling sequence with various JSP code elements and the interaction with the browser.

Although one of the advantages of the applet architecture is its use of the web application server to store and serve the HTML file and applet .class files, this is also one of its disadvantages. The application server requires additional configuration and maintenance, which, in turn, requires extra human resources and skills. While this requirement is manageable, it is one that must be taken into account.

Because of the disadvantages and security issues of applets and because of the ability to deploy Java applications through a browser with Java Web Start (described next), they are not as popular as the alternatives.

When to Use JSP Pages

JSP pages are indicated when your requirement is a simple, lightweight client with no firewall limitations. You would use them anywhere you would use standard CGI-generated or static HTML pages. If you can restrict your application to the limitations of the HTML and JavaScript languages, JSP pages are a logical choice. Since this solution is more efficient on the server side, you can support a large number of users such as for an e-commerce application. If you are coding a heads-down, high-volume data entry ERP application, JSP pages might not be as efficient from the user’s standpoint as a heavier client solution that uses Swing controls.

[image: image7.png];. Browser D (App Server JVM
Golo:lhttp:.-".-"www co.com/app/Deptapp.jsp vlﬂ» Dep‘fcpp JSP

HTML tags
scape. (=] E3
Fle Edt View Go Communicator Help
e T JSP tags
7| Booknarks 4 Location [mi/Deptview_Browse ip] @) Whal's Relsted
- . P @
v A

DeptView Brawse Form

Deptapp.java

Deptmo| Dname Loc

10 [ACCOUNTING [NEW YORK v

20 [OPERATIONS [DALLAS HTML

5 [saiBs CHICAGO <—e— Dep‘rapp.class

40 [RESEARCH [BOSTON

EEEEa
%«» [Document Done | =] 556 %4 9 @ 2 | y

Figure 7. JSP calling sequence

Advantages of JSP Technology

The main advantage of the JSP method is that the output is standard HTML and is therefore compact and universally readable in any browser. HTML requires little from the client except a compatible browser. There is no JVM running on the client, so there is no requirement for a set of Java runtime files or Java application files on the local PC.

The presentation look-and-feel of a page is embedded in HTML tags and cascading style sheets (an HTML facility for changing the appearance and formatting of common tags in a standardized way). Since the HTML tags are directly embedded in the JSP source file, you can split the development work. A web graphics designer can create the template look-and-feel for a page, while the dynamic JSP-specific sections would be developed by a Java programmer. Merging the work is just a matter of embedding one into the other. JDeveloper provides the tools to create and test the JSP code. The web designer would work in another tool such as Microsoft FrontPage or Macromedia Dreamweaver.

Disadvantages of JSP Technology
The main advantage of JSP pages—that they output lightweight HTML—is also the main disadvantage. You do not use the feature-rich Swing (or AWT) controls to construct the user interface. The HTML language is not a programming language as such and has fewer features than the Swing controls for creating a user interface. In addition, simple functions such as scrolling down in a list of records, deleting a record, or changing the way information is sorted requires a refresh of the page. You can embed JavaScript in the HTML page to enhance functionality, but this solution requires that the JavaScript that you use be supported by the ability of your users' browsers to interpret it correctly.

Additional languages

Developing robust JSP applications requires that the developer (or at least someone on the development team) is skilled in Java, HTML, and JavaScript. For developers accustomed to using a single language for all coding, this will feel like a step backwards. Debugging is more difficult because the code is running on the server in the JSP container, although JDeveloper offers remote debugging features that assist in troubleshooting JSP applications.

The HTML limitation may not be important if you keep it in mind when deciding which technology to use for a certain application. There are many HTML applications on the World Wide Web that show reasonable complexity and suitability to their business functions.

Web Technology

Another disadvantage of JSP pages is in the added complexity of the JSP tags and the architecture. There is also added complexity in setting up the web server to support the servlet API and the JSP container. This extra complexity is not insurmountable but can be a daunting task for a shop that has not been oriented towards web technology.

Creating Web Client Applications in JDeveloper

JDeveloper 9i also offers a number of wizards to create the initial code for JSP pages. You need to add page navigation and additional components that the application requires to the wizard-generated code. The Web Tier node in the New gallery (File | New) is the launchpad for these wizards. The wizard-generated code can be modified using the Code Editor, Component Palette, and JSP Data Binding tool. You can view the HTML layout using the JSP Viewer, but to see the HTML and data as it will appear in the final application, you will need to run the JSP in the embedded OC4J server that is included with JDeveloper. This server starts automatically when you click the Run button for a JSP page.

JDeveloper’s Component Palette and wizards offer support for a tag library called BC4J Data Tags Library that interfaces easily with BC4J and offers support for all common HTML objects such as tables, trees, and input controls. JDeveloper’s wizards and editors also support JSP work with Oracle’s uIX (User Interface XML) and OJSP, as well as the industry-accepted Struts framework.

JDeveloper 10g ADF

The development paradigm for creating web applications such as JSP code is significantly different in JDeveloper 10g because of a new framework called the Application Development Framework (ADF). Oracle experts who are not totally in tune with details of J2EE will find the 10g version a bit easier to work with than 9i. Much of the underlying “plumbing” that a J2EE application requires is generated or automatically handled by ADF. Although the ADF is still not as easy to use or as productive as Oracle Forms and Reports Developer, it significantly decreases the amount of work needed to develop a J2EE application. Therefore, if you have a choice of which version to use for a new application, select 10g.

Web Services

Although it is not included in the definition of J2EE, the idea of web services has become quite popular. It is worthwhile understanding web services because they are often embedded into J2EE-style applications. Web services are just application code pieces that are called by web applications and that execute on a remote server. The remote server may not be owned by the owner of the application. The owner of the web service may offer the code for a fee or not, but the owner is responsible for the task performed by the web service.

The code executed offers some function that the caller requires. For example, your web-deployed application may require a currency conversion function. Instead of writing that function and worrying about storing and updating the conversion rates for various days and currencies, you could call a pre-existing function built by someone else. The function would be offered as a service to your application and the user would have no idea that it is being called.

The W3C group (www.w3.org) is responsible for standard offerings such as Web Service Definition Language (WSDL) that you can use to use XML to describe the communication with the remote server. Java and J2EE support for web services is documented on the Sun Microsystems page at java.sun.com/webservices.

Web Services in JDeveloper

JDeveloper offers a number of wizards that assist in packaging Java, PL/SQL, and other code into a service as well as connecting to an existing service. You can connect to a Universal Description, Discovery, and Integration (UDDI) registry that defines and describes a set of web services. The UDDI standard is published by the UDDI.org web site (www.uddi.org). Once you identify the registry server, you can use the web services it offers in your applications. Therefore, JDeveloper assists in the following aspects of web services:

· Writing the code for the web service (Java or PL/SQL)

· Publishing the web service
· Connecting to an existing web service so that its functionality can be called by your application

Figure 8 shows the options available in the Web Services node of JDeveloper 9i New gallery (File | New) that allow you to create connections to UDDI registries and publish PL/SQL and Java routines as web services. Each of these selections runs a wizard that steps you through the process of creating some code.

[image: image8.png]Categories
-General

Deployment Descriptors
Deployment Profiles
Simple Files

UML Diagrams

AL
®-Business Tier
®-Client Tier
®-Database Tier
®-Web Tier

tems:

87 Java Web Service

87 M web Service

8 PUSAL Web Sevice

8! 504P Server Connection
UDDI Registry Connection

@ Web Senice StublSkeleton

& wsDL Document

Opens the New WSDL Document dialog, which allows you o create a new
WSDL document by hand. An outiine of the WSDL document, including
several useful XML namespace definitions, is created

To enable this option, you must select a project or a file within a project n the.
Navigator

Figure 8. Web Services node in the JDeveloper 9i New gallery

Conclusion

This paper has discussed J2EE and how two of the most popular J2EE application development styles work. Through these alternatives you can see that Java code is flexible enough to run in client/server as well as web environments. This paper has explained the details, benefits, and drawbacks of these application deployment styles. In addition, the paper has explained Oracle JDeveloper’s support for developing J2EE applications. When deciding which of these J2EE styles to use, you will weigh various factors in your decision, such as complexity of functionality, scalability, performance, and ease of installation and maintenance. The information in this paper should help you decide how to select one of these styles for a specific purpose. It should also help you understand some of the terminology used when J2EE is discussed and how the terms translate into real application code.

About the Author

Peter Koletzke is a technical director and principal instructor for the Enterprise e-Commerce Solutions practice at Quovera, in Mountain View, California, and has 20 years of industry experience. Peter has presented at various Oracle users group conferences more than 130 times and has won awards such as Pinnacle Publishing's Technical Achievement, Oracle Development Tools Users Group (ODTUG) Editor's Choice, ECO/SEOUC Oracle Designer Award, and the ODTUG Volunteer of the Year. He is an Oracle Certified Master and coauthor, with Dr. Paul Dorsey, of the Oracle Press (McGraw-Hill Osborne) books: Oracle JDeveloper 10g Handbook and Oracle9i JDeveloper Handbook (also co-authored with Avrom Roy-Faderman), Oracle JDeveloper 3 Handbook, Oracle Developer Advanced Forms and Reports, Oracle Designer Handbook, 2nd Edition, and Oracle Designer/2000 Handbook. ourworld.compuserve.com/homepages/Peter_Koletzke.

Quovera is a business consulting and technology integration firm that specializes in delivering solutions to the high technology, telecommunications, semiconductor, manufacturing, software and services, public sector and financial services industries. Quovera deploys solutions that deliver optimized business processes quickly and economically, driving increased productivity and improved operational efficiency. Founded in 1995, the company has a track record of delivering hundreds of strategy, design, and implementation projects to over 250 Fortune 2000 and high growth middle market companies. Quovera's client list includes notable companies such as Cisco Systems, ON Semiconductor, New York State, Sun Microsystems, Seagate, Toyota, Fujitsu, Visa, and Cendant. www.quovera.com.

2-

2

_1107698026.bin

