
Much more inside . . .

Vol. 34, No. 1 · FEBRUARY 2020

Rolling sums
Excerpt from Kim’s upcoming
book.
See page 8.

Problems hiding
behind averages
Performance Monograph No 1
by Cary Millsap.

See page 14.

SQL pretzels
anyone?
Interview with Kim Berg Hansen.
See page 4.

http://www.nocoug.org
http://www.nocoug.org

http://aws.amazon.com/aurora

3The NoCOUG Journal

2020 NoCOUG Board
Andy Sutan

Vice President

Babu Srinivasan
Oracle Liaison

Dan Grant
Exhibitor Coordinator

Eric Hutchinson
Webmaster

Iggy Fernandez
President, Journal Editor

Kamran Rassouli
Social Director

Linda Yang
Member at Large

Manoj Bansal
Conference Chair

Mingyi Wei
Catering Coordinator

Naren Nagtode
Secretary, Treasurer, President Emeritus

Sherry Chen
Catering Coordinator

Tu Le
Speaker Coordinator

Vadim Barilko
Webmaster

Volunteers

Brian Hitchcock
Book Reviewer

Saibabu Devabhaktuni
Board Advisor

Tim Gorman
Board Advisor

Publication Notices and Submission Format

The NoCOUG Journal is published four times a year by the Northern California
Oracle Users Group (NoCOUG) approximately two weeks prior to the quarterly
educational conferences.

Please send your questions, feedback, and submissions to the NoCOUG Journal
editor at journal@nocoug.org.

The submission deadline for each issue is eight weeks prior to the quarterly confer­
ence. Article submissions should be made in Microsoft Word format via email.

Copyright © by the Northern California Oracle Users Group except where other­
wise indicated.

NoCOUG does not warrant the NoCOUG Journal to be error-free.

Interview.. 4

Book Excerpt... 8

Special Feature.. 13

Performance Monograph................................14

Special Feature...21

From the Archive.. 23

Picture Diary.. 26

ADVERTISERS

Amazon.. 2

Quest.. 22

FlashGrid.. 27

MemSQL... 28

Table of Contents

ADVERTISING RATES
The NoCOUG Journal is published quarterly.

	 Size	 Per Issue	 Per Year

	 Quarter Page	 $125	 $400

	 Half Page	 $250	 $800

	 Full Page	 $500	 $1,600

	 Inside Cover	 $750	 $2,400

Personnel recruitment ads are not accepted.

journal@nocoug.org

Professionals at Work

First there are the IT professionals who write for the Journal. A very

special mention goes to Brian Hitchcock, who has written dozens of

book reviews over a 12-year period.

Next, the Journal is professionally copyedited and proofread by veteran copy­

editor Karen Mead of Creative Solutions. Karen polishes phrasing and calls out

misused words (such as “reminiscences” instead of “reminisces”). She dots every

i, crosses every t, checks every quote, and verifies every URL.

Then, the Journal is expertly designed by graphics duo Kenneth Lockerbie and

Richard Repas of San Francisco-based Giraffex.

And, finally, the Journal is printed and shipped to us. This is the 133rd issue

of the NoCOUG Journal. Enjoy! s

http://nocoug.org
http://nocoug.org
mailto:journal@nocoug.org
http://www.giraffex.com
http://www.giraffex.com
https://www.giraffex.com

4 February 2020

I N T E R V I E W

SQL by Example
with Kim Berg Hansen

Kim Berg Hansen

Your book Practical Oracle SQL will be published soon. Yet
Another SQL Book?

I’ve been working with Oracle SQL since 2000, and if some­
one asks me where I learned SQL, the answer is many places:
books by Tom Kyte (my guru) and others, the SQL Reference
Manual (that I use daily), conference presentations by experi­
enced developers, blogs, googling, and much more. But even all
of that would not help if I didn’t simultaneously simply try writ­
ing SQL myself, see where I went wrong, and then try again and
again and again.

One thing I have noticed in my learning process is that almost
all teaching examples are nicely short and sweet in order to fa­
cilitate understanding. This is fine as such, but it also sometimes
means that it can be harder to relate to daily work. Making the
leap from having understood a small example to applying the
same technique in a larger and real context is an acquired skill.
Personally I think I achieved this skill in university, where we
students had to research and learn much more by ourselves as
opposed to the one-way teacher-to-student schooling I had be­
fore entering university.

When I went to work, I had the good fortune of working for
16 years at a retail company where the philosophy was never to
adapt business practice to whatever the software was capable of
but instead always to customize the software to make the daily
business go smarter and smoother. We always went by the phi­
losophy “of course it is possible to solve; we just need to figure
out how.” In this atmosphere I had plenty of practical real tasks
to practice on, trying out SQL and changing it piece by piece
until I had something that solved the task at hand. It was a time
when I improved my SQL daily by using the skills of researching,
finding examples, learning from them, and then applying them
to real tasks.

When I have presented at conferences about some of these
solutions that I developed during those happy years, I have sev­
eral times had audience members approach me afterwards, tell­
ing me that suddenly they saw the light and understood, for

example, how analytic functions could help in their work. Until
then, they had seen it as some SQL extension that was smart and
fancy, but they couldn’t relate it to their own tasks that they had
to solve.

And so it dawned on me that not everybody learns things the
way I do. Quite a few would watch a presentation or read a book
chapter or a blog post on how to use analytic functions to get a
running total of salaries in SCOTT.EMP—but when they got
back to work it didn’t help them to figure out that this technique
actually can help them to create a warehouse picking list by First-
In-First-Out (FIFO) in a single SQL statement. The leap from the
simple SCOTT.EMP example to real life was too great.

The majority of SQL books that I have seen fall into two cat­
egories (grossly oversimplified, I know, but it makes my point):

➤	 Definitive reference guides.
	 Books that try to cover every single bit of syntax in the

SQL language with new editions for every new database
version. Books that potentially can replace the official SQL
Reference Manual, just more user friendly and going about
showing SQL in a way that’s more conducive to learning.

➤	 SQL 101 (and maybe 102 and 103) books.
	 Books that start by assuming you know nothing of SQL

and start with SELECT ‘hello, world’ FROM DUAL. Books
that really teach SQL in a structured way from the basics
and sometimes also move on to somewhat more advanced
topics.

Both categories of books most often use simple examples, just
like presentations and blog posts. A reader can start with a SQL
101–style book and get fairly confident in using basic SQL as it
was in the SQL-92 standard. The reader might then buy a refer-
ence-style book, see some more advanced things, and then get
lost trying to apply the advanced concepts to real life.

What I felt was missing was a book that assumes the reader
already knows SQL basics and is ready to learn something more
advanced than SQL-92 but needs to learn it in a form that relates

“Almost all teaching examples are nicely short and sweet in order
to facilitate understanding. This is fine as such, but it also sometimes

means that it can be harder to relate to daily work. Making the leap from
having understood a small example to applying the same technique

in a larger and real context is an acquired skill.”

5The NoCOUG Journal

to the reader’s daily activities. Unfortunately I see quite a few
developers chugging along with SQL-92 and never progressing
to using analytic functions, let alone row pattern matching and
other modern additions to the SQL language, and I want to push
those developers further into modern SQL.

So having had success with developers understanding more
advanced concepts by presenting about the real solutions I had
developed, I decided to use the same teaching concept in book
form.
Okay, so a different way. Exactly what do you mean?

You’ll find loads of examples, based on a fictitious company
called Good Beer Trading Co. (As a card-carrying member of
Danish Beer Enthusiasts Association I couldn’t resist the tempta­
tion to use beer in my example schema, but you can use the book
even if you don’t drink alcohol—there is no bottle included when
you buy the book . . .) For this company I have created a schema
with tables and data for inventory, orders, purchases, webshop,
and more; all such tables might have been part of the application
of a real company.

In each chapter I have a task as it might have been put to the
application developers of the Good Beer Trading Co; I then show
how to solve that task with SQL, explaining in steps how I create
that SQL, starting small and building on it until I have a working
statement that most often does not fit on a single PowerPoint
slide. The statements I demonstrate are not trivial examples, but
they look more like something a developer might have to per­
sonally develop on the job.
What are some of those tasks?

As I said, all chapters (except Chapter 6) have an objective of
showing a task that is relevant for real application development.
Although the specific examples are shown from the viewpoint of
the fictitious Good Beer Trading Co, the techniques can be ap­
plied to many other applications. The chapters are divided into
three parts based on the SQL technique used to solve the task.

The first part deals with solutions that use a variety of SQL
constructs, covering many techniques: inline view correlation,
set operations, with clause and with clause functions, recursive
subquery factoring and model clause iteration, pivoting and un­
pivoting, as well as splitting and creating delimited text.

Solving tasks with analytic functions is the topic of the second
part. The focus is on demonstrating practical tasks that can be
solved extremely efficiently, walking through using analytic func­
tions for tasks such as top-n questions, warehouse picking with
rolling sums, analyzing activity logs, and two types of forecasting.

Finally, the third part covers using match_recognize not only
for the row pattern matching for which it was designed but also
for tasks that might not at first glance seem appropriate. The
covered tasks include finding up-and-down patterns, grouping
consecutive data, merging date ranges, finding abnormal peaks,
bin fitting, and tree branch calculations.

Why should database developers bother? Can’t they get by with
basic SQL and an ORM framework?

SQL is evolving like any other programming language. The
SQL language you’ll find in the Oracle versions of this millenni­
um includes a whole lot more than SQL-92. Listen to Andy
Mendelsohn talking about multi-model converged database
architecture, and you’ll realize that you can work with relational
data, JSON, XML, NoSQL, and big data—basically you-name-
it—all that you can work with using SQL and PL/SQL.

That’s a much-too-huge topic to cover in a single book. But
even just sticking to the good old relational world, SQL has
grown over the years with functionality that makes it possible to
create much more performant SQL, solving much more complex
problems than SQL-92 can manage.

Take, for example, analytic functions that have been my favor­
ite since I started working with Oracle SQL. I saw a quote (source
unknown) from a conference presentation: “If you write on your
CV that you know SQL, but you do not use analytic functions,
then you are lying.” Personally I would just hate to solve SQL

tasks without having the use of analytic functions— they make it
so much easier when your logic needs data from multiple rows,
which is often the case.

I mentioned earlier the case of a FIFO warehouse picking list.
Suppose you’re the developer and I give you this task:

➤	 You have a set of orderlines from multiple orders that need
to be picked from the warehouse as one batch.

➤	 For each of the products in the orderlines you need to pick
from the locations in the warehouse where the oldest pur­
chased inventory is stored (the First-In-First-Out prin­
ciple).

➤	 The resulting picking list needs to be output in an optimal
driving order, so the operator doesn’t waste time by driv­
ing the picking trolley back and forth in the warehouse.

Given that specification, would you say that you probably
would need to retrieve orderlines and loop over them procedur­
ally, do a query of inventory for each product and find the oldest,

“‘If you write on your CV that
you know SQL, but you do

not use analytic functions, then
you are lying.’ Personally I would

just hate to solve SQL tasks
without having the use of

analytic functions— they make
it so much easier when your logic

needs data from multiple rows,
which is often the case.”

“I see quite a few developers chugging along with SQL-92 and never
progressing to using analytic functions, let alone row pattern matching
and other modern additions to the SQL language, and I want to push

those developers further into modern SQL.”

6 February 2020

and then sort the resultant collection in the desired driving
order?

You have another way?

Yes, that entire logic can be developed in a single SQL state­
ment with analytic functions. Not even a particularly large state­
ment, just 78 lines, but it’s an example that is too large for most
typical books or blog posts. My Chapter 13 consists of stepping
through developing this statement from a smaller statement that
just does the FIFO part on a single order and building it up step
by step adding driving order and batch picking, until at the end
of the chapter you can build basically an entire picking list ap­
plication in just one SQL statement.

This is a great example of putting business logic in your SQL,
rather than just using SQL to pull out data and then applying
logic procedurally. And no framework, no matter how much
they promise you can code great applications without knowing
SQL, can build logic like that. At least I don’t know of a frame­
work that can—but I am very sure that if a framework allowed
you to configure and declare similar logic without SQL, then that
would be more convoluted to use than it would be just to bite the
bullet and learn SQL and be happy.

An example like that with efficient use of analytic functions is
just the tip of the iceberg. Analytic functions have been available
since version 8i or thereabouts, and it has been my go-to solution
ever since whenever I need to develop logic that crosses row
boundaries. But SQL hasn’t stopped evolving since 8i; for exam­
ple, from version 12.2 match_recognize has been added to my
toolbox for cases where even analytic function SQL would be too
convoluted. With analytic functions and match_recognize you
can build quite complex logic in very efficient SQL statements.
The theme of the international NoCOUG SQL challenges is
“pretzels created by someone who is experimenting with hallu-
cinogens.”1 Are your solutions like those pretzels?

Maybe you are under the impression that if SQL is slightly
more complex than a two-table join, then it is only for geniuses
to attempt and you won’t even try it. I assure you this is not the
case.

Expertise comes from practice. Confidence comes from fa­
miliarity. You should just go ahead and write slightly more com­
plex SQL tomorrow, then slightly more the day after, and so on.
Over time it will become as familiar to you as whatever other
language you’ve worked in for years, and you will say to yourself,
“What was I afraid of?”

You need a slightly different mindset when coding SQL: you
think about the whole set of data instead of just handling one row
at a time. But it’s not a mindset that only special minds can
achieve; it’s a mindset everybody can acquire. The requirement is
merely to start practicing; without doing “wax on, wax off,” the
Karate Kid would never have learned to be good at what he did.

And that’s the core reason I wrote the book: I want more de­
velopers to acquire this mindset, and I am confident it will give
developers (who already know a bit of SQL) a jumpstart in their
journey toward really using the power of SQL.

If they end up with the attitude that “of course it is possible to
solve in SQL,” their bosses will be happy because they save a lot
on cloud credits or licenses when the efficient SQL code uses
much less CPU. And the developers will be happier because it is
much more fun really exercising the brain cells to find a good
solution.

Then I will be happy too and can say, “Mission accom­
plished!”

Before making the buying decision, I always check out the au-
thor. We’ve talked a lot about the book and why you wrote it, but
not about you . . .

When I was young in the mid-’80s I originally wanted to work
with electronics, but almost by coincidence I got to try computer
programming. I discovered the programs I wrote worked well—
unlike the electronics projects I soldered that often failed. So that
led to the purchase of a Commodore VIC-20 with 5 kilobytes
RAM and many hours of programming in Commodore Basic,
trying to fit as much code into that small memory as possible.

1	Steven Feuerstein was asked the following question in an interview pub­
lished in the May 2006 issue of the NoCOUG Journal: “SQL is a set-oriented
non-procedural language; i.e., it works on sets and does not specify access
paths. PL/SQL on the other hand is a record-oriented procedural language,
as is very clear from the name. What is the place of a record-oriented proce-
dural language in the relational world?” Steven replied: “Its place is proven:
SQL is not a complete language. Some people can perform seeming miracles
with straight SQL, but the statements can end up looking like pretzels created
by someone who is experimenting with hallucinogens. We need more than
SQL to build our applications, whether it is the implementation of business
rules or application logic. PL/SQL remains the fastest and easiest way to ac-
cess and manipulate data in an Oracle RDBMS, and I am certain it is going
to stay that way for decades.”

“Analytic functions have been available since version 8i or thereabouts, and it
has been my go-to solution ever since whenever I need to develop logic that

crosses row boundaries. But SQL hasn’t stopped evolving since 8i; for
example, from version 12.2 match_recognize has been added to my toolbox

for cases where even analytic function SQL would be too convoluted.”

“Expertise comes from practice.
Confidence comes from familiarity.
You should just go ahead and write

slightly more complex SQL
tomorrow, then slightly more the
day after, and so on. Over time it

will become as familiar to you
as whatever other language

you’ve worked in for years, and
you will say to yourself, ‘What

was I afraid of?’”

7The NoCOUG Journal

It was clear where my talent was, so I abandoned electronics
and went on to study computer science at Odense University, fi­
nancing it with a summer job as sheriff of Legoredo (a western
town within Legoland in Denmark). There I learned program­
ming in Modula-2 and C, but more importantly, I learned to be
methodical both when learning something new and when devel­
oping programs. That was invaluable when I started working for
a consulting company as a developer making customizations for
customers, specifically in the Danish ERP software Concorde
XAL that was the predecessor of Microsoft Dynamics AX. That
software could run on different databases, one of which was
Oracle, so that gave me my first introduction to Oracle SQL and
PL/SQL. Since then I’ve worked extensively with those two lan­
guages, with SQL being closest to my heart.

Book writing is the culmination of my knowledge sharing,
which I do by blogging at my kibeha.dk website, presenting at
various Oracle User Group conferences, and being the SQL quiz­
master at the Oracle Dev Gym at devgym.oracle.com. The last
I enjoy doing, as many developers learn SQL better if a bit of fun
and games is involved. Even experienced people discover new
corners of the SQL language that they hadn’t stumbled upon
before, and several have told me they use the Dev Gym to prac­
tice and prepare for certification exams.

It sounds like your life is centered around SQL. Don’t you have
a life outside SQL?

But of course. A brain needs to recuperate from all the hard
thinking work and doing creative solutions all the time, so I’m
careful to have time where my brain thinks of anything but SQL.

I’m married—we had our 25th anniversary last spring—and
it’s perfect in the sense that my wife enjoys gardening and I enjoy
cooking. She relaxes working with perennials, while I turn off the
SQL side of my brain in the afternoon, plan what to cook, go
grocery shopping, and cook dinner for the both of us. (My brain
is kept just sufficiently occupied to not consciously work on SQL,
so quite often the background processing during dishwashing
suddenly pops up with the answer to a problem that was bugging
me during the day.)

And as I mentioned, I’m also a beer enthusiast. Our associa­
tion has about 9,000 members throughout Denmark, divided
into 50 local chapters. My local chapter meets every other month
for beer tastings and some good food. Also I’ve just barely started

to try to brew my own beer, but it’ll be a while before I gain real
experience in that area.

Most evenings and other free time here and there I will spend
with a good book—preferably science fiction or fantasy. Mostly I
simply enjoy classic sci-fi authors; I’m not keeping much up to
date with new authors. My all-time favorite is Robert Heinlein,
but I also like Spider Robinson, Terry Pratchett, Anne McCaffrey,
Isaac Asimov, Larry Niven, Jerry Pournelle, and many more. I
re-read books many times. Sure, I use my smartphone a good

deal like most do, but I’d rather grab a book from the bookcase
and read a chapter at night instead of browsing social media.

I hope the Journal readers grab your book. Thanks for your
time, Kim.

My pleasure. I hope you and your readers enjoy the book. s

Kim Berg Hansen lives in Middelfart, Denmark. He is a certified
Oracle OCE in SQL and an Oracle ACE director, and speaks at
user group conferences in Europe and the USA. His motivation
comes from peers who say “Now I understand” after his explana-
tions and from end users who “can‘t live without” his application
coding.

“If they end up with the attitude that ‘of course it is possible to solve
in SQL,’ their bosses will be happy because they save a lot on cloud
credits or licenses when the efficient SQL code uses much less CPU.

And the developers will be happier because it is much more fun
really exercising the brain cells to find a good solution.”

“You need a slightly different mindset when coding SQL: you think about the
whole set of data instead of just handling one row at a time. But it’s not a
mindset that only special minds can achieve; it’s a mindset everybody can

acquire. The requirement is merely to start practicing; without doing ‘wax on,
wax off,’ the Karate Kid would never have learned to be good at what he did.”

“[I am] the SQL quizmaster at the
Oracle Dev Gym at devgym.oracle.
com [which] I enjoy doing, as many
developers learn SQL better if a bit
of fun and games is involved. Even
experienced people discover new
corners of the SQL language that

they hadn’t stumbled upon before,
and several have told me they use

the Dev Gym to practice and
prepare for certification exams.”

http://devgym.oracle.com
http://devgym.oracle.com
http://devgym.oracle.com

8 February 2020

B O O K
E X C E R P T

Rolling Sums to Forecast
Reaching Minimums

with Kim Berg Hansen
Kim Berg Hansen

This article is a preview from the upcoming book Practical Oracle
SQL: Mastering the Full Power of Oracle Database by Apress,
March 24, 2020, ISBN 978-1484256169; Copyright © 2020 by Kim
Berg Hansen. Reprinted with permission.

If you have a steady consumption rate it is easy to forecast
how far you can go with that rate; for example, if you know
your car on average drives 20 kilometers per liter of fuel
and it has 30 liters left in the tank, you can simply multiply

to know that you can drive 600 kilometers before you run out of
fuel.

But if the consumption is not steady, you need something else.
If the Good Beer Trading Co sells a particular seasonal Christmas
beer, it is not simply a steady 100 beers sold per month—June
will sell very few of those beers, while December sells hundreds.
For such a case you estimate (perhaps using the techniques of the
previous chapter) what you think you are going to sell and store
it as a forecast or sales budget.

Once you have forecast that you are going to sell 150 in Janu­
ary, 100 in February, 250 in March, etc., you need to figure out
that the 400 you have in stock in your inventory will dwindle to
250 by end of January and to 150 by end of February—and be
sold out a little later than the middle of March. Figuring this out
is the topic of this chapter.

Inventory, budget and order
In the Good Beer Trading Co example, I’m going to demon­

strate the case of forecasting when the inventory reaches zero (or
a minimum), given that I know how many beers are in stock
(waiting to be picked from the inventory) and how many beers
are budgeted to be sold (assumed to be picked at some point.)

I’ll use month as the time granularity, budgeting sales quanti­
ties per month. For this demonstration purpose I don’t need to
go to weekly or daily data, but you can easily adapt the methods
to finer time granularity if you need it. I will use the data in the
tables shown in Figure 16-1.

From table inventory I know what quantity of each beer is
in stock; table monthly_budget shows me the quantity of each
beer that is expected to sell per month; and table orderlines
reveals how much has been ordered (but not yet picked and
therefore not yet taken from the stock). I’ll get back to table
product_minimums later in the chapter.

You’ll notice the inventory table contains quantities per lo­
cation (I used the table in the FIFO picking in chapter 13), but
for this purpose I just need the total quantity in stock per beer.

To make that easier, I create the view inventory_totals in
Listing 16-1 aggregating the inventory per beer:
Listing 16-1. View of total inventory per product

SQL> create or replace view inventory_totals
 2 as
 3 select
 4 i.product_id
 5 , sum(i.qty) as qty
 6 from inventory i
 7 group by i.product_id;

View INVENTORY_TOTALS created.

Similarly, for the quantities in stock I do not need specific
order lines; I just need to include how many of each beer each
month, so I aggregate those figures in view monthly_orders in
Listing 16-2:

Listing 16-2. View of monthly order totals per product

SQL> create or replace view monthly_orders
 2 as
 3 select
 4 ol.product_id
 5 , trunc(o.ordered, 'MM') as mth
 6 , sum(ol.qty) as qty
 7 from orders o

Figure 16-1. The tables used in the examples within this chapter

9The NoCOUG Journal

 8 join orderlines ol
 9 on ol.order_id = o.id
 10 group by ol.product_id, trunc(o.ordered, 'MM');

View MONTHLY_ORDERS created.

Those are the tables and views I’m going to be using; now I’ll
show the data in them.

The data
I’ll use two beers for the examples of this chapter: Der Helle

Kumpel and Hazy Pink Cloud. They represent the total inven­
tory shown in Listing 16-3:
Listing 16-3. The inventory totals for two products

SQL> select it.product_id, p.name, it.qty
 2 from inventory_totals it
 3 join products p
 4 on p.id = it.product_id
 5 where product_id in (6520, 6600)
 6 order by product_id;

PRODUCT_ID NAME QTY
6520 Der Helle Kumpel 400
6600 Hazy Pink Cloud 100

This is the total beer in stock as of January 1, 2019. Then I
have a monthly sales budget for the year 2019 (Listing 16-4):
Listing 16-4. The 2019 monthly budget for the two beers

SQL> select mb.product_id, mb.mth, mb.qty
 2 from monthly_budget mb
 3 where mb.product_id in (6520, 6600)
 4 and mb.mth >= date '2019-01-01'
 5 order by mb.product_id, mb.mth;

PRODUCT_ID MTH QTY
6520 2019-01-01 45
6520 2019-02-01 45
6520 2019-03-01 50
...
6520 2019-10-01 50
6520 2019-11-01 40
6520 2019-12-01 40
6600 2019-01-01 20
6600 2019-02-01 20
6600 2019-03-01 20
...
6600 2019-10-01 20
6600 2019-11-01 20
6600 2019-12-01 20

24 rows selected.

Product 6520 is expected to sell a bit more in the summer
months, while product 6600 is expected to sell a steady 20 per
month.

But I don’t just have the expected quantities; in Listing 16-5 I
also have the quantities that have already been ordered in the
first months of 2019:
Listing 16-5. The current monthly order quantities

SQL> select mo.product_id, mo.mth, mo.qty
 2 from monthly_orders mo
 3 where mo.product_id in (6520, 6600)
 4 order by mo.product_id, mo.mth;

PRODUCT_ID MTH QTY
6520 2019-01-01 260
6520 2019-02-01 40
6600 2019-01-01 16
6600 2019-02-01 40

The thing to note here is that in January product 6520 has
been ordered much more than was expected.

Given these data, I’ll now make some SQL to find out when
we run out of beers for those two products.

Accumulating until zero
A use of analytic functions that is useful in many cases is the

rolling (accumulated) sum that I’ve shown before. In Listing 16-6
I use it again:
Listing 16-6. Accumulating quantities

SQL> select
 2 mb.product_id as p_id, mb.mth
 3 , mb.qty b_qty, mo.qty o_qty
 4 , greatest(mb.qty, nvl(mo.qty, 0)) as qty
 5 , sum(greatest(mb.qty, nvl(mo.qty, 0))) over (
 6 partition by mb.product_id
 7 order by mb.mth
 8 rows between unbounded preceding and current row
 9) as acc_qty
 10 from monthly_budget mb
 11 left outer join monthly_orders mo
 12 on mo.product_id = mb.product_id
 13 and mo.mth = mb.mth
 14 where mb.product_id in (6520, 6600)
 15 and mb.mth >= date '2019-01-01'
 16 order by mb.product_id, mb.mth;

In line 4 I calculate the monthly quantity as whichever is the
greatest of either the budgeted quantity or the ordered quantity.
In the output below you see in the January entry for product
6520 that o_qty is the greatest, making qty 260, while January
for product 6600 has b_qty as the greatest, making qty 20.

The idea is that if the ordered quantity is the smallest, there
haven’t yet been orders to match the budget, but it’s still expected
to rise until the budget is reached. But when the ordered quan­
tity is the greatest, I know the budget has been surpassed, so I
don’t expect it to become greater yet.

So this quantity is then what I accumulate with the analytic
sum in lines 5-9, so I end up with column acc_qty, which shows
me, accumulated, how much I expect to pick from the inventory:

P_ID MTH B_QTY O_QTY QTY ACC_QTY
6520 2019-01-01 45 260 260 260
6520 2019-02-01 45 40 45 305
6520 2019-03-01 50 50 355
...
6520 2019-11-01 40 40 775
6520 2019-12-01 40 40 815
6600 2019-01-01 20 16 20 20
6600 2019-02-01 20 40 40 60
6600 2019-03-01 20 20 80
...
6600 2019-11-01 20 20 240
6600 2019-12-01 20 20 260

In Listing 16-7 I use this accumulated quantity to calculate the
expected inventory for each month (if I don’t restock along the
way).
Listing 16-7. Dwindling inventory

SQL> select
 2 mb.product_id as p_id, mb.mth
 3 , greatest(mb.qty, nvl(mo.qty, 0)) as qty
 4 , greatest(
 5 it.qty - nvl(sum(
 6 greatest(mb.qty, nvl(mo.qty, 0))
 7) over (
 8 partition by mb.product_id
 9 order by mb.mth

10 February 2020

 10 rows between unbounded preceding and 1 preceding
 11), 0)
 12 , 0
 13) as inv_begin
 14 , greatest(
 15 it.qty - sum(
 16 greatest(mb.qty, nvl(mo.qty, 0))
 17) over (
 18 partition by mb.product_id
 19 order by mb.mth
 20 rows between unbounded preceding and current row
 21)
 22 , 0
 23) as inv_end
 24 from monthly_budget mb
 25 left outer join monthly_orders mo
 26 on mo.product_id = mb.product_id
 27 and mo.mth = mb.mth
 28 join inventory_totals it
 29 on it.product_id = mb.product_id
 30 where mb.product_id in (6520, 6600)
 31 and mb.mth >= date '2019-01-01'
 32 order by mb.product_id, mb.mth;

Lines 4-13 calculate the quantity in stock at the beginning of
the month, while lines 14-23 calculate how much was available at
the end of the month.

P_ID MTH QTY INV_BEGIN INV_END
6520 2019-01-01 260 400 140
6520 2019-02-01 45 140 95
6520 2019-03-01 50 95 45
6520 2019-04-01 50 45 0
6520 2019-05-01 55 0 0
...
6600 2019-01-01 20 100 80
6600 2019-02-01 40 80 40
6600 2019-03-01 20 40 20
6600 2019-04-01 20 20 0
6600 2019-05-01 20 0 0
...

You see how the inventory dwindles until it reaches zero. As I
use month for time granularity, in principle I can only state that
the inventory will reach zero at some point during that month.
But if I assume that the budgeted sales will be evenly distributed
throughout the month, I can also make a guesstimation in Listing
16-8 of which day that zero will be reached:
Listing 16-8. Estimating when zero is reached

SQL> select
 2 product_id as p_id, mth, inv_begin, inv_end
 3 , trunc(
 4 mth + numtodsinterval(
 5 (add_months(mth, 1) - 1 - mth) * inv_begin / qty
 6 , 'day'
 7)
 8) as zero_day
 9 from (
...
 41)
 42 where inv_begin > 0 and inv_end = 0
 43 order by product_id;

I wrap Listing 16-7 in an inline view and use inv_begin /
qty in line 5 to figure out how large a fraction of the estimated

monthly sales can be fulfilled by the inventory at hand at the
beginning of the month. When I assume evenly distributed sales,
this is then the fraction of the number of days in the month that
I have sufficient stock for.

Filtering in line 42 gives me as output just the rows where the
inventory becomes zero:

P_ID MTH INV_BEGIN INV_END ZERO_DAY
6520 2019-04-01 45 0 2019-04-27
6600 2019-04-01 20 0 2019-04-30

In reality, however, I wouldn’t let the inventory reach zero. I’d
set up a minimum quantity that I mustn’t go below as a buffer in
case I underestimated sales, and every time I get to the minimum
quantity I must buy more beer and restock the inventory.

Restocking when minimum reached
In table product_minimums I have parameters for the inven­

tory handling of each product. Listing 16-9 shows the table con­
tent for the two beers I use for demonstration:
Listing 16-9. Product minimum restocking parameters

SQL> select product_id, qty_minimum, qty_purchase
 2 from product_minimums pm
 3 where pm.product_id in (6520, 6600)
 4 order by pm.product_id;

Column qty_minimum is my inventory buffer; I plan that the
inventory should never get below this. Column qty_purchase
is the number of beers I buy every time I restock the inventory.

PRODUCT_ID QTY_MINIMUM QTY_PURCHASE
6520 100 400
6600 30 100

With this I am ready to write SQL that can show me when I
need to purchase more beer and restock throughout 2019.

This is not simply done with analytic functions, since I cannot
use the result of an analytic function inside the analytic function
itself to add more quantity. This would mean an unsupported
type of recursive function call, so it cannot be done. But I can do
it with recursive subquery factoring instead of analytic functions,
as shown in Listing 16-10:

Listing 16-10. Restocking when a minimum is reached

SQL> with mb_recur(
 2 product_id, mth, qty, inv_begin, date_purch
 3 , p_qty, inv_end, qty_minimum, qty_purchase
 4) as (
 5 select
 6 it.product_id
 7 , date '2018-12-01' as mth
 8 , 0 as qty
 9 , 0 as inv_begin
 10 , cast(null as date) as date_purch
 11 , 0 as p_qty

“If you have a steady consumption rate it is easy to forecast
how far you can go with that rate; for example, if you know your car
on average drives 20 kilometers per liter of fuel and it has 30 liters

left in the tank, you can simply multiply to know that you can
drive 600 kilometers before you run out of fuel.”

11The NoCOUG Journal

 12 , it.qty as inv_end
 13 , pm.qty_minimum
 14 , pm.qty_purchase
 15 from inventory_totals it
 16 join product_minimums pm
 17 on pm.product_id = it.product_id
 18 where it.product_id in (6520, 6600)
 19 union all
 20 select
 21 mb.product_id
 22 , mb.mth
 23 , greatest(mb.qty, nvl(mo.qty, 0)) as qty
 24 , mbr.inv_end as inv_begin
 25 , case
 26 when mbr.inv_end - greatest(mb.qty, nvl(mo.qty, 0))
 27 < mbr.qty_minimum
 28 then
 29 trunc(
 30 mb.mth
 31 + numtodsinterval(
 32 (add_months(mb.mth, 1) - 1 - mb.mth)
 33 * (mbr.inv_end - mbr.qty_minimum)
 34 / mb.qty
 35 , 'day'
 36)
 37)
 38 end as date_purch
 39 , case
 40 when mbr.inv_end - greatest(mb.qty, nvl(mo.qty, 0))
 41 < mbr.qty_minimum
 42 then mbr.qty_purchase
 43 end as p_qty
 44 , mbr.inv_end - greatest(mb.qty, nvl(mo.qty, 0))
 45 + case
 46 when mbr.inv_end - greatest(mb.qty, nvl(mo.qty, 0))
 47 < mbr.qty_minimum
 48 then mbr.qty_purchase
 49 else 0
 50 end as inv_end
 51 , mbr.qty_minimum
 52 , mbr.qty_purchase
 53 from mb_recur mbr
 54 join monthly_budget mb
 55 on mb.product_id = mbr.product_id
 56 and mb.mth = add_months(mbr.mth, 1)
 57 left outer join monthly_orders mo
 58 on mo.product_id = mb.product_id
 59 and mo.mth = mb.mth
 60)
 61 select
 62 product_id as p_id, mth, qty, inv_begin
 63 , date_purch, p_qty, inv_end
 64 from mb_recur
 65 where mth >= date '2019-01-01'
 66 and p_qty is not null
 67 order by product_id, mth;

I start in lines 5-18 by setting up one row per product contain­
ing the beginning inventory along with the parameters for mini­
mum quantity and how much to purchase. I set this row as being
in December 2018 with the inventory in the inv_end column—
that way it will function as a “primer” row for the recursive part
of the query in lines 20-59.

In the recursive part I do:

➤	 Join to the monthly budget for the next month in line 56.
The first iteration here will find January 2019 (since my
“primer” row was December 2018); then each iteration
will find the next month until there are no more budget
rows.

➤	 The inv_begin of this next month in the iteration is then
equal to the inv_end of the previous month, so that’s a
simple assignment in line 24.

➤	 Lines 44-50 calculate the inv_end, which is the beginning
inventory (previous inv_end) minus the quantity picked

that month plus a possible restocking. If the beginning
inventory minus the quantity would become less than the
minimum, I add the quantity I will be purchasing for re­
stocking.

➤	 To show on the output how much I need to purchase for
restocking, I separate this case structure out in lines 39-
43.

➤	 In lines 25-28 I use the same case condition to calculate
an estimated date of the month when restocking by pur­
chasing more beer should take place.

Line 65 removes the “primer” rows from the output (they are
not interesting), and line 66 gives me just those months when I
need to restock:

P_ID MTH QTY INV_BEGIN DATE_PURCH P_QTY INV_END
6520 2019-02-01 45 140 2019-02-25 400 495
6520 2019-10-01 50 115 2019-10-10 400 465
6600 2019-03-01 20 40 2019-03-16 100 120
6600 2019-08-01 20 40 2019-08-16 100 120

I am now able to plan when I need to purchase more beer to
restock the inventory.

In Listing 16-10 I used recursive subquery factoring. The way
I did it means that for the budget and orders there will be a series
of repeated small lookups to the tables for each month. Depending
on circumstances this might be perfectly fine, but in other cases
it could be bad for performance.

Listing 16-11 shows an alternative method of recursion (or,
rather, iteration) with the model clause instead, where a different
access plan can be used by the optimizer:

Listing 16-11. Restocking with model clause

SQL> select
 2 product_id as p_id, mth, qty, inv_begin
 3 , date_purch, p_qty, inv_end
 4 from (
 5 select *
 6 from monthly_budget mb
 7 left outer join monthly_orders mo

“But if the consumption is not
steady, you need something else. If
the Good Beer Trading Co sells a

particular seasonal Christmas beer,
it is not simply a steady 100 beers

sold per month—June will sell very
few of those beers, while December
sells hundreds. For such a case you

estimate (perhaps using the
techniques of the previous

chapter) what you think you are
going to sell and store it as a

forecast or sales budget.”

12 February 2020

 8 on mo.product_id = mb.product_id
 9 and mo.mth = mb.mth
 10 join inventory_totals it
 11 on it.product_id = mb.product_id
 12 join product_minimums pm
 13 on pm.product_id = mb.product_id
 14 where mb.product_id in (6520, 6600)
 15 and mb.mth >= date '2019-01-01'
 16 model
 17 partition by (mb.product_id)
 18 dimension by (
 19 row_number() over (
 20 partition by mb.product_id order by mb.mth
 21) - 1 as rn
 22)
 23 measures (
 24 mb.mth
 25 , greatest(mb.qty, nvl(mo.qty, 0)) as qty
 26 , 0 as inv_begin
 27 , cast(null as date) as date_purch
 28 , 0 as p_qty
 29 , 0 as inv_end
 30 , it.qty as inv_orig
 31 , pm.qty_minimum
 32 , pm.qty_purchase
 33)
 34 rules sequential order iterate (12) (
 35 inv_begin[iteration_number]
 36 = nvl(inv_end[iteration_number-1], inv_orig[cv()])
 37 , p_qty[iteration_number]
 38 = case
 39 when inv_begin[cv()] - qty[cv()]
 40 < qty_minimum[cv()]
 41 then qty_purchase[cv()]
 42 end
 43 , date_purch[iteration_number]
 44 = case
 45 when p_qty[cv()] is not null
 46 then
 47 trunc(
 48 mth[cv()]
 49 + numtodsinterval(
 50 (add_months(mth[cv()], 1) - 1 - mth[cv()])
 51 * (inv_begin[cv()] - qty_minimum[cv()])
 52 / qty[cv()]
 53 , 'day'
 54)
 55)
 56 end
 57 , inv_end[iteration_number]
 58 = inv_begin[cv()] + nvl(p_qty[cv()], 0) - qty[cv()]
 59)
 60)
 61 where p_qty is not null
 62 order by product_id, mth;

With this method I do not need “primer” rows and repeated
monthly lookups. Instead I grab all the data I need in one go in
lines 5-15, rather as if I were using analytic functions. And then
I can use model:

➤	 Lines 19-21 create a consecutive numbering that I can use
as dimension (“index”) in my measures. I deliberately
make it have the values 0 to 11 instead of 1 to 12, because
that fits how iteration_number is filled when using it­
eration.

➤	 In the measures in line 24-32 I set up the “variables” I
need to work with.

➤	 In the rules clause I can then perform all my calculations.
In line 34 I specify that I want my calculations to be per­
formed in the order I have typed them, and they should be
performed 12 times. This means that within each of the 12
iterations I can use the pseudocolumn iteration_num-
ber, and it will increase from 0 to 11.

➤	 The first rule to be executed is lines 35-36, where I set
inv_begin to the inv_end of the previous month (in the
first iteration this will be null, so with nvl I set it to the
original inventory in the first month).

➤	 If the inventory minus the quantity is less than the mini­
mum, then in lines 37-42 I set 11.91 pt to the quantity I
need to purchase.

➤	 If I did find a p_qty (line 45), the rule in lines 43-56 cal­
culates the day I need to purchase and restock.

➤	 Lines 57-68 calculate the inv_end by using the other mea­
sures.

The 12 iterations and calculations are quite similar to what I
did in the recursive subquery factoring, except that I use mea­
sures indexed by a dimension where the data in those measures
have all been filled initially before I start iterating and calculat­
ing.

This method will for some cases enable more efficient access
of the tables—but at the cost of using more memory to keep all
the data and work with it in the model clause (potentially need­
ing to spill some to disk if you have huge amounts of data here).
Whether Listing 16-10 or 16-11 is the best will depend on the
case. You’ll need to test the methods yourself.

Lessons learned
Analytic functions are extremely useful and can solve a lot of

things, including rolling sums to find when you reach some
minimum. But they cannot do everything, so in this chapter I
showed you a mix of:

➤	 Subtracting a rolling sum from a starting figure to dis­
cover when a minimum (or zero) has been reached.

➤	 Using recursive subquery to repeatedly replenish the
dwindling figure whenever the minimum has been
reached.

➤	 Using model clause to accomplish the same with an alter­
native data access plan.

This highly functional mix of techniques should help you
solve similar cases in the future. s

Copyright © 2020, Kim Berg Hansen

“Once you have forecast that you are going to sell 150 in January, 100 in
February, 250 in March, etc., you need to figure out that the 400 you have in
stock in your inventory will dwindle to 250 by end of January and to 150 by

end of February—and be sold out a little later than the middle of March.
Figuring this out is the topic of this chapter.”

13The NoCOUG Journal

S P E C I A L
F E AT U R E

The use of Amazon Elastic Compute Cloud (Amazon
EC2) in the Amazon Web Services (AWS) Cloud pro­
vides IT organizations with the flexibility and elastic­
ity that are not available in the traditional data center.

With AWS it is possible to bring new enterprise applications
online in hours instead of months.

Ensuring high availability of backend relational databases is a
critical part of the cloud strategy—whether it is a lift-and-shift
migration or a green-field deployment of mission-critical appli­
cations. FlashGrid SkyCluster is an engineered cloud system
designed for database high availability. SkyCluster is delivered
as a fully integrated infrastructure-as-code template that can be
customized and deployed to an AWS EC2 account with a few
mouse clicks. Key components of FlashGrid SkyCluster for AWS
include:

➤	 Amazon EC2 VM instances

➤	 Amazon EBS and/or local SSD storage

➤	 FlashGrid Storage Fabric software

➤	 FlashGrid Cloud Area Network software

➤	 Oracle Grid Infrastructure software

➤	 Oracle RAC database engine

By leveraging the proven Oracle RAC database engine
FlashGrid SkyCluster enables the following use cases:

➤	 Lift-and-shift migration of existing Oracle RAC databases
to AWS

➤	 Migration of existing Oracle databases from high-end on-
premises servers to AWS without reducing availability
SLAs

➤	 Design of new mission-critical applications for the cloud
based on the industry-proven and widely supported data­
base engine.

This paper provides an architectural overview of FlashGrid
SkyCluster and can be used for planning and designing high-
availability database deployments on Amazon EC2.

Why Oracle RAC Database Engine
Oracle RAC provides an advanced technology for database

high availability. Many organizations use Oracle RAC for run­

Oracle RAC on
Amazon EC2 Enabled by

FlashGrid SkyCluster
with Artem Danielov

Artem Danielov

FlashGrid Cloud Area Network

Availability Zone A

Oracle ASM Cluster

DB instance 1

FlashGrid Storage Fabric: local drives shared between nodes

DB instance 2

Cloud VM 2 Cloud VM Q

GRID-Q DATA-Q

EBS volumes or local SSDs Small EBS volumes
DATA-2 GRID-2

Cloud VM 1

EBS volumes or local SSDs
DATA-1 GRID-1

Figure 1. Two RAC database nodes in the same availability zone

ning their mission-critical applications, including most financial
institutions and telecom operators where high availability and
data integrity are of paramount importance.

Oracle RAC is an active-active distributed architecture with
shared database storage. The shared storage plays a central role
in enabling automatic failover, zero data loss, and 100% data
consistency, and in preventing application downtime. These HA
capabilities minimize outages due to unexpected failures, as well
as during planned maintenance.

Oracle RAC technology is available for both large-scale and
entry-level deployments. Oracle RAC Standard Edition 2 pro­
vides a very cost-efficient alternative to open-source databases
while ensuring the same level of high availability that the
Enterprise Edition customers enjoy.

Supported Cluster Configurations
FlashGrid SkyCluster enables a variety of RAC cluster con­

figurations on Amazon EC2. Two or three node clusters are
recommended in most cases. Clusters with four or more nodes
can be used for extra HA or performance. It is possible to have
clusters with more than four nodes containing several 2- or
3-node database sub-clusters. It is also possible to use SkyCluster
for running single-instance databases with automatic failover.
Nodes of a cluster can be in one availability zone or can be spread
across availability zones.

Configurations with Two RAC Database Nodes
Configurations with two RAC database nodes have two-way

data mirroring using normal redundancy ASM disk groups. An
additional EC2 instance is required to host quorum disks. Such a
cluster can tolerate the loss of any one node without database
downtime. See Figure 1.

(continued on page 16)

14 February 2020

performance
monograph

Method RTM

 Oracle® Performance Monograph Series 2019-10-09T10:31

The way you look at your system
can block you from understanding
your performance problems.

Many Oracle technologists don’t
know how to answer the most
fundamental question about
performance: “How does a given
program spend its time?”

Tracing explains how a program
spends its time. This enables you to
find wasted time, no matter where it
occurs in your technology stack.

Method R Workbench makes it easy
to work with trace data, even when
you have thousands of trace files.

The ability to measure the response
times of your business’s more
important programs helps you solve
more problems, more efficiently.

How do you solve production performance
problems? The method you use may be
structurally incapable of helping you find certain
types of performance problems. Changing how
you look at your system makes all the difference.

by Cary Millsap

Solving the Unsolvable
Performance Problem

Method RTM

 Oracle® Performance Monograph № 1

Problem
We meet people all the time who have
suffered a particular performance problem
for months, or even years. The people we
work with are plenty smart and plenty
motivated. Most of them have spent loads
of money on hardware upgrades and con-
sulting assistance. How can their problems
remain unsolved for so long?

Most technologists view a computer
system from the supply perspective. They
measure the system’s internal resources
and seek patterns that might imply bad
behavior. Unfortunately, many perfor-
mance problems are invisible to this
method. However, the same problems are
easy to find when you view the system
from the demand perspective.

Plan
You can solve more problems and waste
less time when you stop looking at a
system as a collection of resources and
start looking at it as a collection of user
experiences. For example, imagine that your
business tells you that BalanceInquiry is too
slow. Then your success will be measured
by how much you improve the response
time of BalanceInquiry. No other metric

matters. Your mission, then, begins with
answering one critical question:

How does BalanceInquiry spend its time?

The problem is, tools like AWR and Oracle
Enterprise Manager don’t answer that
question. It’s even worse than it sounds:
those tools can actually weaken your
understanding of what your programs are
really doing. The performance ideas your
tools inspire may actually be the cause of
your suffering.

Analysis
You can answer the big question—“How
does my program spend its time?”—by
representing a program’s duration in
the same quantity-and-price format you
would expect on an invoice or a restau-
rant receipt. This type of report is called a
profile.

A profile’s bottom line shows the dura-
tion that the person who ran the program
actually felt, and the durations in the table
sum to the bottom line. The format makes
it clear that there are only two possible
root causes for any performance problem:
(a) some call count (quantity) is too high,
or (b) some call duration (price) is too high.

15The NoCOUG Journal

Method RTM

 Oracle® Performance Monograph Series

© 2019 Method R Corporation.

Method R, Method R Workbench, and Method R Trace and their respective logos
are trademarks of Method R Corporation. Oracle is a registered trademark of Oracle
and/or its affiliates. Other names may be trademarks of their respective owners.

Method RTM

method-r.com
info@method-r.com

Solution
You can’t create a profile like this for an
Oracle application program using AWR
(or even ASH) data. But Oracle does
provide the information you need to create
a profile with its extended SQL trace feature.

Tracing is easy, but it can generate a lot of
data. With our Method R Workbench, you
can profile individual user experiences
even if you have thousands of trace files.
The result: a method for solving problems
you wouldn’t have solved any other way.

Example
A wealth management application has
had performance problems for a year. The
BalanceInquiry feature is normally almost
instantaneous, but several times each day,
it consumes 20 s (seconds) or more. The
behavior is eroding customer faith in the
application.

The application isn’t designed for easy
tracing, so we trace the whole system for
an hour. We use Method R Workbench
to find the 20 s BalanceInquiry execution. Its
profile reveals that 19.8 s is consumed by a
single log file sync call.

Further investigation using information
that is available only in trace files reveals
that this specific log file sync call was
blocked by a log file parallel write call being
executed at the same time by the Oracle
LGWR process. Other users were similarly
blocked by the same write call.

We found this problem within 30 minutes
of receiving our first batch of trace files.
How could it have evaded detection for a

year? It’s because the
“average” log file sync
call isn’t a problem.
AWR shows that
the average log file
sync duration on this
system is only 0.025 s.

In hindsight, of
course you can see in
v$event_histogram that
log file sync calls do
take 19+ s sometimes.
But the team didn’t
act on that informa-
tion because log file

sync was unremarkable—v$event_histogram
shows fifty other call types that behave the
same way. Even if someone had proposed
log file sync as BalanceInquiry’s problem, the
organization probably wouldn’t have had
the resolve to fix it, because there was no
cause-effect link to justify the cost.

…And so the intermittent BalanceInquiry
problem persisted for a year. Before tracing,
there were hundreds of possible root
causes, none provable or disprovable with
aggregated data. But after tracing, there is
no doubt: log file sync (and thus log file parallel
write) is the definite cause of the problem.

Method
This is a story we repeat over and over:
intractable problem; trace it (trace every-
thing if we have to, and sift through tens
of thousands of trace files in just a few
minutes with Method R Workbench);
profile the interesting user experience;
now we know where the wasted time goes.

 » In an airport management system expe-
riencing application timeouts, trace files
revealed a row lock held for ten seconds
because of an intermittent disk latency
problem. Nothing in the system-wide
statistics implicated either locking or
disk I/O as a diagnostic priority.

 » In a global convenience store’s test
kitchen where a simple ingredient
search took two minutes on a $6,000,000
computer, trace files revealed a badly
chosen Oracle parameter value and an
application design mistake. Neither
problem presented symptoms visible in
system-wide statistics.

 » In a professional society that had just
moved to the cloud, trace files revealed
response times dominated by now-lon-
ger network latencies. Luckily, a bad but
easily fixable coding habit was causing a
lot of unnecessary network round trips.
Their Oracle monitoring tools, like most,
discard network I/O call data.

 » In a GPS location monitoring applica-
tion that intermittently overwhelmed its
CPU capacity, trace files revealed a bad
coding habit of dynamically generating
and parsing thousands of unique SQL
statements per hour. Monitoring tools
showed the bad practice but underval-
ued the impact.

 » In a finance management system that
overran its nightly batch window, trace
files revealed the problem to be not an
Oracle Database problem at all, but a
suboptimally programmed third-party
application running between specific
pairs of SQL statements. Monitoring
tools did report the database as mostly
idle but provided insufficient informa-
tion to help solve the problem.

Everywhere we go, we find problems
hiding behind averages. The symptoms
vary from one system to the next, but
the same method works for all of them:
you answer the question, “How does my
program spend its time?” The answer
begins with tracing.

Technology
Method R Workbench is easy-to-use,
high-precision Oracle time measurement
software for software development, code
reviews, performance tests, concept
proofs, hardware and software evalu-
ations, upgrades, troubleshooting, and
more—for Oracle developers, DBAs, and
decision-makers in every phase of the soft-
ware life cycle. The sifting and profiling
operations described in this monograph
are standard product features.

9Workbench
Method RTM

Subroutine
Duration
(seconds) Calls

Mean
duration
per call

(seconds)

Max
duration
per call

(seconds)
db file parallel read 15.624 3 5.208 5.407
waiting for CPU 13.844 21 0.659 13.657
CPU: EXEC dbcalls 0.261 8 0.032 0.245
11 others 0.274 4,170 0.000 0.000
Total (14) 30.003 4,202 0.003 13.657

A profile represents a program’s duration as a table of quantities
(calls) and prices (durations). It’s an invoice for response time.

16 February 2020

In configurations where local NVMe SSDs are used instead of
EBS volumes, high-redundancy ASM disk groups may be used to
provide an extra layer of data protection. In such cases the third
node is configured as a storage node with NVMe SSDs or EBS
volumes instead of the quorum node.

Configurations with Three RAC Database Nodes
Configurations with three RAC database nodes have three-

way data mirroring using high-redundancy ASM disk groups.
Two additional EC2 instances are required to host quorum disks.
Such a cluster can tolerate the loss of any two nodes without
database downtime. See Figure 2.

Same Availability Zone vs. Separate Availability Zones
Amazon Web Services consists of multiple independent

Regions. Each Region is partitioned into several Availability
Zones. Availability Zones consist of one or more discrete data
centers, each with redundant power, networking, and connectiv­
ity, housed in separate facilities. Availability Zones are physically
separate, such that even extremely uncommon disasters such as
fires, tornados, or flooding would only affect a single Availability
Zone.

Although Availability Zones within a Region are geographi­
cally isolated from each other, they have direct low-latency net­
work connectivity between them. The network latency between
Availability Zones is generally lower than 1 ms. This makes the
inter-AZ deployments compliant with the extended-distance
RAC guidelines.

Placing all nodes in one Availability Zone provides the best
performance for write-intensive applications by ensuring net­
work proximity between the nodes. However, in the unlikely
event of an entire Availability Zone failure, the cluster will expe­
rience downtime.

Placing each node in a separate Availability Zone helps
avoid downtime, even when an entire Availability Zone experi­
ences a failure. The trade-off is a somewhat higher network
latency, which may reduce write performance. Note that the
read performance is not affected because all reads are served
locally.

If placing nodes in separate Availability Zones, using a Region
with at least three Availability Zones is generally required. See
Figure 3. The current number of Availability Zones for each Re­
gion can be found at https://aws.amazon.com/about-aws/global-
infrastructure/. It is possible to deploy a 2-node RAC cluster
in a Region with only two Availability Zones. However, in such
a case the quorum server must be located in a different Region
or in a data center with VPN connection to AWS, in order to
prevent network partitioning scenarios. This configuration is
beyond the scope of this article; to learn more, contact
FlashGrid.

Three RAC Database Nodes Across Availability Zones
Most of the AWS regions are limited to three Availability

Zones. Because of this, placing the additional quorum nodes in
separate Availability Zones may not be possible. However, with
three RAC nodes, placing the quorum nodes in the same
Availability Zones as the RAC nodes can still achieve most of the
expected HA capabilities. Such a cluster can tolerate the loss of
any two nodes or any one Availability Zone without database
downtime. Note, however, that the simultaneous loss of two
Availability Zones will cause database downtime. See Figure 4.

Four or More RAC Database Nodes Across Availability
Zones

It is possible to configure clusters with four or more nodes
across availability zones, with two or more database nodes per
Availability Zone. The database nodes are spread across two
Availability Zones. The third Availability Zone is used for the
quorum node. Such a cluster can tolerate the loss of an entire
Availability Zone. In addition, it allows HA within each
Availability Zone, which helps with application HA design. See
Figure 5.

FlashGrid SkyCluster Architecture Highlights

➤	 Database clusters are delivered as Infrastructure-as-Code
templates for automated and repeatable deployments.

➤	 FlashGrid Cloud Area Network™ (CLAN) software enables
high-speed overlay networks with advanced capabilities
for HA and performance management.

FlashGrid Cloud Area Network

Availability Zone A

Cloud VM 1

DB instance 1

FlashGrid Storage Fabric : local drives shared between nodes

EBS volumes or local SSDs

DB instance 2

Cloud VM 2 Cloud VM 3

DB instance 3

Oracle ASM Cluster

DATA-1

Cloud VM Q1

GRID-Q1 DATA-Q1

Cloud VM Q2

GRID-Q2 DATA-Q2

EBS volumes or local SSDs EBS volumes or local SSDs Small EBS volumes Small EBS volumes
GRID-1 DATA-2 GRID-2 DATA-3 GRID-3

Figure 2. Three RAC database nodes in the same availability zone

FlashGrid Cloud Area Network

Availability Zone B Availability Zone A

Oracle ASM Cluster

DB instance 1

Availability Zone C

FlashGrid Storage Fabric: local drives shared between nodes

DB instance 2

Cloud VM 2 Cloud VM Q

GRID-Q DATA-Q

EBS volumes or local SSDs Small EBS volumes
DATA-2 GRID-2

Cloud VM 1

EBS volumes or local SSDs
DATA-1 GRID-1

Figure 3. Two RAC database nodes in separate availability zones

FlashGrid Cloud Area Network

Availability Zone B Availability Zone C Availability Zone A

DB instance 1

FlashGrid Storage Fabric : local drives shared between nodes

DB instance 2 DB instance 3

Oracle ASM Cluster

Cloud VM 1

EBS volumes or local SSDs

Cloud VM 2 Cloud VM 3

DATA-1

Cloud VM Q1

GRID-Q1 DATA-Q1

Cloud VM Q2

GRID-Q2 DATA-Q2

EBS volumes or local SSDs EBS volumes or local SSDs Small EBS volumes Small EBS volumes
GRID-1 DATA-2 GRID-2 DATA-3 GRID-3

Figure 4. Three RAC database nodes in separate availability
zones

FlashGrid Cloud Area Network

Availability Zone A

Cloud VM A2

DB instance 2

GRID-A2 DATA-A2

Cloud VM A1

DB instance 1

GRID-A1 DATA-A1

EBS volume or local SSDs

Cloud VM A3

DB instance 3

GRID-A3 DATA-A3

Availability Zone B

Cloud VM B2

DB instance 5

GRID-B2 DATA-B2

Cloud VM B1

DB instance 4

GRID-B1 DATA-B1

Cloud VM B3

DB instance 6

GRID-B3 DATA-B3

Oracle ASM Cluster

Availability Zone C

Cloud VM Q

GRID-Q DATA-Q

Small EBS volumes

FlashGrid Storage Fabric: local drives shared between nodes

EBS volume or local SSDs

Figure 5. Example of a 6-node RAC database cluster across avail-
ability zones

(continued from page 13)

https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/

17The NoCOUG Journal

➤	 FlashGrid Storage Fabric software turns locally attached
disks (elastic block storage or local instance-store SSDs)
into shared disks accessible from all nodes in the cluster.

➤	 FlashGrid Read‑Local™ Technology minimizes network
overhead by serving reads from locally attached disks.

➤	 The architecture allows two-way or three-way mirroring
of data across separate nodes or Availability Zones.

➤	 Oracle ASM and Clusterware provide data protection and
availability.

Network
FlashGrid Cloud Area Network enables running high-speed

clustered applications in public clouds or multi-datacenter envi­
ronments with the efficiency and control of a local area network.

The network connecting Amazon EC2 instances is effectively
a single-IP network with a fixed amount of network bandwidth
allocated per instance for all types of network traffic (except for
Amazon Elastic Block Storage (EBS) storage traffic on EBS-
optimized instances). However, the Oracle RAC architecture re­
quires separate networks for client connectivity and for the
private cluster interconnect between the cluster nodes. There are
two main reasons for this requirement: 1) the cluster intercon­
nect must have low latency and sufficient bandwidth to ensure
adequate performance of the inter-node locking and Cache
Fusion, and 2) the cluster interconnect is used for transmitting
raw data and for security reasons must be accessible by the data­
base nodes only. Also, Oracle RAC requires networks with mul­
ticast capability, which is not available in Amazon EC2.

FlashGrid CLAN addresses the limitations described above
by creating a set of high-speed virtual LAN networks and ensur­
ing QoS between them. See Figure 6.

Network capabilities enabled by FlashGrid CLAN for Oracle
RAC in Amazon EC2:

➤	 Each type of traffic has its own virtual LAN with a sepa­
rate virtual NIC, e.g., fg-pub, fg-priv, fg-storage

➤	 Negligible performance overhead compared to the raw
network

➤	 Minimum guaranteed bandwidth allocation for each traf­
fic type while accommodating traffic bursts

➤	 Low latency of the cluster interconnect in the presence of
large volumes of traffic of other types

➤	 Transparent connectivity across Availability Zones

➤	 Multicast support

➤	 Up to 100 Gb/s bandwidth per node

Shared Storage
FlashGrid Storage Fabric turns local disks into shared disks

accessible from all nodes in the cluster. The local disks shared
with FlashGrid Storage Fabric can be block devices of any type,
including Amazon EBS volumes or local SSDs. The sharing is
done at the block level with concurrent access from all nodes. See
Figure 7.

In 2-node or 3-node clusters each database node has a full
copy of user data stored on Amazon EBS volume(s) attached to
that database node. The FlashGrid Read‑Local Technology al­
lows serving all read I/Os from the locally attached disks and
increases both read and write I/O performance. Read requests

avoid the extra network hop, thus reducing the latency and the
amount of the network traffic. As a result, more network band­
width is available for the write I/O traffic.

ASM Disk Group Structure and Data Mirroring
FlashGrid Storage Fabric leverages proven Oracle ASM capa­

bilities for disk group management, data mirroring, and high
availability. In Normal Redundancy mode each block of data has

Availability Zone A

Cloud VM 1

eth0: 172.0.1.11

Availability Zone B

Cloud VM 2

eth0: 172.0.2.12

Availability Zone C

Cloud VM 3

eth0: 172.0.3.13

fg-storage: 192.168.3.1 fg-storage: 192.168.3.2 fg-storage: 192.168.3.3

fg-priv: 192.168.2.1 fg-priv: 192.168.2.2 fg-priv: 192.168.2.3

fg-pub: 192.168.1.1 fg-pub: 192.168.1.2 fg-pub: 192.168.1.3

Figure 6. FlashGrid Cloud Area Network

DB Instance 1

Node 1 Node 2 Node 3

ASM Instance 1

DB Instance 2

ASM Instance 2

DB Instance 3

ASM Instance 3

Read
Local

Read
Local

Read
Local

VOL 1 VOL 2 VOL 3

VOL 1 VOL 2 VOL 3 VOL 1 VOL 2 VOL 3 VOL 1 VOL 2 VOL 3

Figure 7. FlashGrid Storage Fabric with FlashGrid Read-Local
Technology

“FlashGrid SkyCluster enables a
variety of RAC cluster

configurations on Amazon EC2.
Two or three node clusters are
recommended in most cases.

Clusters with four or more nodes
can be used for extra HA or

performance. It is possible to have
clusters with more than four nodes

containing several 2- or 3-node
database sub-clusters. It is also
possible to use SkyCluster for

running single-instance databases
with automatic failover. Nodes of a

cluster can be in one availability
zone or can be spread across

availability zones.”

18 February 2020

two mirrored copies. In High Redundancy mode each block of
data has three mirrored copies. Each ASM disk group is divided
into failure groups—one failure group per node. Each disk is
configured to be a part of a failure group that corresponds to the
node where the disk is located. ASM stores mirrored copies of
each block in different failure groups. See Figure 8.

A typical Oracle RAC setup in Amazon EC2 will have three
Oracle ASM disk groups: GRID, DATA, and FRA.

In a 2-node RAC cluster all disk groups must have Normal
Redundancy. The GRID disk group containing voting files is re­
quired to have a quorum disk for storing a third copy of the
voting files. Other disk groups also benefit from having the quo­
rum disks as they store a third copy of ASM metadata for better
failure handling.

In a 3-node cluster all disk groups must have High Redundancy
in order to enable full Read-Local capability. The GRID disk
group containing voting files is required to have two additional
quorum disks, so it can have five copies of the voting files. Other
disk groups also benefit from having the quorum disks as they
store additional copies of ASM metadata for better failure han­
dling. See Figure 9.

High Availability Considerations
FlashGrid Storage Fabric and FlashGrid Cloud Area Network

have a fully distributed architecture with no single point of fail­
ure. The architecture leverages HA capabilities built in Oracle
Clusterware, ASM, and Database.

Node Availability
Because all instances are virtual, failure of a physical host

causes only a short outage for the affected node. The node in­
stance will automatically restart on another physical host. This
significantly reduces the risk of double failures.

A single Availability Zone configuration provides protection
against loss of a database node. It is an efficient way to accom­
modate planned maintenance (e.g., patching database or OS)
without causing database downtime. However, a potential failure
of a resource shared by multiple instances in the same Availability
Zone, such as network, power, or cooling, may cause database
downtime.

Placing instances in different Availability Zones virtually
eliminates the risk of simultaneous node failures, except for the
unlikely event of a disaster affecting multiple data center facilities
in a region. The trade-off is higher network latency. However, the
network latency between AZs is less than 1 ms in most cases and
will not have critical impact on the performance of many work­
loads.

Data Availability with EBS Storage
An Amazon EBS volume provides persistent storage that sur­

vives the failure of the node instance that the volume is attached
to. After the failed instance restarts on a new physical node all its
volumes are attached with no data loss.

Amazon EBS volumes have built-in redundancy that protects
data from failures of the underlying physical media. The mirror­
ing by ASM is done on top of the built-in protection of Amazon
EBS. Together Amazon EBS plus ASM mirroring provide dura­
ble storage with two layers of data protection, which exceeds the
typical level of data protection in on-premises deployments.

Data Availability with Local NVMe SSDs
Local NVMe SSDs are ephemeral (non-persistent), which

means that in case an instance is stopped or fails over to a differ­
ent physical host, the data on the SSDs attached to that instance
is not retained. FlashGrid Storage Fabric provides mechanisms
for ensuring persistency of the data stored on local NVMe SSDs.
Mirroring data across two or three instances ensures that there is
a copy of the data still available in the event of one instance losing
its data. Placing the instances in different Availability Zones pre­
vents the possibility of simultaneous failures of more than one
instance. Placing one or two copies of data on NVMe SSDs and
one copy on EBS provides high read bandwidth of NVMe and an
additional layer of persistency of EBS. See Figure 10.

In the event of a loss of data on one of the instances with
NVMe SSDs, FlashGrid Storage Fabric automatically recon­
structs the affected disk groups and starts the data re-synchroni­
zation process after the failed instance is back online. No manual
intervention is required.

Recommended Instance Types
An instance type must meet the following criteria:
➤	 At least two vCPUs

➤	 Enhanced Networking—direct access to the physical net­
work adapter

➤	 EBS optimized—dedicated I/O path for Amazon EBS, not
shared with the main network

The following instance type families satisfy the above criteria
and are optimal for database workloads:

ASM disk group with High Redundancy

Failgroup 1

EBS vol 1
on node 1

EBS vol 2
on node 1

EBS vol 3
on node 1

EBS vol 4
on node 1

Failgroup 2

EBS vol 1
on node 2

EBS vol 2
on node 2

EBS vol 3
on node 2

EBS vol 4
on node 2

Failgroup 3

EBS vol 1
on node 3

EBS vol 2
on node 3

EBS vol 3
on node 3

EBS vol 4
on node 3

Quorum Failgroup 1
(no user data)

1 GiB
EBS volume on
quorum node 1

Quorum Failgroup 2
(no user data)

1 GiB
EBS volume on
quorum node 2

Figure 9. Example of a High Redundancy disk group in a 3-node
RAC cluster

RAC Instance 1

Database Node 1 Database Node 2 Storage Node

ASM Instance 1

RAC Instance 2

ASM Instance 2

Read
Local

Read
Local

NVMe SSD1 NVMe SSD2 EBS

SSD 1 SSD 2 EBS SSD 1 SSD 2 EBS

Figure 10. Two mirrors on NVMe SSDs plus one mirror on EBS

ASM disk group with Normal Redundancy

Failgroup 1

EBS vol 1
on node 1

EBS vol 2
on node 1

EBS vol 3
on node 1

EBS vol 4
on node 1

Failgroup 2

EBS vol 1
on node 2

EBS vol 2
on node 2

EBS vol 3
on node 2

EBS vol 4
on node 2

Quorum Failgroup
(no user data)

1 GiB
EBS volume on
quorum node

Figure 8. Example of a Normal Redundancy disk group in a
2-node RAC cluster

19The NoCOUG Journal

➤	 M4, M5: optimal memory-to-CPU ratio

➤	 R4, R5: high memory-to-CPU ratio

➤	 C5, Z1d: small memory-to-CPU ratio, for CPU-intensive
workloads

➤	 i3: high memory-to-CPU ratio, up to 15 TB of local
NVMe SSDs

➤	 i3en: high memory-to-CPU ratio, up to 100 Gb/s network,
up to 60 TB of local NVMe SSDs

➤	 X1, X1E: large memory size, large number of CPU cores

Quorum servers require fewer resources than database nodes.
However, the above criteria are still important to ensure stable
cluster operation. For example, m5.large or c5.large instances can
be used as quorum servers. Using a T2 instance family for quo­
rum servers is not supported. Note that there is no Oracle
Database software installed on the quorum servers; hence, the
quorum servers do not increase the number of licensed CPUs.

Single vs. Multiple Availability Zones
Using multiple Availability Zones provides substantial avail­

ability advantages. However, it does affect network latency. In the
US-West-2 region for 8 KB transfers we measured 0.3 ms, 0.6 ms,
and 1.0 ms between different pairs of Availability Zones, com­
pared to 0.1 ms within a single Availability Zone.

Note that the different latency between different pairs of AZs
provides an opportunity to optimize the selection of which AZs
to use for database nodes. In a 2-node RAC cluster, it is optimal
to place database nodes in the pair of AZs that has the minimal
latency between them.

The latency impact in multi-AZ configurations may be sig­
nificant for the applications that have high ratios of data updates.
However, read-heavy applications will experience little impact
because all read traffic is served locally and does not use the
network.

EBS Volumes
Use of General Purpose SSD (gp2) volumes is recommended

in most cases. However, use of gp2 volumes smaller than 1000
GB is not recommended due to expected variability in perfor­
mance. Volumes of 1000 GB size and larger provide a guaranteed
level of performance of 3 IOPS/GB up to 10,000 IOPS per vol­
ume. In most cases the following number of volumes and volume
sizes are recommended:

➤	 Usable disk group capacities below 8 TB: up to 8 gp2 vol­
umes, 1 TB each

➤	 Usable disk group capacities over 8 TB: 8 gp2 volumes, 1
TB to 16 TB each

All volumes in the same disk group must be of equal size.
Use of Provisioned IOPS SSD (io1) volumes may be cost ef­

ficient for configurations with very small capacities and small,
but guaranteed, performance requirements below 1,000 IOPS.

Local NVMe SSDs
Use of local NVMe SSDs as the primary storage offers higher

bandwidth and lower cost compared to Amazon EBS volumes.
The i3 instance family includes NVMe SSDs up to 8 x 1900 GB
with up to 16 GB/s of bandwidth and up to 3.3 mln IOPS. The

new i3en instance family increases the local SSD capacity up to 8
x 7500 GB.

Reference Performance Results
The main performance-related concern when moving data­

base workloads to the cloud tends to be around storage and
network I/O performance. There is a very small to zero overhead
related to the CPU performance between bare metal and VMs.
Therefore, in this paper we focus on the storage I/O and RAC
interconnect I/O.

CALIBRATE_IO
The CALIBRATE_IO procedure provides an easy way to

measure storage performance, including maximum bandwidth,
random IOPS, and latency. The CALIBRATE_IO procedure gen­
erates I/O through the database stack on actual database files.
The test is read-only and it is safe to run it on any existing da­
tabase. It is also a good tool for directly comparing the perfor­
mance of two storage systems because the CALIBRATE_IO
results do not depend on any non-storage factors, such as
memory size or the number of CPU cores.

Test script:

SET SERVEROUTPUT ON;
DECLARE
 lat INTEGER;
 iops INTEGER;
 mbps INTEGER;
BEGIN DBMS_RESOURCE_MANAGER.CALIBRATE_IO (16, 10, iops, mbps, lat);
DBMS_OUTPUT.PUT_LINE ('Max_IOPS = ' || iops);
DBMS_OUTPUT.PUT_LINE ('Latency = ' || lat);
DBMS_OUTPUT.PUT_LINE ('Max_MB/s = ' || mbps);
end;
/

Results with two database nodes:

Note that the CALIBRATE_IO results do not depend on
whether the database nodes are in the same or different
Availability Zones.

SLOB
SLOB is a popular tool for generating I/O-intensive Oracle

workloads. SLOB generates database SELECTs and UPDATEs
with minimal computational overhead. It complements
CALIBRATE_IO by generating mixed (read+write) I/O load.
AWR reports generated during the SLOB test runs provide vari­
ous performance metrics. For the purposes of this paper we
focus on the I/O performance numbers.

Results with two database nodes:

Test configuration details
EBS storage, same AZ, and different AZs

➤	 Two database nodes, M4.16xlarge

➤	 Four io1 20000 IOPS 400 GB volumes per node

➤	 SGA size: 2.6 GB (small size selected to minimize caching
effects and maximize physical I/O)

Cluster configuration Max_IOPS Latency Max_MB/s
EBS storage 154,864 0 2,219
NVMe storage 1,375,694 0 27,338

Cluster Configuration Physical Write

Database Requests
Physical Read

Database Requests
Physical Read+Write
Database Requests

EBS storage, same AZ 20,697 IOPS 100,539 IOPS 121,237 IOPS
EBS storage, different AZs 19,465 IOPS 92,081 IOPS 111,546 IOPS
NVMe storage, different AZs 23,913 IOPS 429,660 IOPS 453,573 IOPS

Cluster configuration Max_IOPS Latency Max_MB/s
EBS storage 154,864 0 2,219
NVMe storage 1,375,694 0 27,338

Cluster Configuration Physical Write

Database Requests
Physical Read

Database Requests
Physical Read+Write
Database Requests

EBS storage, same AZ 20,697 IOPS 100,539 IOPS 121,237 IOPS
EBS storage, different AZs 19,465 IOPS 92,081 IOPS 111,546 IOPS
NVMe storage, different AZs 23,913 IOPS 429,660 IOPS 453,573 IOPS

20 February 2020

➤	 8KB database block size

➤	 Schemas: 30 x 240 MB

➤	 UPDATE_PCT= 20

NVMe storage, different AZs

➤	 Two db nodes + storage node

➤	 Instance type: i3.16xlarge

➤	 (8) 1900GB NVMe SSDs per node

➤	 SGA size: 4 GB (small size selected to minimize caching
effects and maximize physical I/O)

➤	 8 KB database block size

➤	 Schemas: 200 x 240 MB

➤	 UPDATE_PCT= 5

Performance vs. On-Premise Solutions
Both EBS and NVMe SSD storage options are flash based and

provide an order of magnitude improvement in IOPS and laten­
cy compared to traditional spinning hard drive–based storage
arrays. With over 100K IOPS in both cases, the performance is
comparable to having a dedicated all-flash storage array. It is
important to note that the storage performance is not shared
with other clusters or databases. Every cluster has its own dedi­
cated set of EBS volumes or NVMe SSDs, which ensures stable
and predictable performance with no interference from noisy
neighbors.

NVMe SSDs enable speeds that are difficult or impossible to
achieve even with dedicated all-flash arrays. Each NVMe SSD
provides read bandwidth comparable to an entry-level flash
array. The 27 GB/s bandwidth measured with 16 NVMe SSDs in
a 2-node cluster is equivalent to a large flash array connected
with 16 Fibre Channel links. Read-heavy analytics and data
warehouse workloads can benefit the most from using the
NVMe SSDs.

Compatibility
The following versions of software are supported with

FlashGrid SkyCluster:

➤	 Oracle Database: ver. 19c, 18c, 12.2, 12.1, or 11.2

➤	 Oracle Grid Infrastructure: ver. 19c

➤	 Operating System: Oracle Linux 7, Red Hat Enterprise
Linux 7

Automated Infrastructure-as-Code Deployment
The FlashGrid SkyCluster Launcher tool automates the pro­

cess of deploying a cluster. The tool provides a flexible web inter­
face for defining cluster configuration and generating an Amazon
CloudFormation template for it. The following tasks are per­
formed automatically using the CloudFormation template:

➤	 Creating cloud infrastructure: VMs, storage, and—op­
tionally—network

➤	 Installing and configuring FlashGrid Cloud Area Network

➤	 Installing and configuring FlashGrid Storage Fabric

➤	 Installing, configuring, and patching Oracle Grid Infra­
structure

➤	 Installing and patching Oracle Database software

➤	 Creating ASM disk groups

The entire deployment process takes approximately 90 min­
utes. After the process is complete the cluster is ready for creating
a database. Use of automatically generated standardized IaC
templates prevents human errors that could lead to costly reli­
ability problems and compromised availability.

Conclusion
FlashGrid SkyCluster offers a wide range of highly available

database cluster configurations in AWS, ranging from cost-effi­
cient 2-node clusters to large high-performance clusters. The
combination of the proven Oracle RAC database engine, AWS
availability zones, and fully automated Infrastructure-as-Code
deployment provides high-availability characteristics exceeding
those of the traditional on-premises deployments. s

Artem Danielov is CTO at FlashGrid.
Copyright © 2020, Artem Danielov

“FlashGrid SkyCluster offers a wide range of highly available database cluster
configurations in AWS, ranging from cost-efficient 2-node clusters to large

high-performance clusters. The combination of the proven Oracle RAC
database engine, AWS availability zones, and fully automated Infrastructure-

as-Code deployment provides high-availability characteristics exceeding
those of the traditional on-premises deployments.”

“NVMe SSDs enable speeds that are difficult or impossible to achieve even
with dedicated all-flash arrays. Read-heavy analytics and data warehouse

workloads can benefit the most from using the NVMe SSDs.”

21The NoCOUG Journal

S P E C I A L
F E AT U R E

Oracle License Changes
by Biju Thomas

Biju Thomas

There were many licensing changes on the Oracle data­
base product in 2019, especially with Oracle Database
19c. Here are a few major ones that every Oracle da­
tabase customer must be aware of to plan for 2020 and

beyond.

Three PDBs Included
Oracle introduced the multitenant architecture in Oracle

Database 12c. Oracle 12c (12.1 and 12.2) allowed one user PDB
as part of the Enterprise Edition license (single-tenant). With the
multitenant license option, you can create up to 252 PDBs. In
12c, the Standard Edition did not have the multitenant option—
only one PDB was allowed. If you are not licensed for Oracle
multitenant, the container database architecture can still be in
use (single-tenant mode)—with one user-created PDB, one user-
created application root, and one user-created proxy PDB (no
changes in 18c).

In Oracle Database 19c, Oracle allows you to create three us­
er-created PDBs without any additional multitenant license; this
is applicable for both the Standard Edition (SE2) and Enterprise
Edition (EE). Multitenant architecture brings huge administra­
tive advantages, especially to minimize patching, upgrade, and
cloning. This license change will help accelerate the adoption of
the container database architecture.

Multitenant, the Sooner the Better
The multitenant architecture was introduced in 2013 with

Oracle Database 12c, but the adoption rate has been minimal—
mainly, in my opinion, due to the cost involved. When you can­
not create more than one PDB, why bother using the container
architecture? And, for EBS customers, the database support
lagged way behind and was stuck with 12.1 databases until re­
cently.

Though the non-CDB architecture had been “deprecated”
since 12.1, it was available and supported to date, but things are
changing. In 20c, the non-CDB architecture is “desupported,”
and I believe there will not be an option to create non-CDB da­
tabases.

 Table 1 contains reminders of the support end-dates of data­
base versions.

Pay attention to the patching end date. 12.2.0.1 and 18c are
“annual releases,” meaning you get no extended support. 19c is
“long-term release,” and it has premier support for four years and
paid extended support for an additional three years.

Table 1: Oracle Database Support End Dates

Picture from MOS Note: Release Schedule of Current Database
Releases Doc ID 742060.1

Release	 Patching End Date	 Premier Support	 Extended
		 (PS) Ends	 Support
			 (ES) Ends

19c	 31-Mar-2023 without ES/ULA	 31-Mar-2023	 31-Mar-2026

Long-term	 31-Mar-2026 without ES/ULA	 31-Mar-2023	 31-Mar-2026
support release

18c	 08-June-2021	 31-Mar-2023	 Not Available

Annual Release

12.2.0.1	 20-Nov-2020	 31-Mar-2023	 Not Available

Annual Release

12.1.0.2	 31-Jul-2022 with paid ES, ULA,	 31-Jul-2018	 31-Jul-2022
	 or EBS waiver

12.1.0.1	 Ended:	 31-Aug-2016	 Not Available

for 12.1 Family	 31-Aug-2016

11.2.0.4	 31-Dec-2020 with paid ES, ULA,	 31-Jan-2015	 31-Dec-2020
	 or EBS waiver

Terminal Release
for 11.2 Family

11.2.0.3	 Ended:	 27-Jan-2015	 27-Aug-2015

Patchset Release	 27-Aug-2015	 27-Jan-2015	 27-Aug-2015
for 11.2 Family

22 February 2020

Though not officially documented, Oracle product managers
shared at OOW19, that 20c and 21c will be “annual release” and
22c may be the “long-term release.” This means 20c will have a
shorter life than 19c. Get your budgets and projects ready to
upgrade all Oracle databases (including those that support
Oracle E-Business Suite) to 19c multitenant architecture.

No RAC with SE2
Oracle Database Standard Edition 2 (SE2) was released in

2015. The major difference between SE and SE2 was the number
of sockets and CPU cores allowed. SE allowed the use of 4 sock­
ets (2 sockets for SE1) without any limitation on the number of
CPU threads. In SE2, the number of sockets was limited to 2. SE2
also limits the maximum number of CPU threads per database

instance to 16. You have to migrate SE licenses to SE2 licenses to
upgrade a 12.1.0.1 or 11.2.x SE database to 12.1.0.2 or higher.

Oracle Real Application Clusters are part of the SE and SE2
family. Even with the limitation of two sockets in SE2, if you can
find two single-socket machines, you are allowed to create a
two-node RAC instance with an SE2 license. Well, it changed in
19c. Oracle RAC is no longer available with Standard Edition
anymore.

If you are using Oracle RAC with SE2 today, maybe it’s time
to evaluate alternatives. The primary alternatives are Oracle RAC
(additional-cost EE option) on top of Oracle Enterprise Edition

(licensed by core, not by socket) or cloud migration. The first
thing you need is an evaluation of the business requirement to
find the appropriate solution.

Oracle Analytics, Spatial and Graph
Oracle Analytics and Oracle Spatial and Graph used to be

extra-cost options in the Oracle database.
Oracle Advanced Analytics empowers data and business ana­

lysts to extract knowledge, discover new insights, and make
predictions—working directly with large data volumes in the
Oracle database. Oracle Advanced Analytics provides a combi­
nation of powerful in-database algorithms and open-source R
algorithms. Analytic capabilities are accessible via SQL and R
languages, and through the SQL Developer extension or open-
source R clients.

Graphs let you model data based on relationships in a more
natural, intuitive way. They let you explore and discover connec­
tions and patterns in social networks, IoT, big data, data ware­
houses, and complex transaction data for applications such as
fraud detection in banking, customer 360, and smart manufac­
turing. All graph features are now included as part of the Oracle
database without any additional cost.

The spatial analysis enables a better understanding of com­
plex interactions based on geographic relationships. All editions
of Oracle Database now include comprehensive spatial analytics
and data models.

As of December 5, 2019, the Machine Learning (formerly
known as Advanced Analytics), Spatial and Graph features of
Oracle database may be used for development and deployment
purposes with all on-prem editions and Oracle Cloud Database
Services (version 12.2 and above). Oracle Machine Learning is
supported on SE2 as well.

EBS Customers: Time to Upgrade That Database!
E-Business Suite (EBS) now supports Oracle container archi­

tecture (finally!). An upgrade to Oracle Database 19c should be
in the plans, not only to take advantage of the multitenant archi­
tecture but also to be on a supported database platform.

As you can see in Table 1, with the EBS waiver Oracle EBS
customers can enjoy the benefits of Oracle Extended support on
database versions 11.2.0.4 and 12.1.0.2. The extended support for
11.2.0.4 is ending in 10 months (Dec 2020), and 12.1.0.2 is end­
ing in July 2022 (previously, July 2021). EBS customers have only
a couple of years to plan and upgrade all their databases to 19c
with container database architecture. EBS versions 12.1.3 and
12.2 support the 19c database.

As part of the upgrade to Database 19c, you will convert the
EBS database to the CDB architecture with a single pluggable
database (PDB). A CDB with one PDB (single-tenant) is cur­
rently the only certified deployment for Oracle E-Business Suite
with Database 19c. We are not aware of a non-CDB architecture
to be certified or supported for EBS with Database 19c. s

Biju Thomas is an Oracle ACE director and a frequent speaker at
many Oracle conferences. Biju blogs at http://www.bijoos.com/
oraclenotes and you can follow him on Twitter (@biju_thomas)
or Facebook (@oraclenotes). Also check out his Oracle Tidbits.

Copyright © 2020, Biju Thomas

DATABASE MANAGEMENT SOLUTIONS
Develop | Manage | Optimize | Monitor | Replicate

Maximize your
Database Investments.

“Oracle RAC is no longer available
with Standard Edition anymore.”

http://www.bijoos.com/oraclenotes
http://www.bijoos.com/oraclenotes

23The NoCOUG Journal

F R O M T H E
A R C H I V E

The First International NoCOUG SQL Challenge was a
great success; nine solutions were found by partici­
pants in seven countries and three continents. Alberto
Dell’Era wins the contest for his wonderful solution

using Discrete Fourier Transforms; the runner-up is André
Araujo from Australia, who used binary arithmetic and com­
mon table expressions in his solution. The August Order of the
Wooden Pretzel1 will be bestowed on Alberto but the real prize is
six books of his choice from the Apress catalog. André will re­
ceive a prize of six e-books of his choice. Thanks to Chen
Shapira for publicizing the event in her blog, Dan Tow for help­
ing to judge the contest, and Apress for donating the books.

The Challenge
An ancient 20-sided die (icosahedron) was discovered in

the secret chamber of mystery at Hogwash School of Es-Cue-El.
A mysterious symbol was inscribed on each face of the die. The
great Wizard of Odds discovered that each symbol represents a
number. The great wizard discovered that the die was biased:
that is, it was more probable that certain numbers would be
displayed than others if the die were used in a game of chance.
The great wizard recorded this information in tabular fashion as
described below.

	 Name	 Null?	 Type

	 FACE_ID	 NOT NULL	 INT

	 FACE_VALUE	 NOT NULL	 INT

	 PROBABILITY	 NOT NULL	 REAL

The great wizard then invited all practitioners of the ancient
arts of Es-Cue-El to create an Es-Cue-El spell that displays the
probabilities of obtaining various sums when the die is thrown
N times in succession in a game of chance, N being a substitu-

tion variable or bind variable. The rules of the competition
can be found in the May 2009 issue of the NoCOUG Journal
an d on t h e We b at w w w. n o c o u g . o r g / S QL c h a l l e n g e /
FirstSQLchallenge.pdf.

The Solutions
The modus operandi was for each participant to post their

solutions on their blog or website; you can find them all with a
simple Google search. The first solution—by Laurent Schneider
from Switzerland—used the CONNECT BY clause to join the
table to itself N times and the SYS_CONNECT_BY_PATH and
XMLQUERY functions to perform the necessary additions and
mult iplicat ions. The number of records generated by
CONNECT BY grows exponentially and hurts performance.

The second solution—by Craig Martin from the USA—
used the CONNECT BY clause to join the table to itself N
times and logarithms to perform the necessary additions and
multiplications. The number of records grows exponentially in
this case too.

The third solution—by Rob van Wijk from the Nether­
lands—used the Model clause to generate records. The number of
records grows exponentially in this case too.

The fourth solution—by Vadim Tropashko from the USA
—used recursive common table expressions to generate records.
The number of records grows exponentially in this case too.
Recursive common table expressions are available in Microsoft
SQL Server and DB2 but are not presently available in Oracle
11gR1. Rumor has that they will be available in Oracle Data­
base 11gR2.

The fifth and sixth solutions—by Alberto Dell’Era from
Italy—used advanced mathematical techniques such as convolu-
tions, Discrete Fourier Transforms, and Fast Fourier Transforms.
The Fast Fourier Transform method is an efficient way of calcu­
lating Discrete Fourier Transforms and was implemented using
the Model clause.

The seventh solution—by Fabien Contaminard from
France—was based on the multinomial probability distribution,
an extension of the binomial distribution.

The eighth solution—by a blogger named Cd-MaN from
Romania—used pipelined table functions and recursion. The
solution was demonstrated in a Postgres database but can easily
be adapted for use in an Oracle Database. The use of recursion
means that this is not a pure SQL solution.

The ninth solution—by André Araujo from Australia—
used binary arithmetic and common table expressions.

First International
NoCOUG SQL Challenge

We Have a Winner!
Reprinted from the August 2009 issue

1	Steven Feuerstein was asked the following question in an interview pub­
lished in the May 2006 issue of the NoCOUG Journal: “SQL is a set-orient-
ed non-procedural language; i.e., it works on sets and does not specify access
paths. PL/SQL on the other hand is a record-oriented procedural language,
as is very clear from the name. What is the place of a record-oriented proce-
dural language in the relational world?” Steven replied: “Its place is proven:
SQL is not a complete language. Some people can perform seeming miracles
with straight SQL, but the statements can end up looking like pretzels created
by someone who is experimenting with hallucinogens. We need more than
SQL to build our applications, whether it is the implementation of business
rules or application logic. PL/SQL remains the fastest and easiest way to ac-
cess and manipulate data in an Oracle RDBMS, and I am certain it is going
to stay that way for decades.”

http://www.nocoug.org/SQLchallenge/FirstSQLchallenge.pdf
http://www.nocoug.org/SQLchallenge/FirstSQLchallenge.pdf

24 February 2020

Judges’ Decision
Dan Tow authored the following statement on behalf of the

judging committee:
To begin, we’d like to congratulate the contestants on finding

so many different and clever ways to solve this problem, and
on making the problem of picking a winner so difficult for us,
personally. Each of the solutions had major advantages to rec­
ommend it. We were also very pleasantly surprised at the global
extent of the entries, with entries from seven nations and three
continents!

The criteria for the judging were stated in advance at www.
nocoug.org/SQLchallenge/FirstSQLchallenge.pdf. The main
criteria that separated the top scores from the rest, given that
they were all quite good as technical solutions from one per­
spective or another, were the inclusion of commentary and test
results, which were minimal or altogether lacking from most
entries. (Hey, we understand that you’re busy, so we’re not sur­
prised to see these missing or minimal, but they were important
to getting a win here!)

There were elegant solutions using the Model clause, includ­
ing one by Alberto Dell’Era that implemented a solution using
Fast Fourier Transforms that was technically amazing, well-
documented and tested, and scaled better than any other solu­
tion, with order N * Log(N) scaling, almost linear up to
enormous numbers of throws of the dice. However, these used
“iterate” loops that we believe violated the contest requirement
that “Solutions that use procedural loops to multiply probabili­
ties are not eligible” stated at the top of the “Judges’ Statement.”
(We know that there are wonderful, super-efficient ways to solve
this problem in procedural code like C, but the point behind that
unbendable requirement was to get contestants “thinking in
SQL,” doing the job in a set-wise manner, not just finding ways
to bend SQL into doing what we’d be better off doing in C, pro­
cedurally.) The “procedural loop” component in these solutions
was really minimal and easy to miss, even, in a casual examina­
tion of the code, but we think we have to stick with the pre-
stated rules here and disqualify those solutions, even while we
admire them.

Scaling almost as well (at order N * N), and also very well
documented and tested, both from the perspective of perfor­
mance and functionality, was the amazing Fourier-Transform-
based solution, www.adellera.it/investigations/nocoug_
challenge/index.html also by Alberto Dell’Era from Italy, that
we think has to be declared the winner here, with no proce­
dural loops and good-to-excellent scores in every stated judging
criteria.

The runner-up choice is difficult, too, but we’d probably
have to go with André Araujo of Australia, www.pythian.com/
news/2385/nocoug-sql-challenge-entry. Of all the solutions,
his probably best combined straightforward (very clever, but still
straightforward to the reader!), portable SQL that could be eas­
ily understood and maintained by a developer without an ad­
vanced degree in mathematics, with fairly scalable and well-tested
SQL that ran well up to quite high numbers of throws of the die
(“N”). It is true that the SQL had a hard-coded limit of N = 511
(a limit that André documented well, to the credit of the solu­
tion), and that functional limit lost a few points, but we should
keep in mind that this high value of N is one that most of the
implementations (other than Alberto Dell’Era’s) would never
reach in our lifetime, anyway, owing to their comparative lack of

scalability—being logically correct at high N is worth nothing if
the program never finishes! If we had to actually maintain one of
these in a production environment, and we didn’t anticipate
needing results at very high values of N, we’d probably go with
André’s solution, just because we’d be frightened of long-term
maintenance on the high mathematics of Alberto Dell’Era’s bril­
liant but more complex and technically harder-to-follow solu­
tion.

Analysis of the Winning Solution
Alberto recognized that the contents of the die table define a

mathematical function and that the process of joining the table
with itself and grouping the results is the so-called convolution of
this function with itself. Throwing the die N times is therefore
equivalent to performing N – 1 convolutions. For example, for
N = 3, we have to perform two convolutions. This is best ex­
pressed using common table expressions as follows. Notice that
the definition of the second convolution references the first con­
volution.

WITH

first_convolution AS
(
 SELECT face_value, SUM (probability) AS probability
 FROM
 (
 SELECT
 d1.face_value + d2.face_value AS face_value,
 d1.probability * d2.probability AS probability
 FROM die d1 CROSS JOIN die d2
)
 GROUP BY face_value
),

second_convolution AS
(
 SELECT face_value, SUM (probability) AS probability
 FROM
 (
 SELECT
 d1.face_value + d2.face_value AS face_value,
 d1.probability * d2.probability AS probability
 FROM first_convolution d1 CROSS JOIN die d2
)
 GROUP BY face_value
)

SELECT face_value, probability
FROM second_convolution
ORDER BY face_value;

The most common solution of the problem requires an
N-way cross join. Convolutions have obvious advantages over an
N-way cross join because they keep the size of intermediate
results in check. The question is how to compute the required N
– 1 convolutions with a single SQL statement if the value of N is
not known in advance. One solution is to recursively invoke a
table function as was done by the Romanian contestant; that is,
we have to resort to procedural programming. Alberto was able
to avoid procedural programming using a Fourier transform;
that is, a certain function whose definition is derived from the
original function. The Fourier transform has the interesting
property that the transform of the convolution of functions is
the simple product of the individual transforms. Therefore,
the Fourier transform of the N-way convolution of our func­
tion with itself is the Nth power of the Fourier transform of
the function. The Fourier transform is straightforward to com­

http://www.pythian.com/news/2385/nocoug-sql-challenge-entry
http://www.pythian.com/news/2385/nocoug-sql-challenge-entry

25The NoCOUG Journal

pute and—with a little mathematical trick involving a conver­
sion from the Cartesian coordinate system to the polar coordinate
system—the Nth power of the Fourier transform is also straight­
forward to compute. At this point, Alberto has the Fourier trans­
form of the N-way convolution. To obtain the result that he
really needs, all that is left for him to do is to compute the Inverse
Fourier Transform of the Fourier transform. An explanation of
Fourier Transforms can be found on the Web; efficient
C-language implementations can also be readily found.

For readability and maintainability, Alberto uses a sequence
of common table expressions. The following is a simplified ver­
sion of his solution; the full solution handles more general
cases and uses some tricks to reduce the number of scientific
computations. Hints to guide the optimizer and improve effi­
ciency are included in the version shown below.

First Alberto creates a one-column table of sequence num­
bers using the CONNECT BY method; this table is used several
times in the rest of the solution. The number of elements in the
table is one more than the product of the number of sides of
the die and the number of throws.

sequence AS
(
 SELECT /*+ NO_MERGE */
 LEVEL - 1 AS n
 FROM dual
 CONNECT BY LEVEL <= (:N * :sides + 1)
)

Alberto then constructs a discrete function whose domain is
the numbers in the sequence table. The function is called dis-
crete because it is only defined for certain discrete values—not
for all values in a range as in the case of a continuous function.
Whenever possible, the function uses the values in the die table.
If a value is not found, the value of the function is set to zero.
This is done using an outer join.

function AS
(
 SELECT /*+ NO_MERGE */
 n,
 COALESCE(probability, 0) AS x
 FROM sequence LEFT OUTER JOIN die ON (n = face_value)
)

Alberto then computes the Fourier transform of the discrete
function. There’s some advanced math going on here but it’s easy
to take in small doses; you’ll recognize Pi as the well-known
mathematical constant. A cross join with the Sequence table is
required to calculate sums.

transform AS
(
 SELECT /*+ NO_MERGE LEADING(function) */
 sequence.n,
 SUM(x * COS(-2 * :Pi * sequence.n * function.n / (:N * :sides + 1))) AS x,
 SUM(x * SIN(-2 * :Pi * sequence.n * function.n / (:N * :sides + 1))) AS y
 FROM function CROSS JOIN sequence
 GROUP BY sequence.n
)

In another little dose of math, Alberto switches to polar form
for ease of further computation.

polar AS
(
 SELECT /*+ NO_MERGE */

 n,
 SQRT((x * x) + (y * y)) AS r,
 CASE
 WHEN ABS(y) < 0.000001 AND ABS(x) < 0.000001 THEN 0
 ELSE ATAN2(y, x)
 END AS theta
 FROM transform
)

Computing the Nth power of the Fourier transform is then
very easy.

power AS
(
 SELECT /*+ NO_MERGE */
 n,
 POWER(r, :N) AS r,
 theta * :N AS theta
 FROM polar
)

Alberto has no more use for the polar form, so he converts
back to Cartesian form.

cartesian AS
(
 SELECT /*+ NO_MERGE */
 n,
 r * COS(theta) AS x,
 r * SIN(theta) AS y
 FROM power
)

So far, Alberto has calculated the Fourier transform of the
discrete function and computed its Nth power. As explained
earlier, this is the Fourier transform of the N-way convolution of
the discrete function. To obtain the convolution itself, Alberto
computes the Inverse Fourier Transform using another cross join
with the Sequence table.

convolution AS
(
 SELECT /*+ NO_MERGE LEADING(cartesian) */
 sequence.n,
 SUM
 (
 x * COS(+2 * :Pi * cartesian.n * sequence.n / (:N * :sides + 1)) -
 y * SIN(+2 * :Pi * cartesian.n * sequence.n / (:N * :sides + 1))
) / (:N * :sides + 1) AS x
 FROM cartesian CROSS JOIN sequence
 GROUP BY sequence.n
)

Finally, Alberto can display the results. The result has more
than 30 digits of decimal precision; only 30 are displayed in the
interests of accuracy.

SELECT
 n AS face_value,
 ROUND(x, 30) AS probability
FROM convolution
WHERE n >= :N
ORDER BY n;

As you can see, Alberto’s solution used advanced mathemat­
ical techniques, but it is not very long and the use of common
table expressions makes it quite readable. We have a winner! s

Copyright © 2009, Iggy Fernandez

26 February 2020

P I C T U R E
D I A R Y

NoCOUG Conference #132

The Chinese dim sum was fabulous. The speakers and presentations were awesome. The T-shirts and raffle prizes were cool. The post-
conference wine-and-cheese reception was over the top. But the attendance at the fall conference was disappointing—the lowest in 33 years.

Database HA in the Cloud
Proven Oracle RAC engine

AWS, Azure, GCP

HA clustering with 2+ nodes

Infrastructure-as-Code

24/7 support

Launch in 1 hour
in your cloud account!

www.flashgrid.io

http://www.flashgrid.io
http://aws.amazon.com/aurora

NoCOUG
P.O. Box 3282
Danville, CA 94526

RETURN SERVICE REQUESTED

FIRST-CLASS MAIL
U.S. POSTAGE

PAID
SAN FRANCISCO, CA

PERMIT NO. 11882

The No-Limits Database™

The cloud-native, operational database
built for speed and scale

SCALE
Build on a cloud-native

data platform designed for

today’s most demanding

applications and

analytical systems

SPEED
Accelerate time to insight

with a database built for

ultra fast ingest and

high performance query

SQL
Get the familiarity & ease

of integration of a traditional

RDBMS and SQL, but with

a groundbreaking,

modern architecture

Learn more at memsql.com © 2019 MemSQL Inc.

MemSQL_NoCOUG_R1.pdf 1 7/3/19 8:12 AM

The No-Limits Database™

The cloud-native, operational database
built for speed and scale

SCALE
Build on a cloud-native

data platform designed for

today’s most demanding

applications and

analytical systems

SPEED
Accelerate time to insight

with a database built for

ultra fast ingest and

high performance query

SQL
Get the familiarity & ease

of integration of a traditional

RDBMS and SQL, but with

a groundbreaking,

modern architecture

Learn more at memsql.com © 2019 MemSQL Inc.

MemSQL_NoCOUG_R1.pdf 1 7/3/19 8:12 AM

http://www.solarwinds.com/dpa-download
http://memsql.com

