
1

2

Frequently Asked Questions

A Smörgasbord of Common Questions
and Problems Received by World Wide
Support—And How to Resolve Them

Prepared by David Austin, david.austin@oracle.com

3

Overview

ü Variety of topics in no
particular order

ü Feel free to add your
own comments and
observations

ü Questions happily
accepted, even on
unrelated topics—but
answers, correct or
otherwise, are not
guaranteed

4

Control File Management

Add

Delete

Move

There are various reasons why you may need to manipulate your database control files:
•Add a new one if you have only one
•Delete one that has become damaged
•Replace a lost or damaged copy
•Move the file to a faster, more reliable, or less busy disk system

5

Control File Management

Key points to remember
ü The control file is open and active when you

start your database
ü You should only make operating system

copies when your database is shutdown
ü The database will only recognize and use

control files identified in your parameter file

The control file is an integral part of your database and is modified almost continuously while the database
is active. You must use one of the supported Oracle tools to make copies or backups of the control file
when your database is mounted or open. Before making an operating system backup, you have to shut
down your database.
Remember that your database will only recognize the control files you identify in your initialization
parameter file, so you have to restart the database if you wish to change the control file designations.

6

Control File Management

1. Shutdown normal
SHUTDOWN {[NORMAL] | IMMEDIATE | TRANSACTIONAL}

2. Copy or delete control file with OS command
rm /oracle/ora92/disk1/control01.ctl

3. Add or remove entry from parameter file
control_files = /oracle/ora92/disk1/control01.ctl
control_files = /oracle/ora92/disk2/control02.ctl

4. Restart database
STARTUP

Step 1
Shut down normally using one of the options listed. Do not attempt to create a new, or move an existing, control file if your
database terminates abnormally or if you shut it down with the ABORT option.
Step 2
To create an additional control file, use the operating system (OS) copy command
To drop an unwanted file, use the appropriate OS command. Note that if you delete the reference to a copy of the control file
from your parameter file, the file will not be used again but will be retained on disk.
To move a control file, first make a copy of the file, just as you do to make an additional copy, and then remove the original file.
Step 3
If you are using a text parameter file, you need to edit the control_files parameter(s) before restarting your database. If
you are using a system parameter file (SPFILE), you will need to start an instance with a temporary text parameter file that
includes only the valid control files. Using this instance, you can change the SPFILE entry with a command such as

ALTER SYSTEM SET
CONTROL_FILES = '/oracle/ora92/disk1/control02.ctl'
SCOPE = SPFILE

Alternatively, execute this command before you perform the shutdown in Step 1. In this case, you can restart your instance with
your SPFILE because the required change will already have been made.
Step 4
Ensure your database restart uses a parameter file containing the correct entry (or entries) for the CONTROL_FILES parameter.
If a deleted copy, or the original name and location of a moved copy, is referenced, the startup will fail with a missing control

7

Control File Management

ü RMAN provides option to create automatic
control file backups

– With most types of backup
– When you make substantive database changes

(Release 9.2)

ALTER DATABASE BACKUP CONTROLFILE TO {TRACE
[[NO]RESETLOGS] | 'filename' [REUSE]}

CREATE STANDBY CONTROLFILE AS 'filename' [REUSE]

To create a script version of the CREATE CONTROLFILE command using your current configuration, use the ALTER
DATABASE BACKUP CONTROLFILE TO TRACE command. By default, the script will contain a NORESETLOGS version of
the database start command. You can include the RESETLOGS option to override this.
To complete an online, user-managed backup, create a binary copy of the control file with the ALTER DATABASE BACKUP
CONTROLFILE TO filename command, providing the full path name of the operating system file in single quotes. You
must include the REUSE key word if the file already exists to permit Oracle to overwrite it.
To create a control file for a standby database, use the CREATE STANDBY CONTROLFILE as shown. As with the binary
copy command, you must include REUSE if the file already exists.
Most common types of database, tablespace, and data file backups made with RMAN include a copy of the control file
automatically if you set the CONTROLFILE AUTOBACKUP configuration option. You can also manually add control file
backups as you make individual backups. Beginning with Oracle9i Release 2, the CONTROLFILE AUTOBACKUP option also
causes a backup of the control file to be created when you use DDL commands to alter your database structure, for example, by
adding a tablespace or a new data file to an existing tablespace.

8

Sniped Sessions

ü Caused when idle time in user profiles is
exceeded
ü Not removed unless

– User activates the "terminated session" message
– DBA restarts the database (KILL SESSION

commands do not work)
ü Meanwhile, sniped sessions count against
SESSIONS initialization parameter

– Prevent additional logins

You may notice sessions with a status of SNIPED in V$SESSION. These are sessions that have timed out due to values for the
initialization parameters that control user profiles. In particular, your resource_limit is set to TRUE and your
idle_time parameter is non-zero. When a session is idle beyond the limit you have set, it attempts to inform the user that the
session is terminated. However, it will not do so until the user makes a further attempt to use the session (by entering a
command or just pressing the return key). Until such a time, the session remains stuck with the sniped status. If the users
whose sessions caused the status are no longer connected, due to a network timeout, for example, they will not be able to
transmit a message to the server and hence terminate their sessions.
Should a sufficiently high number of processes attain a sniped status, they may prevent other users from logging on. This is
because they are included in the total number of active sessions which are limited by the value, derived or explicit, of the
SESSIONS initialization parameter. There is no command available within Oracle to terminate sniped sessions, other than to
terminate the problem instance.

9

Sniped Sessions

ü Do not set IDLE_TIME in user profiles
ü On most UNIXes, execute the following shell script

#!/bin/sh
tmpfile=/tmp/tmp.$$
sqlplus -s /nolog <<EOF
connect system/manager
spool $tmpfile
select p.spid from v\$process p,v\$session s
where s.paddr=p.addr

and s.status='SNIPED';
EOF

for x in `cat $tmpfile | grep "^[0123456789]"`
do

kill -9 $x
done
rm $tmpfile

If you do not need to terminate idle sessions, the simplest solution is to reset the related initialization parameters, mentioned
previously, to avoid idle time terminations. However, if this is a requirement, for security reasons, for example, then you may
need to use the UNIX script shown above to remove sniped sessions from your system. This procedure has been tested against
Solaris, AIX, Tru64, and HPUX and is discussed further in Note 1061189.6.
Note: Do not use this script except for dedicated server processes. Occasionally, you may see shared server shadow processes
with a sniped status—these cannot be stopped safely except through instance shutdown.

10

Multiple Database Writers

ü In Oracle7, DBWR is essentially synchronous
– Delayed by slow disks
– Causes additional delaying waits
– Unable to take advantage of asynchronous OS

unless it supports function calls
ü Best solution is to use multiple processes

– DB_WRITERS initialization parameter
– These are synchronous slave processes that

simulate asynchronous processing through sheer
numbers

Being only a single, non-threaded, process, the Oracle7 DBWR performs all its activity sequentially, that is, in synchronous
mode. This includes identifying the buffers to write, obtaining the required buffer cache latches, sending the write request to the
OS, waiting for an acknowledgment, then releasing the latches. If any type of slowdown occurs, for example, conflict for a
buffer latch or a busy disk controller or drive, DBWR must wait. If it has already acquired latches, these will continue to be
unavailable for other processes, such as a user server process that needs to move a block into one of the buffers being cleaned.
Consequently, any delay in the buffer writing activity may cause other work to be queued.
If your OS does not support an asynchronous I/O method that DBWR can use, and if you identify slow I/O by DBWR as a
cause of slow processing overall, you can run multiple DBWR processes. You do this by increasing the value of the
DB_WRITERS initialization parameter in Oracle7. This causes your instance to start that number of special DBWR processes
that are controlled by the normal DBWR process. The normal DBWR is still responsible for managing the buffer cache writes,
but it parcels out the actual write requests to these special processes so they can each perform disk writes in parallel.

11

Multiple Database Writers

ü In Oracle8/8i, the parameter DBWR_IO_SLAVES
replaces DB_WRITERS

– Creates slave processes, as before
– Slaves can run asynchronously if OS supports this

ü Alternatively, multiple DBWR processes are started
with DB_WRITER_PROCESSES

– Not master slave
– Work is partitioned based on LRU latches

ü Cannot use both types of database writers
simultaneously; may need to try both individually

With Oracle8, and continuing into Oracle8i and Oracle9i, the master/slave option provided with Oracle7 is still an option for
you, but the parameter name you need to adjust is changed from DB_WRITERS to DBWR_IO_SLAVES. In this version, these
slave processes are able to take advantage of OS asynchronous operations.
You have another option available in the Oracle8/8 i releases: multiple DBWR processes that each perform all of the duties of a
normal DBWR process. In other words, each process builds its own list of buffers, obtains the latches, performs the writes, and
cleans up the latches after the write is acknowledged. The main benefit of this approach is that each process only ties up a
subset of the resources, such as buffer latches, and should be able to release them sooner because it has fewer blocks to write.
Consequently, the impact of DBWR activity on other processes is minimized. To use multiple, independent DBWR processes,
set the initialization parameter DB_WRITER_PROCESSES to the number you want to start.
Note that you cannot use both types of DBWR processes concurrently and, on the next page, you will find some guidelines as to
when each approach might be useful.

12

Multiple Database Writers

Suggestions (if other I/O tuning fails)

Write-intensive applicationsSlow I/O with relatively few writes

Large buffer cache
(≧ 100,000 buffers)

Small buffer cache
(< 100,000 buffers)

Asynchronous I/O availableAsynchronous I/O not available

Multiple CPU, with value
≦ db_block_lru_latches ≦
number of CPUs

Uniprocessor (single CPU)

DB_WRITER_PROCESSESDBWR_IO_SLAVES

Using multiple DBWRs or slave writers creates additional overhead so only use them if other methods to improve I/O have
failed. The table contains guidelines that generally hold true for when one type of processing works better, but these are not
absolute. You should try both approaches, but not simultaneously, and measure the results to determine which is better, if either,
for you.
Note that you are very unlikely to improve performance with DB_WRITER_PROCESSES if your database server only has a
single CPU. This is because the processes divide their work based on the number of latches available on the buffer cache. With
a single CPU, these latches themselves become available in a synchronous fashion, so the system has to wait for each DBWR to
finish its work before another can start on its set of buffers—this reproduces the same behavior as a single DBWR with the
additional overhead of running the extra processes.
Similarly, if the OS has to queue the write requests from each DBWR process because it does not support asynchronous I/O,
multiple DB_WRITER_PROCESSES can, potentially, acquire latches on almost all of the buffer cache while waiting their turns
to write blocks. This can degrade performance more than a single process that only tries to write a subset of the buffers at a
time.
The buffer cache size, 100,000, included in the table, is only a guideline and does not take into account such factors as multiple
caches (KEEP, RECYCLE, or DB_nK_CACHE SIZE) nor the relative ratio of writes to other database activity, also mentioned
in the table.

13

Convert to Local Tablespace
Management

ü Why—Simplify your life
ü How—Upgrade to release 8.1.6, (Oracle 8i

release 2) and run conversion package
ü Example

ü NOTE: for 8.1.6 you need a patch to address
bug #1325540

EXECUTE
DBMS_SPACE_ADMIN.TABLESPACE_MIGRATE_TO_LOCAL
('TEST_IT_TS')

Beginning with release 8.1.5, you can create locally managed tablespaces. A locally managed tablespace is one where the space
management information (basis for DBA_EXTENTS and DBA_FREE_SPACE) is stored in bitmaps, located in the datafiles,
rather than in the data dictionary. In that release, however, you could not migrate existing tablespaces from dictionary to local
management. Typically, existing databases that were migrated from Oracle8 still use the existing Dictionary managed space
management model. One of the main reasons for this restriction was that, in 8.1.5, the space management code depends on the
bitmap control block and the bitmap blocks themselves are at the start of the file. Thus migration is not possible because the first
blocks of any file in an existing tablespace are occupied by existing disk objects. With release 8.1.6, (Oracle 8i release 2) the
restriction is lifted and you may migrate existing tablespaces from dictionary managed to locally managed. The bitmap header is
created in an available free extent, just like any other segment.
Due to some problems, related to Bug #1325540, Oracle8 i, version 8.1.6, a number of Oracle customers have been reluctant to
migrate to locally managed tablespaces. However, this is the direction in which Oracle is moving, as evidenced by the option to
create a locally-managed database (SYSTEM and all other tablespaces), introduced in Oracle9i, release 2.
Customers who are using locally managed tablespaces, having applied the patch if they are using release 8.1.6, report excellent
results. Free space management is no longer a problem for them unless they are short of disk space anyway, in which case,
neither dictionary nor local management can help.

14

Convert to Local Tablespace
Management

Tablespace requirements
ü Online
ü Read write
ü Permanent (drop and recreate temporary

tablespaces rather than convert them)
ü Non-system
ü Room for space-management bitmap

Before converting a tablespace from dictionary to local management with the
DBMS_SPACE_ADMIN.TABLESPACE_MIGRATE_TO_LOCAL procedure, ensure your tablespace meets the requirements
listed. If you create a new tablespace with local space management, you only need to ensure you have disk space for the related
data file(s), of course.
If you should encounter any problems, once you have converted a tablespace to local management, you can migrate it back to
dictionary management with the procedure DBMS_SPACE_ADMIN.TABLESPACE_MIGRATE_FROM_LOCAL .
As noted above, if you wish to convert a temporary tablespace to local management, you cannot use the DBMS_SPACE_ADMIN
package. However, you should be able to create a new temporary tablespace defined with local management. For example:

SQL> CREATE TEMPORARY TABLESPACE local_temp
2 TEMPFILE 'file_lt1.f'
3 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 16M;

You can then reassign users from the dictionary managed temporary tablespace to your new tablespace, local_temp, in this
example, and drop the original tablespace. If you are using Oracle9i and the original tablespace was defined as the default
tablespace, you only need to issue the appropriate ALTER DATABASE command to reassign the affected users. For example:

SQL> ALTER DATABASE
2 DEFAULT TEMPORARY TABLESPACE local_temp;

15

Convert to Local Tablespace
Management

Optional parameters for conversion procedure
ü Allocation unit

– Integer
– Size in bytes of smallest extent to be allocated
– Must be integer multiple of system-determined size, which is

derived from MINIMUM EXTENT value (defaults to 5) and
highest common divisor of all existing extents (used and free)

ü Bitmap file number
– Integer
– Relative file number where the space-management bitmap is

built

In the earlier example, the only value provided in argument list for the
DBMS_SPACE_ADMIN.TABLESPACE_MIGRATE_TO_LOCAL procedure was the tablespace name, test_it_ts. This
is a required parameter which you must include when you invoke the procedure. You may also provide values for two optional
parameters, unit_size and rfno.
The unit_size parameter, also referred to as the "allocation unit," sets the size of the smallest possible chunk of space that
can be allocated) in the tablespace. If you don't provide this value in your arguments, it defaults to the highest common divisor
of all extents (used or free) for the tablespace, except the last free extent in each file. This number is further trimmed based on
the MINIMUM EXTENT value for the tablespace (5 if MINIMUM EXTENT is not specified).
Note that if you specify the allocation unit, it has to be a factor of the UNIT size calculated by the system. Rather than
attempting to compute a valid value, most customers choose to take the default value. If this results in unacceptable space
usage, you can convert the tablespace back to dictionary management or build a new, locally managed tablespace and move the
original contents into it.
The rfno parameter, which stands for the "relative file number," identifies the data file where the space management bitmaps
will be created. This file must be must be part of the tablespace you are migrating and have sufficient room for the initial
bitmap. The size of the bitmap is determined by the allocation unit value discussed previously. If you do not specify a value for
the relative file number, then the system will choose a datafile in which to place the initial bitmap blocks.

16

Migrate to SPFILE

ü Why—Simplify your life
– Update parameter file concurrently with memory using
ALTER SYSTEM SET command

– Only required on the server, not every client where
you execute startup commands

– Include in most RMAN backup sets automatically
– Preserve sanity of RAC DBAs

ü How—With a CREATE SPFILE command
– Oh yes, this is an Oracle9i capability

You can think of a server parameter file (SPFILE) as a repository for your initialization parameters that is maintained on the
machine where your Oracle database server executes. It is, by design, a server-side initialization parameter file. Initialization
parameters stored in a server parameter file are persistent, in that any changes you make to the parameters while an instance is
running may be defined to persist across instance shutdown and startup. This eliminates the need for you to manually update the
initialization parameters with your new values after you make changes with an ALTER SYSTEM command.
You can find an example of the CREATE SPFILE command, used to build an SPFILE from an existing text-based parameter
file, on the next page.

17

Migrate to SPFILE

$ sqlplus -x /nolog
SQL> CONNECT / AS SYSDBA
Connected to an idle instance.
SQL> CREATE SPFILE='test_spfile' FROM PFILE;

File created.

SQL>

You can find descriptions of the key components of this session on the following pages.

18

Migrate to SPFILE

$ sqlplus -x /nolog
SQL> CONNECT / AS SYSDBA
Connected to an idle instance.
SQL> CREATE SPFILE='test_spfile' FROM PFILE;

File created.

SQL>
FYI
-x suppresses the SQL*Plus headings
/nolog avoids login prompts

19

Migrate to SPFILE

$ sqlplus -x /nolog
SQL> CONNECT / AS SYSDBA
Connected to an idle instance.
SQL> CREATE SPFILE='test_spfile' FROM PFILE;

File created.

SQL>
Can be SYSDBA or SYSOPER
connection

20

Migrate to SPFILE

$ sqlplus -x /nolog
SQL> CONNECT / AS SYSDBA
Connected to an idle instance.
SQL> CREATE SPFILE='test_spfile' FROM PFILE;

File created.

SQL>
Instance can be closed, mounted,
or open

21

Migrate to SPFILE

$ sqlplus -x /nolog
SQL> CONNECT / AS SYSDBA
Connected to an idle instance.
SQL> CREATE SPFILE='test_spfile' FROM PFILE;

File created.

SQL>
Creates non-default SPFILE
• Must use text parameter file containing SPFILE

parameter
Exclude the ='filename' string for default SPFILE
•$ORACLE_HOME/dbs/spfileX.ora on UNIX
•$ORACLE_HOME\database\spfileX.ora on Windows
where X is derived from PFILE name

The command will create a default SPFILE if you do not include a string with the path or file name. The default names and
locations differ by platform, with the values for UNIX and Windows shown in the graphic. If you want to use your own file
definition, you must enclose the string in single quotes.
You can specify an SPFILE file in a text parameter file and this is the only way to start the instance with an SPFILE in a non-
default location. For example, suppose you created an SPFILE as follows:

CREATE SPFILE='/database/startup/test_spfile' FROM PFILE;
To use this SPFILE, you need to add this entry to the parameter file you use to start the instance:

SPFILE = /database/startup/ test_spfile

22

Migrate to SPFILE

$ sqlplus -x /nolog
SQL> CONNECT / AS SYSDBA
Connected to an idle instance.
SQL> CREATE SPFILE='test_spfile' FROM PFILE;

File created.

SQL>
Use default text parameter file as
source for SPFILE
• Include full path name and PFILE

name for non-default parameter file
• Enclose path/file name in quotes

Your CREATE SPFILE command will create the SPFILE from the database's default text-based parameter file if you enter it as
shown. If you wish to use a different parameter file as the source for your SPFILE, you need to include the file definition, using
the same format as the SPFILE file string. Here is an example that creates a default SPFILE on a UNIX server from a text
version in a personal directory on the server:

CREATE SPFILE FROM PFILE='/users/davida/orafiles/test_for_spfile.ora'

23

Migrate to SPFILE

Note for NT
ü SPFILE will not be used during startup by

database dedicated services created with
oradim.exe utility

ü Workarounds (use either one, not both)
– Remove registry entry ORA_SID_PFILE
– Continue to use text PFILE with added entry

SPFILE=spfile_name

If you are running Oracle on NT, each of your databases requires a dedicated service. This service is created with the
oradim.exe program, executed manually or automatically while running the Database Configuration Assistant to build a
database. In Oracle9i, version 9.0.1, oradim.exe does not support SPFILEs. However, you can still use an SPFILE for a
database by employing either one, but not both, of these workarounds:
•Remove the pfile entry, ORA_<SID>_PFILE, from the registry.
•Add an entry in your text-based parameter file to identify the required SPFILE, as described earlier to employ a non-default
SPFILE.

24

Data Compression

Q Can I compress data in an Oracle database to save
disk storage and buffer cache space?

A Yes, in these circumstances
§ Oracle9i release 2 (Oracle Server 9.2)
§ Data is in a heap (not IOT) table
§ You don't need specific details on whether data is

compressed and by how much
§ Enhanced data dictionary information should be

available in later releases)
§ You can afford extra overhead if you execute DML

commands

The option for you to compress data in a database table is a new feature introduced in Oracle Server 9.2. The benefits of data
compression include reduction in disk and buffer cache usage. This is very useful for read only operations because fewer blocks
have to be transferred between disk and memory.
If you employ compression, expect more CPU cycles to be consumed when the data must be displayed in uncompressed form,
for example, to satisfy a query. Also, if you execute DML against compressed data, you may experience some DML
concurrency loss, depending on the nature of the original data. You are therefore advised to utilize this feature in a read only or
DSS database.
Note that you can only compress heap tables—this feature does not work for index-organized tables or for external tables. Also,
in this initial release (Release 9.2), you cannot determine the exact amount of space compressed in the segment nor whether or
not a segment is compressed. Oracle Corporation expects to provide data dictionary views to see this information, plus other
enhancements to this feature in upcoming releases.

25

Data Compression

SQL> CREATE TABLE this_will_be_enormous
2 (id NUMBER,entry_date DATE)
3 COMPRESS;

SQL> ALTER TABLE this_became_enormous COMPRESS;

SQL> CREATE TABLESPACE enormous_tables_ts
2 DATAFILE 'd:\ora92db\data\enormous1.dbf'
3 SIZE 10000M
4 DEFAULT COMPRESS;

The examples show you three different ways to compress the data in a table.
First, you can create the table with the COMPRESS keyword which causes all data to be compressed as you add it to the table.
The first example shows the creation of a simple table with this characteristic.
The second example shows how you can modify an existing table to compress its current, and any future, records.
In the last example, the enormous_tables_ts tablespace definition contains the DEFAULT COMPRESS clause. This
causes any heap table you create in the tablespace to be compressed without requiring you to include the COMPRESS keyword
in your CREATE TABLE command.

26

Drop Tables with Multiple
Extents
ü When you drop a segment from a dictionary managed

tablespace
– Each extent is "transferred" from the uet$ to the fet$

table
– This consumes CPU cycles

ü The greater the number of extents, the more CPU is
consumed

– Time-consuming
– Reduces performance for other users

ü Are there ways to mitigate the effects?

If you drop a table made up of many extents, your process will consume large amounts of CPU while performing the drop
activity. This is an inescapable fact. However, with some forethought, you may be able to mitigate the effects of this CPU usage
and its impact on other users of system resources. To do this, follow the four steps described on the next few pages.

27

Drop Tables with Multiple
Extents
1. Identify the table you want to drop

Don't drop it yet

The assumption is that you have discovered, from past experience with similarly-constructed tables, that dropping this table will
degrade performance for an unacceptable length of time due to the large number of extents to be removed.

28

Drop Tables with Multiple
Extents
1. Identify the table you want to drop
2. Truncate the table using the REUSE

STORAGE option

This simply moves the HWM and retains all extents

In this step, you simply move the high water mark of the table to the beginning of the segment, logically deleting all of the rows.
By default, this command also drops all the extents except those created with the MINEXTENTS value in the original STORAGE
clause. However, when you include the REUSE STORAGE clause, you prevent your process from dropping any of the extents
so this statement incurs minimal overhead.

29

Drop Tables with Multiple
Extents
1. Identify the table you want to drop
2. Truncate the table using the REUSE

STORAGE option
3. Remove extents a few at a time with the

KEEP clause of the command ALTER
TABLE…DEALLOCATE UNUSED

You will only remove the extents you do not KEEP

This step is at the heart of this process. The idea is to execute the ALTER TABLE…DEALLOCATE UNUSED KEEP command
multiple times, using a value in the KEEP clause that will allow only a few extents to be dropped each time.
To use this approach, first determine how many extents you can drop before impacting overall system performance, for
example, how many you can drop during a typical low-activity times. For the purpose of this illustration, assume this is 20
extents.
Now, using the DBA_EXTENTS view, sum the sizes of the 20 highest-numbered extents. This is the amount of space you want
to drop with the next execution of the ALTER TABLE…DEALLOCATE UNUSED KEEP command. Let us say this works out to
be 10 megabytes.
Subtract this amount, 10 megabytes, from the total size of the table (the sum of all extent sizes listed in DBA_EXTENTS. Use
the resulting value for the value in the KEEP clause and execute the command.
When you are ready to drop more extents, repeat these calculations to obtain the required KEEP value. You may find that the
total size of the extents you want to drop varies from time to time because they were created with a PCTINCREASE multiplier
or because they were trimmed during a parallel load operation. Also, if length of time you can use to drop more extents
increases or decreases, you obviously need to use a different value for the number of extents whose total size you compute.

30

Drop Tables with Multiple
Extents
1. Identify the table you want to drop
2. Truncate the table using the REUSE

STORAGE option
3. Remove extents a few at a time with the

KEEP clause of the command ALTER
TABLE…DEALLOCATE UNUSED

4. Drop the rest of the table

Only the final set of kept extents will be removed

Eventually, by repeating Step 3 over and over, you will reduce the table to the number of extents you can safely remove without
impacting performance any more. At this point, instead of executing the ALTER TABLE command again when you next have
an opportunity to drop the extents, you can finish the process with a normal DROP TABLE command. Your process will
remove the remaining extents and also clean up the data dictionary records associated with the table.

31

Drop Tables with Multiple
Extents
Assume
ü You need to drop a

4GB table,
monster

ü You know it will
take 4 times your
available weekend
window

ü You can wait a
month to complete
the task

DROP TABLE monster [i.e. drop
final 1GB]

4th

weekend

ALTER TABLE monster
DEALLOCATE UNUSED KEEP
1000M [i.e. keep ¼ of 4GB]

3rd

weekend

ALTER TABLE monster
DEALLOCATE UNUSED KEEP
2000M [i.e. keep ½ of 4GB]

2nd

weekend

ALTER TABLE monster
DEALLOCATE UNUSED KEEP
3000M [i.e. keep ¾ of 4GB]

1st

weekend

TRUNCATE TABLE monster
REUSE STORAGE [i.e. keep all
extents]

1st day

This example makes a number of assumptions, most of which were chosen to keep the
arithmetic simple, about a table you need to drop:
• The table name is monster
• It contains 4,000 extents
• Each extent is 1MB
• You can drop up to 1,000 extents without impacting other users, during a low-activity period each weekend
• Although you don't want to keep the table, you do not need to free all of the space it is currently occupying for a few weeks
From this information, it should be obvious that you need to drop 1 GB of the table's space
(one thousand of the 1MB extents) each weekend. Also, it is easy to determine that 1GB, or
1,000MB, is one quarter of the table's current size. So, following the steps described on the
preceding pages, here is what you do.
1. Determine the table you need to drop. This is easy, it is monster.
2. Once you have done this, move the high water mark while keeping the extents already allocated. The graphic above

provides the SQL command you use for this step in the "1st day" row.
3. Perform Step 3 for the next three weekends. On the 1st weekend, drop the first thousand extents by retaining the other three

thousand extents, or 3,000MB. Note that, like other size-related values in SQL commands, provide the number 3000
without commas and use only the letter M for the megabyte multiplier. On the 2nd weekend, drop another one thousand
extents, this time by retaining 2,000MB. Similarly, on the 3rd weekend, drop all but the final thousand extents by retaining
1,000MB. The specific statement for each weekend's operation is shown in the appropriate row of the graphic.

4. Perform this final step, dropping the table completely, on the 4 th weekend. Again, the command is given in the graphic, this
time in the "4th weekend" row.

32

Other Ways to Avoid Excessive
Space Cleanup Work

Issue
ü SMON wakes up to coalesce contiguous free extents

every 5 minutes
– Works on tablespaces with PCTINCREASE ≠ 0
– Acquires Space Transaction (ST) enqueue (prevents extent

changes by other processes)
– Uses tight loop that consumes almost all CPU

ü Problems manifested as
– Multiple ORA-1575 errors
– Run queue (for CPU access) increases

while free extent count decreases

When SMON performs free space coalescing, which it does every five minutes if it finds adjacent free extents, it may consume
lots of CPU cycles if there many such extents. If you suspect this is occurring and causing problems, you may want to
investigate further.
First, you should check if SMON is consuming large amounts of CPU for a long period. You can run the UNIX utilities sar or
vmstat to see how busy your CPU (or CPUs) are; and use ps to find out which process is using the CPU.
Second, if you determine that that SMON is using lots of CPU, you need to determine whether it is performing temporary
segment (extent) cleanup, or free space coalescing. Do this by checking if there are a large number of free extents that could be
coalesced by running the following query a few times:

SELECT COUNT(*) FROM dba_free_space;
If the count returned decreases while SMON is working, it is likely that SMON is coalescing free space.
Third, check for the most common problems that this SMON activity can cause:
• Multiple ORA-1575 errors. These occur because other processes cannot access the ST

enqueue which SMON is using to manage the space activities.
• The run queue length increases. This will occur if the system is CPU-bound because SMON

sits in a very tight loop while coalescing, and consumes close to 100% CPU.
Even if SMON is coalescing multiple free extents, you do not need to do anything unless it is causing problems such as these.

33

Other Ways to Avoid Excessive
Space Cleanup Work

ü Create locally managed tablespaces with
automatic space allocation

ü For dictionary managed tablespaces, set
minimum extent size to avoid multiple small
extents

SQL> CREATE TABLESPACE unimaginative_name
2 DATAFILE 'd:\ora92db\data\boring1.dbf' SIZE 5M
3 EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

SQL> CREATE TABLESPACE another_dull_name
2 DATAFILE 'd:\ora92db\data\dull1.dbf' SIZE 500M
3 MINIMUM EXTENT 10M;

If you are having problems due to SMON coalescing free extents, as described on the previous page, your best solution is to
restructure your database to reduce the number of potential free extents. This will avoid the problem during future processing.
The two methods explained above both address the problem by reducing the number of extents needed by large segments. Thus,
when the segments are dropped, or modified in some way to reduce the number of extents, they are less likely to leave adjacent
free extents behind.
If, for some reason, you are not able to solve the problem using either of these approaches, you can help reduce the performance
impact should you catch SMON performing extensive free space cleanup. See the next page for a suggested method on how to
do this with commands run from a user process rather than relying on SMON to complete the work.

34

Other Ways to Avoid Excessive
Space Cleanup Work

ü Monitor space for adjacent free extents

ü Manually coalesce if you find contiguous space
– Requires less overhead than SMON, but work is lost if

statement is interrupted
– Can perform immediately after dropping segments with

multiple, adjacent extents

SQL> SELECT f1.tablespace_name, COUNT(*) AS coalesce
2 FROM dba_free_space f1 JOIN dba_free_space f2
3 ON f1.file_id = f2.file_id
4 AND f1.block_id + f1.blocks = f2.block_id
5 GROUP BY f1.tablespace_name;

SQL> ALTER TABLESPACE another_dull_name COALESCE;

Note that the first statement may take a long time to execute. You can modify it to search in just one tablespace for adjacent free
space, but this may also take a while to run in a large tablespace with many used and free extents. A more efficient query is

SELECT tablespace_name, block_id, block_id+blocks FROM dba_extents
ORDER BY file_id, block_id

However, you have to examine the results to find line pairs where the value block_id+blocks in the first line of the pair
equals block_id in the second line. This can be time-consuming and it is easy to overlook the rows you need. You can more
quickly determine if you have multiple free extents with the following query:

SELECT tablespace_name, COUNT(*) FROM dba_free_space GROUP BY tablespace_name
Although the results do not indicate which, if any, extents are contiguous, you may assume that if a tablespace contains many
free extents, at least a few of them will be adjacent. You can also assume there will be some adjacent free extents immediately
after you drop a segment with multiple extents.
Regardless of how you determine if you may have adjacent free extents, you can coalesce any that do exist by executing the
ALTER TABLESPACE statement given above. Even if you have made a wrong assumption and there is no space to coalesce,
the statement will not cause any problems or overhead because it will not have any work to do.
Note: If your database is shutdown while SMON is performing its space management work, the shutdown will not undo the
work completed so far. However, if your ALTER TABLESPACE command is interrupted, the entire statement will be rolled
back and all the processed extents will have to be coalesced again.

35

Other Ways to Avoid Excessive
Space Cleanup Work

ü You cannot coalesce tablespaces of type TEMPORARY
using the previous technique

– Not really a problem because the extents are only cleaned up
at instance startup

– Avoid too many extents by setting a large NEXT value in the
tablespace definition (INITIAL is ignored)
ü For a permanent solution, drop and recreate your

temporary tablespaces with better extent sizes or as locally
managed
ü For a temporary solution, create a permanent tablespace

and assign it to users as their temporary tablespace—this
allows new sorts to be performed on disk without waiting
for the ST enqueue

SMON is also responsible for cleaning up (dropping) temporary segments. Temporary segments are created when a command
to create a new segment fails, when a segment is dropped, or when a PERMANENT type temporary tablespace is used for
segments involved in sorts that are too large to complete in memory. If the user process does not remove the extents, SMON
performs this service. Temporary segments used for sort operations may also be dropped by SMON.
You can detect if SMON is performing temporary space cleanup by repeatedly running the following query while SMON is
busy. However, because SMON does not work as hard or require as many resources when cleaning up temporary extents as it
does when coalescing free extents, it is typically not a big issue.
However, if you are using TEMPORARY type temporary tablespaces, then SMON's cleanup of the segment, which occurs after
a database restart, may be a problem. This is because SMON does not service sort segment requests while performing cleanup.
If the cleanup takes a long time, due to multiple extents in the temporary tablespace, sort operations for users will be delayed.
To avoid this problem, do not create TEMPORARY type temporary tablespaces with small storage parameters or with
unlimited MAXEXTENTS. Be aware that TEMPORARY type tablespaces set MAXEXTENTS unlimited automatically and only
the NEXT storage value is used (INITIAL and PCTINCREASE values are ignored).
If you should have a large number of extents in a TEMPORARY type temporary tablespace, you can avoid user problems,
while the SMON process completes its cleanup, by pointing users at a PERMANENT temporary tablespace. To do this, you
may need to create a new tablespace (do not define it as type TEMPORARY) and then alter the users to reassign them to the
PERMANENT type temporary tablespace for the time being. Of course, if you are running an Oracle9i database with a
DEFAULT TEMPORARY tablespace, you can easily redirect the users to the new tablespace by changing the default at the
database level.

36

Automatic Undo Management –
Overview

Need one undo tablespace per
instance in RAC

Need one rollback segment per
instance in RAC

One transaction assigned per
undo segment whenever possible

Multiple transactions assigned to
segments with modified round-
robin algorithm

Extents migrate as requiredFree space required for segment
to grow

Extents migrate as requiredTransaction uses only its
assigned segment

Created as needed"Guess" size & quantity

Automatic Undo Management
(AUM) in Oracle9i

Rollback Segments

Automatic Undo Management (AUM) was introduced in Oracle9i and greatly simplifies the configuration
of the structures needed to manage rollback (undo) information. You can continue to manage rollback
segments with the same techniques available under versions Oracle7, Oracle8, and Oracle8i, or you can let
the RDBMS do it.
There are now two modes of rollback segments management and usage: * AUTOMATIC or * MANUAL
To distinguish between the two types of segments, ROLLBACK segments are called UNDO segments
when AUM is enabled. In both cases, rollback/undo segments are still required for transactions to execute
and complete so, with either method, rollback/undo segments are present in the database and consume disk
space.

37

Automatic Undo Management –
Initialization Parameters

ü You cannot change management type
dynamically

undo_management = AUTO # Other option is MANUAL

You determine how your undo/rollback will be managed by setting the UNDO_MANAGEMENT
initialization parameter. The possible values, and their consequences are
AUTO: The RDBMS manages undo segments automatically:

•Creates an initial set of undo segments when you create a new UNDO tablespace
•Alters them ONLINE/OFFLINE when you choose a specific UNDO tablespace
•Drops them when you drop an UNDO tablespace
•Adds and drops segments based on load
•Reassigns space between segments as required

Note: You cannot manage automatic undo segments manually even though they appear as
"rollback" segments in your database. You may create rollback segments in UNDO tablespaces,
but it is strongly recommended not to do this.

MANUAL: You keep control of your rollback segments.

38

Automatic Undo Management –
Initialization Parameters

ü You can switch undo tablespaces dynamically
– Allows you to activate tablespace that is larger, on a faster

disk, etc.
– "New" tablespace must exist and be of the correct type

ü For RAC, you need one undo tablespace for each
instance

undo_management = AUTO # Other option is MANUAL
undo_tablespace = UNDOTBS1 # The active undo

tablespace for this
instance

If you decide to use AUM, you have to create at least one undo tablespace to store the undo segments
automatically created. Even though an instance running with AUM uses only one undo tablespace at a
time, you can create several undo tablespaces. In this case, specify which undo tablespace is to be used by
an instance with the initialization parameter: UNDO_TABLESPACE.
To determine which undo tablespace is currently assigned to an instance, you can query the
V$PARAMETER view, or use the SQL*Plus SHOW PARAMETER command for the value of the
UNDO_TABLESPACE parameter.

39

Automatic Undo Management –
Create Database with AUM

CREATE DATABASE db9i
LOGFILE . . .
MAXLOGFILES 32 MAXLOGMEMBERS 2 MAXLOGHISTORY 1
DATAFILE . . .
UNDO TABLESPACE rbs
DATAFILE '$ORACLE_HOME/oradata/DB9i/rbs01.dbf'
SIZE 400M
MAX . . .

If you are creating a new database and wish to use AUM, you should include the UNDO TABLESPACE
clause in your CREATE DATABASE command.
Here is the complete command from the slide:

CREATE DATABASE db9i
LOGFILE
'$ORACLE_HOME/oradata/DB9i/redo01.log' SIZE 1024K,
'$ORACLE_HOME/oradata/DB9i/redo02.log' SIZE 1024K,
'$ORACLE_HOME/oradata/DB9i/redo03.log' SIZE 1024K
MAXLOGFILES 32 MAXLOGMEMBERS 2 MAXLOGHISTORY 1
DATAFILE
'$ORACLE_HOME/oradata/DB9i/system01.dbf' SIZE 264M REUSE
AUTOEXTEND ON NEXT 10240K
UNDO TABLESPACE rbs DATAFILE
'$ORACLE_HOME/oradata/DB9i/rbs01.dbf' SIZE 400M
MAXDATAFILES 254 MAXINSTANCES 1
CHARACTER SET UTF8 NATIONAL CHARACTER SET AL16UTF16;

40

CREATE DATABASE db9i
LOGFILE . . .
MAXLOGFILES 32 MAXLOGMEMBERS 2 MAXLOGHISTORY 1
DATAFILE . . .
UNDO TABLESPACE rbs
DATAFILE '$ORACLE_HOME/oradata/DB9i/rbs01.dbf'
SIZE 400M
MAX . . .

Automatic Undo Management –
Create Database with AUM

If your parameter is set for AUM and you don't
include the UNDO TABLESPACE clause, the
CREATE DATABASE command will create one,
SYS_UNDOTBS, with a filename of DBU1<SID>.dbf.

When creating a database with AUM but without the UNDO TABLESPACE clause, an undo tablespace
called SYS_UNDOTBS is automatically created with the filename DBU1<SID>.dbf.

41

Automatic Undo Management –
Tablespace Management

ü Create a new AUM tablespace

ü Activate the new tablespace

SQL> CREATE UNDO TABLESPACE undotbs2 DATAFILE
2 '$ORACLE_HOME/oradata/DB9i/undo2_02.dbf'
3 SIZE 1000M;

SQL> ALTER SYSTEM
2 SET UNDO_TABLESPACE = undotbs2
3 SCOPE = BOTH;

When you switch an instance to a different undo tablespace, only new transactions will be assigned to the
newly-identified tablespace. Current transactions will continue to run in the original tablespace and its
contents may be needed to satisfy queries or flashback operations that require consistent data. Although
you may drop the unused undo tablespace once all current transactions complete, you may wish to leave it
available for the length of time your applications typically require rollback information (possibly set with
the UNDO_RETENTION initialization parameter).

42

Automatic Undo Management –
Best Practice Advice

ü It is possible to architect a database containing
both rollback and undo segments

ü However
– Some combinations of rollback- and undo-related

parameters may cause startup failures
– Not all operations (e.g. ALTER ROLLBACK
SEGMENT) will work on the rollback or undo
segments

43

Automatic Undo Management –
Data Dictionary Insights

The output shown above was generated from a small test database running in AUM mode. The first query
retrieved the values of the AUM-related parameters, UNDO_MANAGEMENT and
UNDO_TABLESPACE. The second query was as follows:

SELECT
segment_name, owner, tablespace_name, status,

initial_extent,
next_extent, min_extents, max_extents, pct_increase

FROM
dba_rollback_segs

The output was modified with SQL*Plus COLUMN commands for display purposes.
Note that there is a traditional rollback segment, RBS2, in the database but that it is offline because AUM
is active. Also note that the AUM-related segments have Oracle-generated names and are created in the
PUBLIC schema.

select segment_name, count(*) from dba_extents where segment_name

44

Automatic Undo Management –
Some Common “Gotcha’s”

45

Automatic Archive Restart
Problems

ü If your archive log destination disk becomes
full

– Automatic archiving stops
– By default, it will not start again

ü Solutions (after freeing up disk space)

Suppose your database is running in archive log mode with automatic archiving turned on (Oracle’s
recommended configuration for a production database). If the archive log destination disk space becomes
full, the automatic archiving will stop. This is expected behavior and a message should appear on the
affected client’s screen:
ORACLE Instance v816 - Can not allocate log, archival required.
Subsequently, after all of the online redo logs fill up, your database will be in a hang state.
After you free up disk space, you will probably discover that the online redo logs are still not archiving. In
most cases, this is also the expected behavior. If you attempt to manually archive the files you may
receive the errors similar to the following:

SQL> archive log next
ORA-16014: log 1 sequence# 199 not archived, no available destinations
ORA-00312: online log 1 thread 1: 'C:\ORACLE\ORADATA\V816\REDO01.LOG'
SQL> archive log all
ORA-16020: less destinations available than specified by
LOG_ARCHIVE_MIN_SUCCEED_DEST

46

Automatic Archive Restart
Problems

ü If your archive log destination disk becomes
full

– Automatic archiving stops
– By default, it will not start again

ü Solutions (after freeing up disk space)
1. alter system archive log all to 'destination';

Useful when you can't shutdown and don't have much redo:
the command does not restart automatic archiving, you must
continue to repeat this command until you can shut down

One way to fix this problem is to issue a command such as the following:
ALTER SYSTEM ARCHIVE LOG ALL TO 'c:\oradata\archive'
NOTE: You must specify a location, even if it is the original archive log directory in which you have just
freed up space.
In some cases, although this command succeeds in creating archived log files for the current redo logs, it
does not restart automatic archiving. You need to monitor the archive operations to ensure that the next
few log switches occur normally. If they do not, you must either continue to create the archived copies
manually, using the same ALTER SYSTEM command, until you can successfully execute one of the other
options, described on the next pages.

47

Automatic Archive Restart
Problems

ü If your archive log destination disk becomes full
– Automatic archiving stops
– By default, it will not start again

ü Solutions (after freeing up disk space)
1. alter system archive log all to 'destination';
2. alter system set LOG_ARCHIVE_DEST_n = 'reopen';

The command forces an immediate attempt to restart
archiving on the specified destination. If the related
initialization parameter has the option REOPEN=x set,
the archiver should attempt to restart automatic
archiving every X seconds, regardless of what caused
it to fail initially. This option only works if you use the
multiple archive destination parameters.

Reset the value of the LOG_ARCHIVE_DEST_n parameter to ensure that the REOPEN option is specified
with a non-zero value. For example, to force the ARCn process to re-attempt writing archive logs to
LOG_ARCHIVE_DEST_1 every 30 seconds, execute the command:
ALTER SYSTEM SET LOG_ARCHIVE_DEST_1 = 'REOPEN=30'
By default, the retry period is 300 seconds and a value of 0 is the same as turning off the REOPEN option,
in other words, ARCn will not attempt to archive after a failure. If you do not specify the REOPEN
keyword, ARCn will never reopen a destination following an error.

48

Automatic Archive Restart
Problems

ü If your archive log destination disk
becomes full

– Automatic archiving stops
– By default, it will not start again

ü Solutions (after freeing up disk space)
1. alter system archive log all to 'destination';
2. alter system set LOG_ARCHIVE_DEST_n =

'reopen';
3. alter system archive log stop;

alter system archive log start;

This option should work in cases where you can't
afford a shutdown and you are not using destination-
specific archive log parameters. However, if the archive
restart fails, you will need to shut down the database.

You can also try executing the commands:
ALTER SYSTEM ARCHIVE LOG STOP
ALTER SYSTEM ARCHIVE LOG START
However, although these commands restart the ARCn process, they may not succeed in sending the
archive logs to the previously-full destination unless you have also set the REOPEN value for that
destination, as described on the previous page. In some cases, even this will not re-enable automatic
archiving.

49

Automatic Archive Restart
Problems

ü If your archive log destination disk becomes
full

– Automatic archiving stops
– By default, it will not start again

ü Solutions (after freeing up disk space)
1. alter system archive log all to 'destination';
2. alter system set LOG_ARCHIVE_DEST_n =

'reopen';
3. alter system archive log stop;

alter system archive log start;
4. Shutdown (possibly requiring ABORT option) and restart

You can avoid the ABORT if you execute the command
shown in option 1 immediately prior to executing a
SHUTDOWN IMMEDIATE command

If the ALTER SYSTEM ARCHIVE LOG ALL command does not restart the automatic archiving
process for you, your next option is to bounce (shutdown and restart) your database. This should also
restart the automatic archiving process.
In some cases, the shutdown will not work unless you specify the ABORT option:
SHUTDOWN ABORT
However, if your ALTER SYSTEM ARCHIVE LOG ALL succeeded in archiving the current online logs
but did not restart the automatic archiving process, the shutdown should not require the ABORT option. In
this situation, you should use the IMMEDIATE option, however, to avoid any further delays in solving the
problem.

50

Build a Clone Database

ü You can make a copy of an existing database
using a few simple steps

ü An OBE (Oracle By Example) course on OTN
explains these steps on UNIX

ü You can find OBEs at http://otn.oracle.com/obe

51

