
Kafka
Real-Time Data and Stream
Processing at Scale.
See page 14.

Making Changes
The Real Promise of
Infrastructure as Code.
See page 19.

Infrastructure as
Code
The game-changer.
See page 4.

Much more inside . . .

Infrastructure
as Code

Vol. 32, No. 4 · NOVEMBER 2018

http://www.nocoug.org

The New Phoenix by Axxana
For Oracle Databases and Applications

• Low Cost Replication Lines
• Shortest Recovery Time
• Full Consistency Across Multiple Databases

www.axxana.com

Zero Data Loss
at Unlimited Distances

Synchronous Protection
at Maximum Performance

http://www.axxana.com
http://spftware.dell.com/toadconnected

3The NoCOUG Journal

2018 NoCOUG Board
Dan Grant

Exhibitor Coordinator

Eric Hutchinson
Webmaster

Iggy Fernandez
President, Journal Editor

Jeff Mahe
Vice President

Kamran Rassouli
Social Director

Liqun Sun
Membership Director

Michael Cunningham
Director of Special Events

Naren Nagtode
Secretary, Treasurer, President Emeritus

Roy Prowell
Director of Publicity and Marketing

Saibabu Devabhaktuni
Conference Chair

Tu Le
Speaker Coordinator

Volunteers

Tim Gorman
Board Advisor

Brian Hitchcock
Book Reviewer

Publication Notices and Submission Format

The NoCOUG Journal is published four times a year by the Northern California
Oracle Users Group (NoCOUG) approximately two weeks prior to the quarterly
educational conferences.

Please send your questions, feedback, and submissions to the NoCOUG Journal
editor at journal@nocoug.org.

The submission deadline for each issue is eight weeks prior to the quarterly confer
ence. Ar ti cle sub missions should be made in Microsoft Word format via email.

Copyright © by the Northern California Oracle Users Group except where other
wise indicated.

NoCOUG does not warrant the NoCOUG Journal to be error-free.

Book Excerpt... 4

Brian’s Notes .. 14

Special Feature ... 19

Interview ... 21

Picture Diary ... 25

ADVERTISERS

Axxana ... 2

Vexata .. 27

Quest ... 27

OraPub .. 28

Table of Contents

ADVERTISING RATES
The NoCOUG Journal is published quarterly.

 Size Per Issue Per Year

 Quarter Page $125 $400

 Half Page $250 $800

 Full Page $500 $1,600

 Inside Cover $750 $2,400

Personnel recruitment ads are not accepted.

journal@nocoug.org

Professionals at Work

First there are the IT professionals who write for the Journal. A very

special mention goes to Brian Hitchcock, who has written dozens of

book reviews over a 12year period.

Next, the Journal is professionally copyedited and proofread by veteran copy

editor Karen Mead of Creative Solutions. Karen polishes phrasing and calls out

misused words (such as “reminiscences” instead of “reminisces”). She dots every

i, crosses every t, checks every quote, and verifies every URL.

Then, the Journal is expertly designed by graphics duo Kenneth Lockerbie and

Richard Repas of San Franciscobased Giraffex.

And, finally, David Gonzalez at Layton Printing Services deftly brings the

Journal to life on an offset printer.

The front cover has an aerial photo taken using a DJI FC6310 (Phantom 4 Pro)

drone by Aleksejs Bergmanis from Pexels. s

http://nocoug.org
http://nocoug.org
mailto:journal@nocoug.org
mailto:journal@nocoug.org
http://www.giraffex.com
http://www.giraffex.com
http://www.giraffex.com

4 November 2018

B O O K
E X C E R P T

Infrastructure as Code
Managing Servers in the Cloud

by Kief Morris

This is an extract from the book Infrastructure as Code: Managing
Servers in the Cloud by Kief Morris, O’Reilly Media, Jun 27, 2016,
ISBN 978-1491924358. Reprinted with permission.

Infrastructure and software development teams are increas
ingly building and managing infrastructure using auto
mated tools that have been described as “infrastructure as
code.” These tools expect users to define their servers, net

working, and other elements of an infrastructure in files mod
eled after software source code. The tools then compile and in
terpret these files to decide what action to take.

This class of tool has grown naturally with the DevOps move
ment.1 The DevOps movement is mainly about culture and col
laboration between software developers and software operations
people. Tooling that manages infrastructure based on a software
development paradigm has helped bring these communities to
gether.

Managing infrastructure as code is very different from classic
infrastructure management. I’ve met many teams who have
struggled to work out how to make this shift. But ideas, patterns,
and practices for using these tools effectively have been scattered
across conference talks, blog posts, and articles. I’ve been waiting
for someone to write a book to pull these ideas together into a
single place. I haven’t seen any sign of this, so finally took matters
into my own hands. You’re now reading the results of this effort!

How I Learned to Stop Worrying and to Love the Cloud
I set up my first server, a dialup BBS2 in 1992. This led to Unix

system administration and then to building and running hosted
software systems (before we called it SaaS, aka “Software as a
Ser vice”) for various companies, from startups to enterprises.

I’ve been on a journey to infrastructure as code the entire
time, before I’d ever heard the term.

Things came to a head with virtualization. The story of my
stumbling adoption of virtualization and the cloud may be famil
iar, and it illustrates the role that infrastructure as code has to
play in modern IT operations.

My First Virtual Server Farm
I was thrilled when my team got the budget to buy a pair of

beefy HP rack servers and licenses for VMware ESX Server back
in 2007.

We had in our office’s server racks around 20 1U and 2U serv
ers named after fruits (Linux servers) and berries (Windows
database servers) running test environments for our develop
ment teams. Stretching these servers to test various releases,
branches, and highpriority, proofofconcept applications was a
way of life. Network services like DNS, file servers, and email
were crammed onto servers running multiple application in
stances, web servers, and database servers.

So we were sure these new virtual servers would change our
lives. We could cleanly split each of these services onto its own
virtual machine (VM), and the ESX hypervisor software would
help us to squeeze the most out of the multicore server machines
and gobs of RAM we’d allocated. We could easily duplicate serv
ers to create new environments and archive those servers that
weren’t needed onto disk, confident they could be restored in the
future if needed.

Those servers did change our lives. But although many of our
old problems went away, we discovered new ones, and we had to
learn completely different ways of thinking about our infrastruc
ture.

Virtualization made creating and managing servers much
easier. The flip side of this was that we ended up creating far
more servers than we could have imagined. The product and
marketing people were delighted that we could give them a new
environment to demo things in well under a day, rather than
need them to find money in the budget and then wait a few
weeks for us to order and set up hardware servers.

The Sorcerer’s Apprentice
A year later, we were running well over 100 VMs and count

ing. We were well underway with virtualizing our production
servers and experimenting with Amazon’s new cloud host
ing service. The benefits virtualization had brought to the busi
ness people meant we had money for more ESX servers and for

1 Andrew Clay Shafer and Patrick Debois triggered the DevOps movement
with a talk at the Agile 2008 conference (http://www.jedi.be/presentations/
agileinfrastructureagile2008.pdf). The movement grew, mainly driven
by the series of DevOpsDays (http://www.devopsdays.org/) conferences
organized by Debois.

2 A BBS is a bulletin board system (https://en.wikipedia.org/wiki/
Bulletin_board_system).

“Infrastructure as code” tools expect
users to define their servers,

networking, and other elements of
an infrastructure in files modeled

after software source code. The tools
then compile and interpret these

files to decide what action to take.

http://www.jedi.be/presentations/agile-infrastructure-agile-2008.pdf
http://www.jedi.be/presentations/agile-infrastructure-agile-2008.pdf
http://www.jedi.be/presentations/agile-infrastructure-agile-2008.pdf
http://www.devopsdays.org/
https://en.wikipedia.org/wiki/Bulletin_board_system
https://en.wikipedia.org/wiki/Bulletin_board_system

5The NoCOUG Journal

shiny SAN devices to feed the surprising appetite our infra
structure had for storage.

But we found ourselves a bit like Mickey Mouse in “The Sor
cerer’s Apprentice” from Fantasia. We spawned virtual servers,
then more, then even more. They overwhelmed us. When some
thing broke, we tracked down the VM and fixed whatever was
wrong with it, but we couldn’t keep track of what changes we’d
made where.

Well, a perfect hit!
See how he is split!
Now there’s hope for me,
and I can breathe free!
Woe is me! Both pieces
come to life anew,
now, to do my bidding
I have servants two!
Help me, O great powers!
Please, I’m begging you!

—Excerpted from Brigitte Dubiel’s translation of
“Der Zauberlehrling” (“The Sorcerer’s Apprentice”)

by Johann Wolfgang von Goethe
As new updates to operating systems, web servers, app serv

ers, database servers, JVMs, and various other software packages
came out, we would struggle to install them across all of our
systems. We would apply them successfully to some servers, but
on others the upgrades broke things, and we didn’t have time to
stomp out every incompatibility. Over time, we ended up with
many combinations of versions of things strewn across hundreds
of servers.

We had been using configuration automation software even
before we virtualized, which should have helped with these is
sues. I had used CFEngine in previous companies, and when I
started this team, I tried a new tool called Puppet. Later, when
spiking out ideas for an AWS infrastructure, my colleague
Andrew introduced Chef. All of these tools were useful, but par
ticularly in the early days, they didn’t get us out of the quagmire
of wildly different servers.

The problem was that, although Puppet (and Chef and the oth
ers) should have been set up and left running unattended across
all of our servers, we couldn’t trust it. Our servers were just too
different. We would write manifests to configure and manage a
particular application server. But when we ran it against another,
theoretically similar app server, we found that different versions of
Java, application software, and OS components would cause the
Puppet run to fail, or worse, break the application server.

So we ended up using Puppet ad hoc. We could safely run it
against new VMs, although we might need to make some tweaks
after it ran. We would write manifests for a specific task and then
run them against servers one at a time, carefully checking the
result and making fixes as needed.

So configuration automation was a useful aid, somewhat bet
ter than shell scripts, but the way we used it didn’t save us from
our sprawl of inconsistent servers.

Cloud from Scratch
Things changed when we began moving things onto the

cloud. The technology itself wasn’t what improved things; we
could have done the same thing with our own VMware servers.
But because we were starting fresh, we adopted new ways of

managing servers based on what we had learned with our virtu
alized farm and on what we were reading and hearing from IT
Ops teams at companies like Flickr, Etsy, and Netflix. We baked
these new ideas into the way we managed services as we mi
grated them onto the cloud.

The key idea of our new approach was that every server could
be automatically rebuilt from scratch, and our configuration
tooling would run continuously, not ad hoc. Every server added
into our new infrastructure would fall under this approach. If
automation broke on some edge case, we would either change the
automation to handle it, or else fix the design of the service so it
was no longer an edge case.

The new regime wasn’t painless. We had to learn new habits,
and we had to find ways of coping with the challenges of a highly
automated infrastructure. As the members of the team moved on
to other organizations and got involved with communities such
as DevOpsDays, we learned and grew. Over time, we reached the
point where we were habitually working with automated infra
structures with hundreds of servers, with much less effort and
headache than we had been in our “Sorcerer’s Appren tice” days.

Joining ThoughtWorks was an eyeopener for me. The devel
opment teams I worked with were passionate about using XP
engineering practices like testdriven development (http://
martinfowler.com/bliki/TestDrivenDevelopment.html)
(TDD), continuous integration (http://www.martinfowler.com/
articles/continuousIntegration.html) (CI) and continuous de
livery (http://martinfowler.com/books/continuousDelivery.
html) (CD). Because I had already learned to manage infrastruc
ture scripts and configuration files in source control systems, it
was natural to apply these rigorous development and testing ap
proaches to them.

Working with ThoughtWorks has also brought me into con
tact with many IT operations teams, most of whom are using
virtualization, cloud, and automation tools to handle a variety of
challenges. Working with them to share and learn new ideas and
techniques has been a fantastic experience.

Why I’m Writing This Book
I’ve run across many teams who are in the same place I was a

few years ago: people who are using cloud, virtualization, and
automation tools but haven’t got it all running as smoothly as
they know they could.

The DevOps movement is mainly
about culture and collaboration
between software developers and

software operations people. Tooling
that manages infrastructure based

on a software development paradigm
has helped bring these communities
together. Infrastructure as Code is

one of the cornerstones of DevOps. It
is the “A” in “CAMS”: culture, auto
mation, measurement, and sharing.

http://martinfowler.com/bliki/TestDrivenDevelopment.html
http://martinfowler.com/bliki/TestDrivenDevelopment.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/books/continuousDelivery.html
http://martinfowler.com/books/continuousDelivery.html

6 November 2018

Much of the challenge is time. Daytoday life for system ad
ministrators is coping with a neverending flow of critical work.
Fighting fires, fixing problems, and setting up new business
critical projects doesn’t leave much time to work on the funda
mental improvements that will make the routine work easier.

My hope is that this book provides a practical vision for how
to manage IT infrastructure, with techniques and patterns that
teams can try and use. I will avoid the details of configuring and
using specific tools so that the content will be useful for working
with different tools, including ones that may not exist yet. Mean
while, I will use examples from existing tools to illustrate points
I make.

The infrastructureascode approach is essential for manag
ing cloud infrastructure of any real scale or complexity, but it’s
not exclusive to organizations using public cloud providers. The
techniques and practices in this book have proven effective in
virtualized environments and even for baremetal servers that
aren’t virtualized.

Infrastructure as Code is one of the cornerstones of DevOps.
It is the “A” in “CAMS” (http://itrevolution.com/devops-culture-
part-1/): culture, automation, measurement, and sharing.

Who This Book Is For
This book is for people who work with IT infrastructure, par

ticularly at the level of managing servers and collections of serv
ers. You may be a system administrator, infrastructure engineer,
team lead, architect, or a manager with technical interest. You
might also be a software developer who wants to build and use
infrastructure.

I’m assuming you have some exposure to virtualization or
IaaS (Infrastructure as a Service) cloud, so you know how to cre
ate a server, and the concepts of configuring operating systems.
You’ve probably at least played with configuration automation
software like Ansible, Chef, or Puppet.

While this book may introduce some readers to infrastructure
as code, I hope it will also be interesting to people who work this
way already and a vehicle through which to share ideas and start
conversations about how to do it even better.

What Tools Are Covered
This book doesn’t offer instructions in using specific scripting

languages or tools. There are code examples from specific tools,
but these are intended to illustrate concepts and approaches,

rather than to provide instruction. This book should be helpful
to you regardless of whether you use Chef on OpenStack, Puppet
on AWS, Ansible on bare metal, or a completely different stack.

The specific tools that I do mention are ones which I’m aware
of, and which seem to have a certain amount of traction in the
field. But this is a constantly changing landscape, and there are
plenty of other relevant tools.

The tools I use in examples tend to be ones with which I am
familiar enough to write examples that demonstrate the point
I’m trying to make. For example, I use Terraform for examples of
infrastructure definitions because it has a nice, clean syntax, and
I’ve used it on multiple projects. Many of my examples use Ama
zon’s AWS cloud platform because it is likely to be the most fa
miliar to readers.

How to Read This Book
Read Chapter 1, or at least skim it, to understand the terms

this book uses and the principles this book advocates. You can
then use this to decide which parts of the book to focus on.

If you’re new to this kind of automation, cloud, and infra
structure orchestration tool‐ ing, then you’ll want to focus on
Part I, and then move on to Part II. Get comfortable with those
topics before proceeding to Part III.

If you’ve been using the types of automation tools described
here, but don’t feel like you’re using them the way they’re in
tended after reading Chapter 1, then you may want to skip or
skim the rest of Part I. Focus on Part II, which describes ways of
using dynamic and automated infrastructure that align with the
principles outlined in Chapter 1.

If you’re comfortable with the dynamic infrastructure and
automation approaches described in Chapter 1, then you may
want to skim Parts I and II and focus on Part III, which gets more
deeply into the infrastructure management regime: architectural
approaches as well as team workflow.

Challenges and Principles
The new generation of infrastructure management technolo

gies promises to transform the way we manage IT infrastructure.
But many organizations today aren’t seeing any dramatic differ
ences, and some are finding that these tools only make life
messier. As we’ll see, infrastructure as code is an approach that
provides principles, practices, and patterns for using these tech
nologies effectively.

Why Infrastructure as Code?
Virtualization, cloud, containers, server automation, and

softwaredefined networking should simplify IT operations
work. It should take less time and effort to provision, configure,
update, and maintain services. Problems should be quickly de
tected and resolved, and systems should all be consistently con
figured and up to date. IT staff should spend less time on routine
drudgery, having time to rapidly make changes and improve
ments to help their organizations meet the everchanging needs
of the modern world.

But even with the latest and best new tools and platforms, IT
operations teams still find that they can’t keep up with their daily
workload. They don’t have the time to fix longstanding problems
with their systems, much less revamp them to make the best use
of new tools. In fact, cloud and automation often makes things
worse. The ease of provisioning new infrastructure leads to an

Virtualization made creating and
managing servers much easier. The
product and marketing people were
delighted that we could give them a

new environment in well under a day
but we found ourselves like Mickey

Mouse in “The Sorcerer’s
Apprentice” from Fantasia. We

spawned virtual servers, then more,
then even more.

http://itrevolution.com/devops-culture-part-1/
http://itrevolution.com/devops-culture-part-1/

7The NoCOUG Journal

evergrowing portfolio of systems, and it takes an everincreasing
amount of time just to keep everything from collapsing.

Adopting cloud and automation tools immediately lowers
barriers for making changes to infrastructure. But managing
changes in a way that improves consistency and reliability doesn’t
come out of the box with the software. It takes people to think
through how they will use the tools and put in place the systems,
processes, and habits to use them effectively.

Some IT organizations respond to this challenge by applying
the same types of processes, structures, and governance that they
used to manage infrastructure and software before cloud and
automation became commonplace. But the principles that ap
plied in a time when it took days or weeks to provision a new
server struggle to cope now that it takes minutes or seconds.

Legacy change management processes are commonly ignored,
bypassed, or overruled by people who need to get things done.3
Organizations that are more successful in enforcing these pro
cesses are increasingly seeing themselves outrun by more techni
cally nimble competitors.

Legacy change management approaches struggle to cope with
the pace of change offered by cloud and automation. But there is
still a need to cope with the evergrowing, continuously changing
landscape of systems created by cloud and automation tools. This
is where infrastructure as code4 comes in.

The Iron Age and the Cloud Age
In the “iron age” of IT, systems were directly bound to physi

cal hardware. Provisioning and maintaining infrastructure was
manual work, forcing humans to spend their time pointing,
clicking, and typing to keep the gears turning. Because changes
involved so much work, change management processes empha
sized careful upfront consideration, design, and review work.
This made sense because getting it wrong was expensive.

In the “cloud age” of IT, systems have been decoupled from
the physical hardware. Routine provisioning and maintenance
can be delegated to software systems, freeing the humans from
drudgery. Changes can be made in minutes, if not seconds.
Change management can exploit this speed, providing better
reliability along with faster time to market.

What Is Infrastructure as Code?
Infrastructure as code is an approach to infrastructure auto

mation based on practices from software development. It empha
sizes consistent, repeatable routines for provisioning and
changing systems and their configuration. Changes are made to
definitions and then rolled out to systems through unattended
processes that include thorough validation.

The premise is that modern tooling can treat infrastructure as
if it were software and data. This allows people to apply software
development tools such as version control systems (VCS), auto
mated testing libraries, and deployment orchestration to manage
infrastructure. It also opens the door to exploit development
practices such as testdriven development (TDD), continuous
integration (CI), and continuous delivery (CD).

Infrastructure as code has been proven in the most demand
ing environments. For companies like Amazon, Netflix, Google,
Facebook, and Etsy, IT systems are not just business critical; they
are the business. There is no tolerance for downtime. Amazon’s
systems handle hundreds of millions of dollars in transactions
every day. So it’s no surprise that organizations like these are pio

neering new practices for large scale, highly reliable IT infra
structure.

This book aims to explain how to take advantage of the cloud
era, infrastructureascode approaches to IT infrastructure man
agement. This chapter explores the pitfalls that organizations
often fall into when adopting the new generation of infrastruc

ture technology. It describes the core principles and key practices
of infrastructure as code that are used to avoid these pitfalls.

Goals of Infrastructure as Code
The types of outcomes that many teams and organizations

look to achieve through infrastructure as code include:
➤ IT infrastructure supports and enables change, rather than

being an obstacle or a constraint.
➤ Changes to the system are routine, without drama or stress

for users or IT staff.
➤ IT staff spends their time on valuable things that engage

their abilities, not on routine, repetitive tasks.
➤ Users are able to define, provision, and manage the re

sources they need, without needing IT staff to do it for
them.

➤ Teams are able to easily and quickly recover from failures,
rather than assuming failure can be completely prevented.

➤ Improvements are made continuously, rather than done
through expensive and risky “big bang” projects.

➤ Solutions to problems are proven through implementing,
testing, and measuring them, rather than by discussing
them in meetings and documents.

The infrastructureascode approach
is essential for managing cloud

infrastructure of any real scale or
complexity, but it’s not exclusive to

organizations using public cloud
providers. The principles and

practices of infrastructure as code
can be applied to infrastructure

whether it runs on cloud,
virtualized systems, or even directly

on physical hardware.

3 “Shadow IT” is when people bypass formal IT governance to bring in their
own devices, buy and install unapproved software, or adopt cloudhosted
services. This is typically a sign that internal IT is not able to keep up with
the needs of the organization it serves.

4 The phrase “infrastructure as code” doesn’t have a clear origin or author.
While writing this book, I followed a chain of people who have influenced
thinking around the concept, each of whom said it wasn’t them, but offered
suggestions. This chain had a number of loops. The earliest reference I
could find was from the Velocity conference in 2009, in a talk by Andrew
ClayShafer and Adam Jacob. John Willis may be the first to document the
phrase, in an article about the conference (http://itknowledgeexchange.
techtarget.com/cloud-computing/infrastructure-as-code/). Luke Kaines
has admitted that he may have been involved, the closest anyone has come
to accepting credit.

http://itknowledgeexchange.techtarget.com/cloud-computing/infrastructure-as-code/
http://itknowledgeexchange.techtarget.com/cloud-computing/infrastructure-as-code/

8 November 2018

Infrastructure as Code Is Not Just for the Cloud
Infrastructure as code has come into its own with cloud, be

cause it’s difficult to manage servers in the cloud well without it.
But the principles and practices of infrastructure as code can be
applied to infrastructure whether it runs on cloud, virtualized
systems, or even directly on physical hardware.

I use the phrase “dynamic infrastructure” to refer to the abil
ity to create and destroy servers programmatically; Chapter 2 is
dedicated to this topic. Cloud does this naturally, and virtualiza
tion platforms can be configured to do the same. But even hard
ware can be automatically provisioned so that it can be used in a
fully dynamic fashion. This is sometimes referred to as “bare
metal cloud.”

It is possible to use many of the concepts of infrastructure as
code with static infrastructure. Servers that have been manually
provisioned can be configured and updated using server con
figuration tools. However, the ability to effortlessly destroy and
rebuild servers is essential for many of the more advanced prac
tices described in this book.

Challenges with Dynamic Infrastructure
This section looks at some of the problems teams often see

when they adopt dynamic infrastructure and automated config
uration tools. These are the problems that infrastructure as code
addresses, so understanding them lays the groundwork for the
principles and concepts that follow.

Server Sprawl
Cloud and virtualization can make it trivial to provision new

servers from a pool of resources. This can lead to the number of
servers growing faster than the ability of the team to manage
them as well as they would like.

When this happens, teams struggle to keep servers patched
and up to date, leaving systems vulnerable to known exploits.
When problems are discovered, fixes may not be rolled out to all
of the systems that could be affected by them. Differences in ver
sions and configurations across servers mean that software and
scripts that work on some machines don’t work on others.

This leads to inconsistency across the servers, called configu-
ration drift.

Configuration Drift
Even when servers are initially created and configured consis

tently, differences can creep in over time:
➤ Someone makes a fix to one of the Oracle servers to fix a

specific user’s problem, and now it’s different from the
other Oracle servers.

➤ A new version of JIRA needs a newer version of Java, but
there’s not enough time to test all of the other Javabased
applications so that everything can be upgraded.

➤ Three different people install IIS on three different web
servers over the course of a few months, and each person
configures it differently.

➤ One JBoss server gets more traffic than the others and
starts struggling, so someone tunes it, and now its con
figuration is different from the other JBoss servers.

Being different isn’t bad. The heavily loaded JBoss server
probably should be tuned differently from ones with lower levels
of traffic. But variations should be captured and managed in a
way that makes it easy to reproduce and to rebuild servers and
services.

Unmanaged variation between servers leads to snowflake
servers and automation fear.

Snowflake Servers
A snowflake server is different from any other server on your

network. It’s special in ways that can’t be replicated.
Years ago I ran servers for a company that built web applica

tions for clients, most of which were monstrous collections of
Perl CGI. (Don’t judge us, this was the dotcom era, and every
one was doing it.) We started out using Perl 5.6, but at some
point the best libraries moved to Perl 5.8 and couldn’t be used on
5.6. Eventually almost all of our newer applications were built
with 5.8 as well, but there was one particularly important client
application that simply wouldn’t run on 5.8.

It was actually worse than this. The application worked fine
when we upgraded our shared staging server to 5.8, but crashed
when we upgraded the staging environment. Don’t ask why we
upgraded production to 5.8 without discovering the problem
with staging, but that’s how we ended up. We had one special
server that could run the application with Perl 5.8, but no other
server would.

We ran this way for a shamefully long time, keeping Perl 5.6
on the staging server and crossing our fingers whenever we de
ployed to production. We were terrified to touch anything on the
production server, afraid to disturb whatever magic made it the
only server that could run the client’s application.

This situation led us to discover Infrastructures.Org (http://
www.infrastructures.org/index.shtml), a site that introduced
me to ideas that were a precursor to infrastructure as code. We
made sure that all of our servers were built in a repeatable way,
installing the operating system with the Fully Automated In stal
lation (FAI) tool (http://bit.ly/1spUXvl), configuring the server
with CFEngine, and checking everything into our CVS version
control system (http://www.nongnu.org/cvs/).

In the “iron age” of IT, provisioning and maintaining infrastructure was
manual work, forcing humans to spend their time pointing, clicking, and
typing to keep the gears turning. Because changes involved so much work,
change management processes emphasized careful upfront consideration,
design, and review work. In the “cloud age” of IT, routine provisioning and

maintenance can be delegated to software systems, freeing the humans
from drudgery. Changes can be made in minutes, if not seconds.

http://www.infrastructures.org/index.shtml
http://www.infrastructures.org/index.shtml
http://bit.ly/1spUXvl
http://www.nongnu.org/cvs/

9The NoCOUG Journal

As embarrassing as this story is, most IT operations teams
have similar stories of special servers that couldn’t be touched,
much less reproduced. It’s not always a mysterious fragility;
sometimes there is an important software package that runs on
an entirely different OS than everything else in the infrastruc
ture. I recall an accounting package that needed to run on AIX,
and a PBX system running on a Windows NT 3.51 server spe
cially installed by a longforgotten contractor.

Once again, being different isn’t bad. The problem is when the
team that owns the server doesn’t understand how and why it’s
different, and wouldn’t be able to rebuild it. An operations team
should be able to confidently and quickly rebuild any server in
their infrastructure. If any server doesn’t meet this requirement,
constructing a new, reproducible process that can build a server
to take its place should be a leading priority for the team.

Fragile Infrastructure
A fragile infrastructure is easily disrupted and not easily fixed.

This is the snowflake server problem expanded to an entire port
folio of systems.

The solution is to migrate everything in the infrastructure to
a reliable, reproducible infrastructure, one step at a time. The
Visible Ops Handbook5 outlines an approach for bringing stability
and predictability to a difficult infrastructure.

Don’t touch that server. Don’t point at it. Don’t even look at it.
There is the possibly apocryphal story of the data center with

a server that nobody had the login details for, and nobody was
certain what the server did. Someone took the bull by the horns
and unplugged the server from the network. The network failed
completely, the cable was plugged back in, and nobody ever
touched the server again.

Automation Fear
At an Open Space session (http://en.wikipedia.org/wiki/

Open_Space_Technology) on configuration automation at a
DevOpsDays conference (http://www.devopsdays.org/), I asked
the group how many of them were using automation tools like
Puppet or Chef. The majority of hands went up. I asked how
many were running these tools unattended, on an automatic
schedule. Most of the hands went down.

Many people have the same problem I had in my early days of
using automation tools. I used automation selectively—for ex
ample, to help build new servers, or to make a specific configura
tion change. I tweaked the configuration each time I ran it, to suit
the particular task I was doing.

I was afraid to turn my back on my automation tools, because
I lacked confidence in what they would do.

I lacked confidence in my automation because my servers
were not consistent.

My servers were not consistent because I wasn’t running auto
mation frequently and consistently.

This is the automation fear spiral, as shown in Figure 11, and
infrastructure teams need to break this spiral to use automation
successfully. The most effective way to break the spiral is to face
your fears. Pick a set of servers, tweak the configuration defini
tions so that you know they work, and schedule them to run
unattended, at least once an hour. Then pick another set of serv
ers and repeat the process, and so on until all of your servers are
continuously updated.

5 First published in 2005, the Visible Ops Handbook (http://www.amazon.
com/Visible-Ops-Handbook-Implementing-Practical-ebook/dp/
B002BWQBEE) by Gene Kim, George Spafford, and Kevin Behr (IT
Process Institute, Inc.) was written before DevOps, virtualization, and au
tomated configuration became mainstream, but it’s easy to see how infra
structure as code can be used within the framework described by the
authors.

Figure 1-1. The automation fear spiral

In an ideal world, you would never need to touch an auto
mated infrastructure once you’ve built it, other than to support
something new or fix things that break. Sadly, the forces of en
tropy mean that even without a new requirement, infrastructure
decays over time. The folks at Heroku call this erosion (https://
devcenter.heroku.com/articles/erosion-resistance). Erosion is
the idea that problems will creep into a running system over
time.

The Heroku folks give these examples of forces that can erode
a system over time:

➤ Operating system upgrades, kernel patches, and infra
structure software (e.g., Apache, MySQL, SSH, OpenSSL)
updates to fix security vulnerabilities

➤ The server’s disk filling up with logfiles
➤ One or more of the application’s processes crashing or get

ting stuck, requiring someone to log in and restart them
➤ Failure of the underlying hardware causing one or more

entire servers to go down, taking the application with it

Principles of Infrastructure as Code
This section describes principles that can help teams over

come the challenges described earlier in this chapter.

Systems Can Be Easily Reproduced
It should be possible to effortlessly and reliably rebuild any

element of an infrastructure. Effortlessly means that there is no
need to make any significant decisions about how to rebuild the
thing. Decisions about which software and versions to install on
a server, how to choose a hostname, and so on should be cap
tured in the scripts and tooling that provision it.

The ability to effortlessly build and rebuild any part of the
infrastructure is powerful. It removes much of the risk, and fear,
when making changes. Failures can be handled quickly and with
confidence. New services and environments can be provisioned
with little effort.

Approaches for reproducibly provisioning servers and other
infrastructure elements are discussed in Part II of this book.

http://en.wikipedia.org/wiki/Open_Space_Technology
http://en.wikipedia.org/wiki/Open_Space_Technology
http://www.devopsdays.org/
http://www.amazon.com/Visible-Ops-Handbook-Implementing-Practical-ebook/dp/B002BWQBEE
http://www.amazon.com/Visible-Ops-Handbook-Implementing-Practical-ebook/dp/B002BWQBEE
http://www.amazon.com/Visible-Ops-Handbook-Implementing-Practical-ebook/dp/B002BWQBEE
https://devcenter.heroku.com/articles/erosion-resistance
https://devcenter.heroku.com/articles/erosion-resistance

10 November 2018

Systems Are Disposable
One of the benefits of dynamic infrastructure is that resourc

es can be easily created, destroyed, replaced, resized, and moved.
In order to take advantage of this, systems should be designed to
assume that the infrastructure will always be changing. Software
should continue running even when servers disappear, appear,
and when they are resized.

The ability to handle changes gracefully makes it easier to
make improvements and fixes to running infrastructure. It also
makes services more tolerant to failure. This becomes especially
important when sharing largescale cloud infrastructure, where
the reliability of the underlying hardware can’t be guaranteed.

Cattle, Not Pets
A popular expression is to “treat your servers like cattle, not

pets.”6 I miss the days of having themes for server names and
carefully selecting names for each new server I provisioned. But
I don’t miss having to manually tweak and massage every server
in our estate.

A fundamental difference between the iron age and cloud age
is the move from unreliable software, which depends on the
hardware to be very reliable, to software that runs reliably on
unreliable hardware.7 See Chapter 14 for more on how embrac
ing disposable infrastructure can be used to improve service
continuity.

The Case of the Disappearing File Server
The idea that servers aren’t permanent things can take time to

sink in. On one team, we set up an automated infrastructure
using VMware and Chef, and got into the habit of casually delet

ing and replacing VMs. A developer, needing a web server to
host files for teammates to download, installed a web server onto
a server in the development environment and put the files there.
He was surprised when his web server and its files disappeared a
few days later.

After a bit of confusion, the developer added the configura
tion for his file repository to the Chef configuration, taking ad
vantage of tooling we had to persist data to a SAN. The team
ended up with a highly reliable, automatically configured file
sharing service.

To borrow a cliche, the disappearing server is a feature, not a
bug. The old world where people installed ad hoc tools and
tweaks in random places leads straight to the old world of snow
flakes and untouchable fragile infrastructure. Although it was
uncomfortable at first, the developer learned how to use infra
structure as code to build services—a file repository in this
case—that are reproducible and reliable.

Systems Are Consistent
Given two infrastructure elements providing a similar ser

vice—for example, two application servers in a cluster—the serv
ers should be nearly identical. Their system software and
configuration should be the same, except for those bits of con
figuration that differentiate them, like their IP addresses.

Letting inconsistencies slip into an infrastructure keeps you
from being able to trust your automation. If one file server has an
80 GB partition, while another has 100 GB, and a third has 200
GB, then you can’t rely on an action to work the same on all of
them. This encourages doing special things for servers that don’t
quite match, which leads to unreliable automation.

Teams that implement the reproducibility principle can easily
build multiple identical infrastructure elements. If one of these
elements needs to be changed (e.g., one of the file servers needs
a larger disk partition), there are two ways that keep consistency.
One is to change the definition so that all file servers are built
with a large enough partition to meet the need. The other is to
add a new class, or role, so that there is now an “xlfileserver”
with a larger disk than the standard file server. Either type of
server can be built repeatedly and consistently.

Being able to build and rebuild consistent infrastructure helps
with configuration drift. But clearly, changes that happen after
servers are created need to be dealt with. Ensuring consistency
for existing infrastructure is the topic of Chapter 8.

Processes Are Repeatable
Building on the reproducibility principle, any action you

carry out on your infrastructure should be repeatable. This is an
obvious benefit of using scripts and configuration management
tools rather than making changes manually, but it can be hard to
stick to doing things this way, especially for experienced system
administrators.

For example, if I’m faced with what seems like a oneoff task
like partitioning a hard drive, I find it easier to just log in and do
it, rather than to write and test a script. I can look at the system
disk, consider what the server I’m working on needs, and use my
experience and knowledge to decide how big to make each parti
tion, what filesystem to use, and so on.

The problem is that later on, someone else on my team might
partition a disk on another machine and make slightly different
decisions. Maybe I made an 80 GB /var partition using ext3 on

6 CloudConnect CTO Randy Bias attributed this expression to former
Microsoft employee Bill Baker, from his presentation “Architectures for
Open and Scalable Clouds” (http://www.slideshare.net/randybias/ archi-
tectures-for-open-and-scalable-clouds). I first heard it in Gavin McCance’s
presentation “CERN Data Centre Evolution” (http://www.slideshare.net/
gmccance/cern-data-centre-evolution). Both of these presentations are
excellent.

7 Sam Johnson described this view of the reliability of hardware and soft
ware in his article, “Simplifying Cloud: Reliability” (http://samj.
net/2012/03/08/simplifying-cloud-reliability/).

The types of outcomes include: IT
infrastructure supports and enables

change, rather than being an obstacle
or a constraint; changes to the system
are routine, without drama or stress
for users or IT staff; IT staff spends
their time on valuable things that

engage their abilities, not on routine,
repetitive tasks; and users are able to

define, provision, and manage the
resources they need, without needing

IT staff to do it for them.

http://www.slideshare.net/randybias/%20architectures-for-open-and-scalable-clouds
http://www.slideshare.net/randybias/%20architectures-for-open-and-scalable-clouds
http://www.slideshare.net/gmccance/cern-data-centre-evolution
http://www.slideshare.net/gmccance/cern-data-centre-evolution
http://samj.net/2012/03/08/simplifying-cloud-reliability/
http://samj.net/2012/03/08/simplifying-cloud-reliability/

11The NoCOUG Journal

one file server, but Priya made /var 100 GB on another file server
in the cluster, and used xfs. We’re failing the consistency principle,
which will eventually undermine the ability to automate things.

Effective infrastructure teams have a strong scripting culture.
If a task can be scripted, script it. If a task is hard to script, drill
down and see if there’s a technique or tool that can help, or
whether the problem the task is addressing can be handled in a
different way.

Design Is Always Changing
With ironage IT, making a change to an existing system is

difficult and expensive. So limiting the need to make changes to
the system once it’s built makes sense. This leads to the need for
comprehensive initial designs that take various possible require
ments and situations into account.

Because it’s impossible to accurately predict how a system will
be used in practice, and how its requirements will change over
time, this approach naturally creates overly complex systems.
Ironically, this complexity makes it more difficult to change and
improve the system, which makes it less likely to cope well in the
long run.

With cloudage dynamic infrastructure, making a change to
an existing system can be easy and cheap. However, this assumes
everything is designed to facilitate change. Software and infra
structure must be designed as simply as possible to meet current
requirements. Change management must be able to deliver
changes safely and quickly.

The most important measure to ensure that a system can be
changed safely and quickly is to make changes frequently. This
forces everyone involved to learn good habits for managing
changes, to develop efficient, streamlined processes, and to im
plement tooling that supports doing so.

Practices
The previous section outlined highlevel principles. This sec

tion describes some of the general practices of infrastructure as
code.

Use Definition Files
The cornerstone practice of infrastructure as code is the use

of definition files. A definition specifies infrastructure elements
and how they should be configured. The definition file is used as
input for a tool that carries out the work to provision and/or
configure instances of those elements. Example 11 is an example
of a definition file for a database server node.

The infrastructure element could be a server; a part of a
server, such as a user account; network configuration, such as a
load balancer rule; or many other things. Different tools have
different terms for this: for example, playbooks (Ansible), recipes
(Chef), or manifests (Puppet). The term “configuration defini
tion file” is used in this book as a generic term for these.
Example 1-1. Example of a definition file using a DSL

server: dbnode
 base_image: centos72
 chef_role: dbnode
 network_segment: prod_db
 allowed_inbound:
 from_segment: prod_app
 port: 1521
 allowed_inbound:
 from_segment: admin
 port: 22

Definition files are managed as text files. They may use a
standard format such as JSON, YAML, or XML. Or they may
define their own domainspecific language (DSL).8

Keeping specifications and configurations in text files makes
them more accessible than storing them in a tool’s internal con
figuration database. The files can also be treated like software
source code, bringing a wide ecosystem of development tools to
bear.

Self-Documented Systems and Processes
IT teams commonly struggle to keep their documentation

relevant, useful, and accurate. Someone might write up a com
prehensive document for a new process, but it’s rare for such
documents to be kept up to date as changes and improvements
are made to the way things are done. And documents still often
leave gaps. Different people find their own shortcuts and im
provements. Some people write their own personal scripts to
make parts of the process easier.

So although documentation is often seen as a way to enforce
consistency, standards, and even legal compliance, in practice it’s
a fictionalized version of what really happens.

With infrastructure as code, the steps to carry out a process
are captured in the scripts, definition files, and tools that actually
implement the process. Only a minimum of added documenta
tion is needed to get people started. The documentation that
does exist should be kept close to the code it documents, to make
sure it’s close to hand and mind when people make changes.

Automatically Generating Documentation
On one project, my colleague Tom Duckering found that the

team responsible for deploying software to production insisted
on doing it manually. Tom had implemented an automated de
ployment using Apache Ant, but the production team wanted
written documentation for a manual process.

So Tom wrote a custom Ant task that printed out each step of
the automated deployment process. This way, a document was

The problems that Infrastructure as
Code addresses are Server Sprawl,

Snowflake Servers, Fragile
Infrastructure, and Erosion. The

Principles of Infrastructure as Code
are: Systems Can Be Easily

Reproduced; Systems Are Disposable;
Cattle, Not Pets; Systems Are

Consistent; Processes Are Repeatable;
and Design Is Always Changing.

8 As defined by Martin Fowler and Rebecca Parsons in Domain-Specific
Languages (http://martinfowler.com/books/dsl.html) (AddisonWesley
Professional), “DSLs are small languages, focused on a particular aspect of
a software system. You can’t build a whole program with a DSL, but you
often use multiple DSLs in a system mainly written in a generalpurpose
language.” Their book is a good reference on domainspecific languages,
although it’s written more for people thinking about implementing one
than for people using them.

hhttp://martinfowler.com/books/dsl.html

12 November 2018

generated with the exact steps, down to the command lines to
type. His team’s continuous integration server generated this
document for every build, so they could deliver a document that
was accurate and up to date. Any changes to the deployment
script were automatically included in the document without any
extra effort.

Version All the Things
The version control system (VCS) is a core part of infrastruc

ture that is managed as code. The VCS is the source of truth for
the desired state of infrastructure. Changes to infrastructure are
driven by changes committed to the VCS.

Reasons why VCS is essential for infrastructure management
include:

Traceability
VCS provides a history of changes that have been made, who

made them, and ideally, context about why. This is invaluable
when debugging problems.

Rollback
When a change breaks something—and especially when mul

tiple changes break something—it’s useful to be able to restore
things to exactly how they were before.

Correlation
When scripts, configuration, artifacts, and everything across

the board are in version control and correlated by tags or version
numbers, it can be useful for tracing and fixing more complex
problems.

Visibility
Everyone can see when changes are committed to a version

control system, which helps situational awareness for the team.
Someone may notice that a change has missed something impor
tant. If an incident happens, people are aware of recent commits
that may have triggered it.

Actionability
VCSs can automatically trigger actions when a change is com

mitted. This is a key to enabling continuous integration and
continuous delivery pipelines.

Chapter 4 explains how VCS works with configuration man
agement tools, and Chap‐ter 10 discusses approaches to manag
ing your infrastructure code and definitions.

Continuously Test Systems and Processes
Effective automated testing is one of the most important prac

tices that infrastructure teams can borrow from software devel
opment. Automated testing is a core practice of highperforming
development teams. They implement tests along with their code
and run them continuously, typically dozens of times a day as
they make incremental changes to their codebase.

It’s difficult to write automated tests for an existing, legacy
system. A system’s design needs to be decoupled and structured
in a way that facilitates independently testing components.
Writing tests while implementing the system tends to drive
clean, simple design, with loosely coupled components.

Running tests continuously during development gives fast
feedback on changes. Fast feedback gives people the confidence
to make changes quickly and more often. This is especially pow
erful with automated infrastructure, because a small change can
do a lot of damage very quickly (aka DevOops, as described in
“DevOops” on page 228). Good testing practices are the key to
eliminating automation fear.

Chapter 11 explores practices and techniques for implement
ing testing as part of the system, and particularly how this can be
done effectively for infrastructure.

Small Changes Rather Than Batches
When I first got involved in developing IT systems, my in

stinct was to implement a complete piece of work before putting
it live. It made sense to wait until it was “done” before spending
the time and effort on testing it, cleaning it up, and generally
making it “production ready.” The work involved in finishing it
up tended to take a lot of time and effort, so why do the work
before it’s really needed?

However, over time I’ve learned to the value of small changes.
Even for a big piece of work, it’s useful to find incremental
changes that can be made, tested, and pushed into use, one by
one. There are a lot of good reasons to prefer small, incremental
changes over big batches:

➤ It’s easier, and less work, to test a small change and make
sure it’s solid.

➤ If something goes wrong with a small change, it’s easier to
find the cause than if something goes wrong with a big
batch of changes.

➤ It’s faster to fix or reverse a small change.
➤ One small problem can delay everything in a large batch

of changes from going ahead, even when most of the other
changes in the batch are fine.

➤ Getting fixes and improvements out the door is motivat
ing. Having large batches of unfinished work piling up,
going stale, is demotivating.

As with many good working practices, once you get the habit,
it’s hard to not do the right thing. You get much better at releas
ing changes. These days, I get uncomfortable if I’ve spent more
than an hour working on something without pushing it out.

Keep Services Available Continuously
It’s important that a service is always able to handle requests,

in spite of what might be happening to the infrastructure. If a
server disappears, other servers should already be running, and
new ones quickly started, so that service is not interrupted. This

The practices of Infrastructure as
Code are Use Definition Files; Self

Documented Systems and Processes;
Automatically Generating

Documentation; Version All the
Things; Continuously Test Systems

and Processes; Small Changes
Rather Than Batches; Keep Services

Available Continuously; and
Antifragility: Beyond “Robust”

13The NoCOUG Journal

is nothing new in IT, although virtualization and automation can
make it easier.

Data management, broadly defined, can be trickier. Service
data can be kept intact in spite of what happens to the servers
hosting it through replication and other approaches that have
been around for decades. When designing a cloudbased system,
it’s important to widen the definition of data that needs to be
persisted, usually including things like application configuration,
logfiles, and more.

The chapter on continuity (Chapter 14) goes into techniques
for keeping service and data continuously available.

Antifragility: Beyond “Robust”
Robust infrastructure is a typical goal in IT, meaning systems

will hold up well to shocks such as failures, load spikes, and at
tacks. However, infrastructure as code lends itself to taking infra
structure beyond robust, becoming antifragile.

Nicholas Taleb coined the term “antifragile” with his book of
the same title (http://www.amazon.com/Antifragile-Things-
that-Gain-Disorder/dp/0141038225), to describe systems that
actually grow stronger when stressed. Taleb’s book is not IT
specific—his main focus is on financial systems—but his ideas
are relevant to IT architecture.

The effect of physical stress on the human body is an example
of antifragility in action. Exercise puts stress on muscles and
bones, essentially damaging them, causing them to become
stronger. Protecting the body by avoiding physical stress and
exercise actually weakens it, making it more likely to fail in the
face of extreme stress.

Similarly, protecting an IT system by minimizing the number
of changes made to it will not make it more robust. Teams that
are constantly changing and improving their systems are much
more ready to handle disasters and incidents.

The key to an antifragile IT infrastructure is making sure that
the default response to incidents is improvement. When some
thing goes wrong, the priority is not simply to fix it, but to im
prove the ability of the system to cope with similar incidents in
the future.

The Secret Ingredient of Antifragile IT Systems
People are the part of the system that can cope with unex

pected situations and modify the other elements of the system to
handle similar situations better the next time around. This
means the people running the system need to understand it quite
well and be able to continuously modify it.

This doesn’t fit the idea of automation as a way to run things
without humans. Someday it might be possible to buy a standard
corporate IT infrastructure off the shelf and run it as a black box,

without needing to look inside, but this isn’t possible today. IT
technology and approaches are constantly evolving, and even in
nontechnology businesses, the most successful companies are
the ones continuously changing and improving their IT.

The key to continuously improving an IT system is the people
who build and run it. So the secret to designing a system that can
adapt as needs change is to design it around the people.9

Conclusion
The hallmark of an infrastructure team’s effectiveness is how

well it handles changing requirements. Highly effective teams
can handle changes and new requirements easily, breaking down
requirements into small pieces and piping them through in a
rapid stream of lowrisk, lowimpact changes.

Some signals that a team is doing well:
➤ Every element of the infrastructure can be rebuilt quickly,

with little effort.
➤ All systems are kept patched, consistent, and up to date.
➤ Standard service requests, including provisioning stan

dard servers and environments, can be fulfilled within
minutes, with no involvement from infrastructure team
members. SLAs are unnecessary.

➤ Maintenance windows are rarely, if ever, needed. Changes
take place during working hours, including software de
ployments and other highrisk activities.

➤ The team tracks mean time to recover (MTTR) and fo
cuses on ways to improve this. Although mean time be
tween failure (MTBF) may also be tracked, the team does
not rely on avoiding failures.10

➤ Team members feel their work is adding measurable value
to the organization.

Every element of the infrastructure can be rebuilt quickly, with little effort;
all systems are kept patched, consistent, and up to date; standard service

requests, including provisioning standard servers and environments, can be
fulfilled within minutes, with no involvement from infrastructure team

members; SLAs are unnecessary; maintenance windows are rarely,
if ever, needed; and changes take place during working hours,
including software deployments and other highrisk activities.

9 Brian L. Troutwin gave a talk at DevOpsDays Ghent in 2014 titled
“Auto mation, with Humans in Mind” (http://www.slideshare.net/
BrianTroutwine1/automation-with-humans-in-mind-making-complex-
systems-predictable-reliable-and-humane). He gave an example from
NASA of how humans were able to modify the systems on the Apollo 13
spaceflight to cope with disaster. He also gave many details of how the hu
mans at the Chernobyl nuclear power plant were prevented from interfering
with the automated systems there, which kept them from taking steps to
stop or contain disaster.

10 See John Allspaw’s seminal blog post, “MTTR is more important than
MTBF (for most types of F)” (http:// www.kitchensoap.com/2010/11/07/
mttr-mtbf-for-most-types-of-f/).

http://www.amazon.com/Antifragile-Things-that-Gain-Disorder/dp/0141038225
http://www.amazon.com/Antifragile-Things-that-Gain-Disorder/dp/0141038225
http://www.slideshare.net/BrianTroutwine1/automation-with-humans-in-mind-making-complex-systems-predictable-reliable-and-humane
http://www.slideshare.net/BrianTroutwine1/automation-with-humans-in-mind-making-complex-systems-predictable-reliable-and-humane
http://www.slideshare.net/BrianTroutwine1/automation-with-humans-in-mind-making-complex-systems-predictable-reliable-and-humane
http://www.kitchensoap.com/2010/11/07/mttr-mtbf-for-most-types-of-f/
http://www.kitchensoap.com/2010/11/07/mttr-mtbf-for-most-types-of-f/

14 November 2018

B R I A N ’ S
N O T E S

Details
Author: Neha Narkhede, Gwen Shapira, and Todd Palino
ISBN-13: 9781491936160
Publication Date: September 29, 2017
Publisher: O’Reilly Media

Summary
I had not worked with Kafka or any streamprocessing soft

ware before reading this book. If you already know that you need
to process stream data and you’ve already chosen Kafka as your
solution, this book appears to be the definitive guide.

Foreword
We are told that Kafka is being used by thousands of organi

zations and is part of a movement to manage streams of data.
Kafka came from internal systems at LinkedIn, where they had
systems to store data but could not process continuous flows of
data. Earlier attempts used messaging systems, log aggregation,
and ETL tools, none of which really worked. Data is always
growing and evolving, and it has become a continuous stream.
Kafka is a streaming platform that supports publishing and sub
scribing to data streams as well as storing and processing them.
Kafka is a powerful abstraction for creating applications. It is like
a messaging system, but it has three important differences: it is
distributed (it runs as a cluster and scales); it stores data as long
as you need to; and it provides stream processing (it can compute
derived streams dynamically with less code).

Kafka was designed to be a realtime version of Hadoop. It
can be seen as a superset of the batch processing usually done
with Hadoop, featuring the continuous, lowlatency functional
ity needed by nearrealtime business applications. Making use
of streams of data requires a mind shift compared to a world of
requestandresponse systems and relational databases. Clearly,
relational databases have been moved into the natural history

museum next to the diorama depicting cave people. Please come
see me: I’m next to the pterodactyls and the punch card reader.

Preface
Popular use cases for Kafka are described: as a message bus

for eventdriven microservices, for stream processing, and for
largescale data pipelines.

We are told that this book is for software and production en
gineers as well as data architects. It is assumed that the reader has
some knowledge of Java and Linux. The book is also written for
those who want to know what guarantees Kafka offers to provide
support for managers who move to Kafka.

Chapter 1—Meet Kafka
This chapter starts off with a philosophical tone. The authors

state that data is used by every business, and all of our applica
tions create data. Okay so far. Then they assert that every byte of
data is important, but here I disagree: I think that most, perhaps
80%, of what is stored in the cloud isn’t worth much, if anything.
I realize that perhaps even this data can be analyzed in some way,
but I remain skeptical. I think we store a lot more data than we
will ever make use of, and we do this because it’s cheaper to store
data than it is to determine which data is worth keeping. I think
the value of most of the data we store is vanishingly small, but
time will tell.

Next, we have a description of publish/subscribe messaging
with diagrams, and we see how the problem starts, with indi
vidual queue systems that create lots of duplication. Kafka solves
this problem by providing a distributed commit log and a dis
tributing streaming platform. Data in Kafka is stored in order
and stored safely so it can be found as needed.

Messages and batches are covered next. The unit of data in
Kafka is a message, similar to a database row. A message in Kafka
is an array of bytes that may have a metadata key. Messages are
written in batches for efficiency. Schemas can be used to provide

Kafka: The Definitive Guide

Real-Time Data and
Stream Processing at Scale

Book notes by Brian Hitchcock Brian Hitchcock

“LinkedIn had problems with its custom collectors. Data was not collected
often enough; the systems required lots of human intervention, and many

different systems were gathering and providing different kinds of data. Kafka
was developed to address these issues—specifically, to decouple producers and

consumers using a pushpull model, support persistence for message data,
provide high throughput, and support horizontal scaling.”

15The NoCOUG Journal

structure to the messages. These can be JSON, XML, or Apache
Avro, a serialization framework from Hadoop. It is very impor
tant to use a consistent data format so that writing and reading
messages don’t have to be tightly coupled.

Topics are categories of messages and are made up of parti
tions, and messages are ordered within each partition. Partitions
can be on different servers for scaling. A stream is a single topic
of data, which may have many partitions.

Producers create messages and consumers read them in order
by subscribing to topics. Within each partition, the offset is also
metadata, an increasing integer value that shows where a mes
sage is located in a partition. Consumers can read, stop reading,
and then start reading again where they left off.

Consumers belong to consumer groups; each partition is read
by only one consumer, but multiple partitions can be read by a
single consumer and we see multiple diagrams illustrating all of
this. A broker is a single Kafka server that handles the messages.
Clusters are made up of multiple brokers, with one being the
cluster controller. If the controller fails, there is a protocol for the
remaining brokers to choose a new controller. Sounds like Oracle
RAC, doesn’t it?

Retention is a key feature of Kafka and can be specified by
time and topic size. Defaults are set for time, perhaps 7 days, or
topic size, perhaps 1 GB. Multiple clusters are used for separating
types of data, security, and disaster recovery. Kafka includes
Mirror Maker for replicating data within a cluster, and there are
diagrams explaining different configuration options.

The next section poses the question “Why Kafka?” but the
answer didn’t work for me. The reasons given are that Kafka
handles multiple producers and consumers without interference;
it features diskbased retention; and it is scalable and high per
formance, supporting subsecond message latency from producer
to consumer. These are all great reasons to use Kafka but only if
we assume there are no other products that offer any of these
features. What evidence is there to support the claims of scal
ability and performance? Is there any standard test to measure
stream processing? I don’t think this is enough for me to go to my
management and explain why we must move to Kafka.

Kafka is described as the circulatory system of the data eco
system and we have more figures. The following use cases are
described: activity tracking, messaging, metrics and logging,
commit log, and stream processing.

I was hoping that one particular topic would be covered:
Kafka’s origin story. It started when LinkedIn had problems with
its custom collectors. Data was not collected often enough; the
systems required lots of human intervention, and many different
systems were gathering and providing different kinds of data.
Kafka was developed to address these issues—specifically, to
decouple producers and consumers using a pushpull model,
support persistence for message data, provide high throughput,
and support horizontal scaling. Another feature is that Kafka is
open source which means there is a large community working to
improve the software all the time. The name was chosen because
Kafka was a writer and this software writes lots of messages—
which, we are told, isn’t a very good reason for the name.

Chapter 2—Installing Kafka
To start the process, you install Apache Kafka broker and

Apache Zookeeper for storing broker metadata. First you must
choose an operating system; Linux is recommended. When you

install Java, it should be Java 8. Next is to install Zookeeper, and
there are diagrams and code samples for this task. The Kafka
broker is then installed and configured, followed by setting up
topic defaults and the number of partitions for each topic.

Hardware selection is discussed with sections on disk through
put, capacity, and memory. Kafka should run on a dedicated
system. Networking and CPU are issues as well. It was interesting
to see options for running Kafka in the cloud using Amazon Web
Services (AWS) as an example. Diagrams show the setup for a
single cluster and multiple brokers. For virtual memory it is gen

erally recommended that you don’t configure any swap space,
but this can be a bad thing on recent versions of Linux. Filesystem
choices and networking configuration options are reviewed.

When you move to production, Garbage Collection (GC)
concerns and options need to be reviewed. You also need to con
sider the data center layout; ideally you would have brokers in
different physical racks so that the failure of one rack means only
losing one broker.

This chapter shows us that Kafka has lots of tuning options.
Just as the database becomes autonomous, we now need to tune
the messaging system. I guess this is progress?

I expected a discussion of inmemory operations as an option
under disk storage, but it wasn’t covered. I wonder if anyone is
running Kafka totally in memory as some databases are these
days.

Chapter 3—Kafka Producers: Writing Messages to Kafka
You may use Kafka as a message bus, a queue, or a data storage

system, but in all cases you create a producer to write data to
Kafka and a consumer to read that data. You may create an ap
plication that does both.

A credit card transaction processing system is described as an
example.

There are sections covering, with diagrams, how to set up the
producer, construct a Kafka producer and required properties,
send a message to Kafka with code samples, and send a message
synchronously and asynchronously.

When configuring producers, the ACKS parameter controls
what, if any, reply is required from the broker before a message is
considered sent. Other parameters include buffer memory, com
pression type, retries, and batch size. Kafka comes with serializ
ers that support strings, integers, and byte arrays. For other data
types you need to use a custom serializer. Debugging compatibil
ity issues between serializer versions can be difficult. Using Avro
records with Kafka is described, including diagrams and code
samples. Other items that are covered include partitions, custom
partition strategy, and older producer APIs that shouldn’t be
used.

“It is like a messaging system, but it
has three important differences: it is
distributed (it runs as a cluster and
scales); it stores data as long as you

need to; and it provides stream
processing (it can compute derived

streams dynamically with less code).”

16 November 2018

Chapter 4—Kafka Consumers: Reading Data from Kafka
Consumers are used by applications that need to read data

from Kafka.
We start with Kafka consumer concepts and consumer

groups. There are diagrams showing different ways that consum
ers in groups relate to topics and partitions. We are told that
Kafka scales, without a performance hit, to support many more
consumers and groups than previous messaging systems. I
would have liked more details and metrics on this assertion, but
none are presented.

The next section covers consumer groups and partition rebal
ance. Rebalance is a short window during which consumers can’t
read messages when, for example, some part of the messaging
system fails.

Heartbeats are sent to the broker to maintain which consum
ers are part of which groups and which partitions they own. Note
that heartbeat behavior has changed in more recent versions of
Kafka. The process of assigning partitions to brokers is de
scribed.

Next is how to create a Kafka consumer and subscribe to top
ics.

The consumer uses a poll loop to find out if the server has
more data and a code sample of this loop is provided. When
configuring consumers, there are many parameters to set up.

In the description of commits and offsets we learn that
Kafka is unique in that it does not track consumer acknowledg
ments as JMS queues do. Consumers use the offset to track
their location in a partition. When the current position of the
offset is updated, this is a commit. When the consumer restarts
reading messages, it locates the last committed offset and starts
reading from there. Several diagrams are presented to explain
all of this.

There are multiple ways a client application can choose to
handle commits, and each choice has consequences. For exam
ple, messages may be read multiple times or not at all during a
recovery after a failure.

When you commit, the current offset involves tradeoffs and
choices between manual or asynchronous or some of both. We
see code samples for several options. There are sections covering
commit specified offset, rebalancing listeners, consuming re
cords with specific offsets, and exiting the pool loop.

Consumers use deserializers, and the Kafka developer must
track which serializer(s) were used to write to each topic and
only use compatible deserializers in the corresponding consum
ers. There will be support issues down the line: what if one of
your publishers changes serializer?

You may need custom deserializers, and while code samples
are shown, this is not recommended as it can make support more
complicated.

You can use a standalone consumer that is not part of a con
sumer group; the pros and cons of this choice are covered.

Finally, commit processing is complicated. What if different
parts of your business do it differently? How do you know what
the impact will be on whatever business app uses all this data,
some of which may be repeated and some of which may be lost
during recovery from a failure?

Chapter 5—Kafka Internals
The authors tell us that while is it not necessary to understand

the material presented here, it helps with troubleshooting. There

are three topics: replication, requests from producers and con
sumers, and how files and indexes are stored.

First up under replication is how cluster membership works
and how the controller elects partition leaders. Replication is at
the heart of the Kafka architecture, which can be thought of as a
distributed, replicated commit log service.

Many diagrams are shown to explain request processing. How
fetch requests from clients are processed is shown. Kafka is
known for using a zerocopy method to send messages directly
from the file to the network channel. This means there are no
buffers involved, which improves performance.

The basic storage unit of Kafka for physical storage is the
partition replica. We see more discussion of rack information
with diagrams. The retention period for file management is dis
cussed. The default is that each segment can store 1 GB of data
or a week of data; after that, a new file is created. The same data
format is used on disk as is used by producers to send and con
sumers to read messages. This supports the zerocopy optimiza
tion since no compression or decompression is needed.

Kafka maintains an index for each partition. Compaction,
where Kafka keeps the latest value for each key in a topic and all
the other events are deleted, is explained with diagrams.

I found several things interesting here. For all our virtualiza
tion and our totally cloudbased lifestyle, we still need to know
which server is in which rack. I’m not clear how this works with
the major cloud hosting vendors. Does an upgrade move brokers
to different racks? What about a failover in the data center? Lots
of tuning options and requirements. Assuming that your data
base is autonomous, all the resources now freed up can be as
signed to Kafka tuning!

Chapter 6—Reliable Data Delivery
This chapter starts with a great quote: “Because of its flexibil

ity, it is also easy to accidentally shoot yourself in the foot when
using Kafka.” As with all things in life, the shooting of the foot
remains a big issue. The assumption of system reliability must be
thoroughly tested. No word on exactly how to do this or what
amount of resources it will take. Here we learn about the reli
ability guarantees. ACID is the standard in the relational data
base world, and we learn about the similar concepts in the
Kafka world. Kafka guarantees the order of messages in a parti
tion. Messages are committed when written to all insync repli
cas; once committed, messages are not lost while one or more
replicas exist, and consumers can only read committed mes
sages.

Kafka allows administrators and developers to decide what
level of reliability is needed, and replication is central to the reli
ability guarantees. Topics are broken down into partitions and
each partition is stored on a single disk. I’m not sure what “single
disk” means in today’s virtualized cloud storage systems, and I’m
not clear that we can know exactly where anything is being
stored physically.

There are sections on broker configuration and replication
factor. It turns out there is a minimum required for insync rep
licas. You can insert your favorite boy band joke here.

Next we learn about using producers in a reliable system. This
involves using the correct ACKS configuration for your reliabil
ity requirements, handling errors due to configuration and code,
sending acknowledgements, configuring producer retries, and
additional error handling.

17The NoCOUG Journal

Similarly, there are issues for using consumers in a reliable
system. This involves consumer configuration properties and
dealing with all the details around explicitly committing offsets.

You must validate system reliability, and this includes the
configuration and applications. We are also told we must mon
itor reliability in our production systems. For both the validation
and monitoring tasks I would have liked to hear how this is done
in a realworld case.

All this talk of reliability and commit logs and various guar
antees sounds like the complexities of a database system. I also
have questions about the administrator; the way it is described
assumes there is a single admin that knows all the settings and
why they are what they are. How does the admin task scale when
you have lots of topics all with different levels of reliability? One
of the examples discussed is a bank. How hard would it be to dial
down the reliability to let a few transactions get lost—and then
dial it back up again? Perhaps those “lost” transactions send
rather large bags of money to faraway places? How is this han
dled by the very large organizations currently using Kafka?

Chapter 7—Building Data Pipelines
Use cases for data pipelines are described: first, instances in

which Kafka itself is one end of the two endpoints, and second,
where Kafka is the intermediate link between two different sys
tems. APIs were added to Kafka so that users did not have to
create their own API from scratch.

Various considerations that arise when building data pipe
lines are discussed. Timeliness is one: do you expect data to ar
rive in a large set once a day or very shortly after it is generated?
In this context, “very shortly” means milliseconds. Kafka’s scal
able, reliable storage can support both of these timeliness re
quire ments. Kafka is a giant buffer between producers and
consumers—producers that may produce data in real time and
consumers that take in data once a day.

Other considerations include reliability, high and varying
throughput, and data formats. A pipeline must deal with differ
ing data types and formats. Transformations are an issue, as is
security. Data in the pipeline should be encrypted, and you need
to consider who can access the data while it is in transit as well as
how the pipeline authenticates to the endpoints. Other consider
ations are coupling and agility, and while a pipeline should de
couple the source and target of the data, this can be degraded.
Pipelines can have problems such as loss of metadata through the
pipeline and too much processing in the pipeline.

When you can embed the Kafka clients into your own appli
cation code, they are the best way to write to and read from
Kafka. When you need to interact with data stores you can’t
modify, you use Kafka Connect.

We learn how to run Kafka Connect, and Kafka Connect ex
amples are shown. These include file source and file sink and
MySQL to Elasticsearch, and for both we see extensive code ex
amples. Many more details about Kafka Connect are covered. To
implement pipelines, we need to code connectors. This sounds
like a lot of custom coding just to get this going, and even more
as we add more sources and subscribers. How do we know if this
development burden and the ongoing support effort are worth it?

Chapter 8—Cross-Cluster Data Mirroring
Most of the time we are told to use a single Kafka cluster, but

now we see some exceptions. Examples are departments that re
quire their own clusters and different requirements for different

use cases. When needed, moving data between clusters is called
“mirroring.” You’d be right that this would normally be called
“replication,” but that term was already used when discussing
moving data between nodes in a cluster. Kafka provides
MirrorMaker to support this.

We see various use cases of crosscluster mirroring: regional
and central clusters, redundancy for disaster recovery and cloud
migrations. Multicluster architectures are reviewed. Next to be
discussed are the realities of cross–data center communication:
high latencies, limited bandwidth, and higher costs. There are
diagrams for different architecture options, such as activeactive

and activestandby. You need to test your failover solution. Net
flix created Chaos Monkey to randomly create disasters. Data
loss and inconsistencies can occur with an unplanned failover,
and lots of diagrams are used to explain what can happen.

Finally, we have coverage of Apache Kafka’s MirrorMaker and
other crosscluster mirroring solutions.

Chapter 9—Administering Kafka
On the very first page of this chapter we have a highlighted

box with the title “Authorizing Admin Operations.” Security is
critical, so I was surprised to read the following paragraph, which
I quote in its entirety:

“While Apache Kafka implements authentication and autho
rization to control topic operations, most cluster operations are
not yet supported. This means that these CLI tools can be used
without any authentication required, which will allow operations
such as topic changes to be executed with no security check or
audit. This functionality is under development and should be
added soon.”

I quote this entire paragraph because I want you to see all of
it just as it is in the book. I’m new to Kafka—perhaps there is
some nuanced explanation of why this isn’t a big problem. Can
you imagine a mainstream software product that is being used to
process credit card data that doesn’t have any audit features?

There are sections covering each of the following topic opera
tions: creating a new topic, adding partitions, deleting a topic,
consumer groups, deleting a group, offset management, dynamic
configuration changes, partition management, and replication
configuration.

At the end of this chapter we have another quote you need to
think about: “Running a Kafka cluster can be a daunting en
deavor.” I’m still stuck on the no security check and no audit part.
Given the list of topic operations that are discussed in this chap
ter, does this mean all of these operations can be done without
any auditing? I was hoping there would be a detailed discussion
of why this isn’t a big problem. I would have liked to hear why
this isn’t a concern for LinkedIn. I did not find answers to either
of these questions.

“You may use Kafka as a message
bus, a queue, or a data storage

system, but in all cases you create
a producer to write data to Kafka
and a consumer to read that data.

You may create an application
that does both.”

18 November 2018

Chapter 10—Monitoring Kafka
There are so many available metrics that it can easily become

confusing. With that warning we start looking at monitoring.
The things that can be monitored range from simple, like overall
traffic rates, to the very detailed timing of every request type.
First we look at metric basics and the basics of monitoring a Java
application. Next we see where the metrics are found. We also
learn about internal or external measurements, application
health checks, and alert fatigue. It is easy to monitor too much
and generate too many alerts. Those responsible for monitoring
will burn out.

In the section covering Kafka broker metrics we see that the
most important metric is underreplicated partitions, which are
replicas that are not caught up to the lead partition. The main
cluster problems to watch for are unbalanced load and resource
exhaustion. We have yet another quote you need to read: “[B]
alancing traffic within a Kafka cluster can be a mindnumbing
process.”

There are many metrics that can be monitored for the broker,
topics, and partitions. JVM and OS monitoring are covered. Disk
is by far the most important subsystem for Kafka performance.
In addition to monitoring, there is logging; there is also coverage
of lag and endtoend monitoring. At the end of this chapter, I
see that many organizations use Kafka for petabytescale data
flows. I need to think about what that means.

Chapter 11—Stream Processing
Kafka provides more than just a reliable source of data

streams; it also provides powerful stream processing. Stream
processing, we are told, is often misunderstood. To start explain
ing stream processing, we start with the question of what a data
stream is. A data stream is also called an “event stream” and is an
abstraction representing an unbounded dataset. Event streams
are ordered; once events have happened they cannot be changed.

Event streams are replayable; this sets Kafka apart as it provides
capturing and replaying of event streams. Stream processing can
be requestresponse like OLTP or batchprocessing. Stream pro
cessing is needed because most business processes don’t need
OLTPlike speed and don’t want to wait for a daily batch job either.
Note that stream processing must be continuous and ongoing

Within stream processing, the most important concept is
time—which is also the most confusing. There is event time, log
append time, and processing time. It is important that a data
pipeline uses a single time zone. State is the information that is
stored between events.

Streamtable duality is next and, in my opinion, this is the best
part of this book. This paragraph gave me a clear understanding
of why I should care about stream processing: “Unlike tables,
streams contain a history of changes. Streams are a string of
events wherein each event caused a change. A table contains a
current state of the world, which is the result of many changes.
From this description, it is clear that streams and tables are two
sides of the same coin—the world always changes, and some
times we are interested in the events that caused those changes,
whereas other times we are interested in the current state of the
world. Systems that allow you to transition back and forth be
tween the two ways of looking at data are more powerful than
systems that support just one.”

This is really good information, and it provides a clear expla
nation of why stream processing is important.

There is coverage of converting a stream to a table, which is
called “materializing the stream.” There are streamprocessing
design patterns, including singleevent processing and multi
phase processing/repartitioning; processing with external look
up (streamtable join); streaming join; outofsequence events;
and reprocessing.

In the section on Kafka streams by example we have code
samples for applications for word count, stock market statistics,
and click stream enrichment.

An architecture overview of Kafka streams is next and in
cludes sections on scaling the topology and surviving failures.

Stream processing use cases covers customer service, the in
ternet of things, and fraud detection.

This chapter ends with a discussion of how to choose a
streamprocessing framework. You should consider the types of
applications you are supporting, your response time require
ments, and whether you need realtime or asynchronous pro
cessing.

I would put this chapter first; I’d start with why stream pro
cessing is cool and follow with why Kafka is the best way to do it.

Conclusion
I did not end up with a definitive understanding of how to

decide whether or not I need stream processing or why, exactly,
Kafka would be the best solution. Perhaps it should be obvious to
me: if thousands of organizations are using Kafka, I guess my
business should as well. But are we developing software because
of what we really need or are we all chasing the latest popular
point solution? Are we building our enterprise systems to fight
the last business war or really preparing for the future?

How many current software solutions come from a small
number of huge organizations, so large that they can dictate all
aspects of their environment? Should all the businesses outside
of this group of behemoths be trying to apply the same solutions?
Does something that works for LinkedIn necessarily work for a
business that is nowhere as big?

I thought about the petabytescale data flows and how Kafka
can replay data flows: how much data are we storing and for how
long? Petabytes for each data flow, how many data flows, for a
week, a month? How long does it take to replay these petabyte
scale data flows? Days, weeks? How do we decide which data
flows to keep and which to delete? Do we have a central reposi
tory of the huge data flows? So many questions!

Since I read this book in Safari, I can search the full text.
Searching for Oracle we find only four references in the book,
and two of those are to Oracle Java. Oracle is mentioned only
once in the entire book as a data source. I’m just sayin’. s

Brian Hitchcock works for Oracle Corporation where he has been
supporting Fusion Middleware since 2013. Before that, he sup-
ported Fusion Applications and the Federal OnDemand group. He
was with Sun Microsystems for 15 years (before it was acquired by
Oracle Corporation) where he supported Oracle databases and
Oracle Applications. His contact information and all his book re-
views and presentations are available at www.brianhitchcock.
net/oracle-dbafmw/. The statements and opinions expressed here
are the author’s and do not necessarily represent those of Oracle
Corporation.

Copyright © 2018, Brian Hitchcock

http://www.brianhitchcock.net/oracle-dbafmw/
http://www.brianhitchcock.net/oracle-dbafmw/

19The NoCOUG Journal

S P E C I A L
F E AT U R E

In the first article of the series—in the August 2018 issue of
the NoCOUG Journal—we learned how to specify a man
aged Oracle database server in CloudFormation, Amazon’s
infrastructureascode system, and then we launched the

server. That is useful in and of itself, particularly if you have to
set up lots of database servers or if you and your colleagues want
to adopt a standard template. But the infrastructureascode con
cept goes beyond creating resources: you will also want to up
date them. In the present article, I introduce CloudFormation
change sets, which I see as the true promise of infrastructure as
code. To prepare for the change set exercises, please recreate the
sample stack from the first article before you continue reading.

Simple: Parameter Change
Imagine that you have forgotten the DBA password. Panic sets

in. Then you remember that it was one of the parameters you set
when you created the database using the CloudFormation tem
plate.

You also remember that you can review parameter values in
the CloudFormation console. Go to https://console.aws.amazon.
com, log in, navigate to Services → CloudFormation → Stacks,
click the name of your stack, and then click the arrow to open the
Parameters section.

Drat, DbMasterUserPassword is masked as ***! Why is this
so, when all of the other parameter values are visible? Go back
and check the CloudFormation template, at https://github.com/
sqlxpert/infra-as-code-aws-nocoug-journal/blob/master/
cloudformation/0-aws-rds-oracle-all-in-one.yaml. In case the
reason is not apparent at a glance, I will give the answer at the
end of the article.

The only option left is to reset the password, and you can do
so by creating a minimal CloudFormation change set.

 1. In the CloudFormation Console, click to place a check
mark in the box to the left of your stack’s name.

 2. Above the list of stacks and to the right of the blue Create
Stack button, click Actions. A popup menu will appear.
Select “Create Change Set For Current Stack.”

 3. Click the blue Next button. In this exercise, you are not
changing the template; you are only changing the value of
a parameter.

 4. Under Specify Details, type a name and a description for
the change set. Don’t put too much thought into these
values, because they are not stored permanently. The
change set name and description matter only until the
change set has either been executed successfully or rolled
back.

 5. Under Parameters, leave all values unchanged except
DbMasterUserPassword. Take note of the new password
that you type in.

 6. Click the blue Next button.
 7. There is no need to make any entries on the Options page.

Click the blue Next button again.
 8. Check the Review page (although in this case, the new

password will merely show up as) before clicking the
blue “Create change set” button.

 9. Wait for CloudFormation to finish computing changes.
 10. Scroll down to the Changes section and check the line

items. Pay special attention to the Replacement column on
the right. Many changes to AWS resources can be made in
place, but some require deleting and recreating a re
source. If a resource from one CloudFormation stack is
referenced by another stack or is referenced in AWS at
large, it cannot be deleted and your change set would fail
to execute. Thankfully, changing the DBA password is a
safe operation.

 11. Click the Execute button near the top right.
 12. Monitor progress by clicking on the stack’s name and

checking the Events section. You can cancel the changes by
clicking Cancel Update Stack at the top right. (This is use
ful because some errors cause CloudFormation to hang.
Be alert for the possibility if no new events have appeared
for several minutes.)

 13. If execution fails for any reason, CloudFormation auto
matically rolls all resources back to their initial state. Clues
about the error appear in the Events section. If no error
message appears in the Status Reason column, look for a
resource with an “initiated” event but no matching “com
plete” event. After an execution failure, you must manu
ally delete the change set and create another.

Making Changes:
The Real Promise of

Infrastructure as Code
by Paul Marcelin

Paul Marcelin

https://console.aws.amazon.com
https://console.aws.amazon.com
https://github.com/sqlxpert/infra-as-code-aws-nocoug-journal/blob/master/cloudformation/0-aws-rds-oracle-all-in-one.yaml
https://github.com/sqlxpert/infra-as-code-aws-nocoug-journal/blob/master/cloudformation/0-aws-rds-oracle-all-in-one.yaml
https://github.com/sqlxpert/infra-as-code-aws-nocoug-journal/blob/master/cloudformation/0-aws-rds-oracle-all-in-one.yaml

20 November 2018

 14. If execution succeeds, CloudFormation changes the stack’s
status to UPDATE_COMPLETE and automatically de
letes the change set. In this case, the DBA password has
been reset.

Complex: Template Change
Now, imagine that your managed Oracle database has, due to

its performance and reliability, seen lots of use. It is now almost
out of space. To enlarge the disk, you will edit the CloudFormation
template and create a change set.

 1. In the CloudFormation Console, click to place a check
mark in the box to the left of your stack’s name.

 2. Above the list of stacks and to the right of the blue Create
Stack button, click Actions. A popup menu will open. Se
lect “Create Change Set For Current Stack.”

 3. Under Use Current Template, click “View/Edit template in
Designer.”

 4. The panel at the bottom displays an editable version of
your original CloudFormation template. Scroll down to—
or search for (Windows: Control+F; MacOS: Com
mand+F)—AllocatedStorage. Change the value from 20 to
50. For reference, an edited version of the template is avail
able at https://github.com/sqlxpert/infra-as-code-aws-
nocoug-journal/blob/master/cloudformation/1-aws-
rds-oracle-disk-bigger.yaml. diff is a useful tool for
comparing old and new template files.

 5. Click the checkmark in the grey bar near the top of the
window. This validates the template’s syntax.

 6. Click the cloud in the grey bar. This uploads the template.
 7. Notice that “Use current template” has been deselected

and “Specify an Amazon S3 template URL” has been se
lected instead. Your new template has been uploaded suc
cessfully.

 8. Click the blue Next button.
 9. Under Specify Details, type a name and a description for

the change set. In this exercise, you have edited the
template itself; there are no changes to be made in the
Parameters section.

 10. Click the blue Next button.
 11. There is no need to make any entries on the Options page.

Click the blue Next button again.
 12. Check the Review page (although in this case there are no

parameter changes to see) before clicking the blue “Create
change set” button.

 13. Wait for CloudFormation to finish computing changes.
 14. Scroll down to the Changes section and check the line

items. Enlarging the disk is a safe operation from
CloudFormation’s perspective. In our lowcost, nonpro
duction, singleavailabilityzone example, the operation
will take some time and will interrupt access to the data
base. Because those properties are particular to the Rela
tional Database Service (RDS), CloudFormation, which is
a separate AWS service, cannot warn about them.

 15. Click the arrow to open the Details section. Notice the
reference to AllocatedStorage, exactly the property that

you are changing. In my experience, the more numerous
and more complex the changes, the less intelligible the De
tails section will be.

 16. Click the Execute button near the top right.
 17. Monitor progress by clicking on the stack’s name and

checking the Events section.
 18. If execution fails, CloudFormation automatically rolls all

resources back to their initial state.
 19. If execution succeeds, CloudFormation reports UPDATE_

COMPLETE. In this case, the disk has been enlarged.
 20. To minimize AWS charges, please use the CloudFormation

console to delete the stack.

Benefits of Change Sets
As you have seen from the exercises, change sets facili

tate controlled updates. Before you execute a change set,
CloudFormation informs you of the scope of the changes. You
can create a change set in advance and execute it later. An orches
tration tool—which goes beyond the scope of CloudFormation—
is useful if you want to schedule change set execution or if you
want to change many stacks.

Although you probably didn’t experience an execution failure
when completing the exercises, if ever you do, CloudFormation
will roll back the changes. Also not apparent from the exercises
is the possibility of using AWS Identity and Access Management
(IAM) to grant some people the right to create stacks and others
only the right to make changes.

Epilogue: Infrastructure as Code Can Replace Managed
Services

NoCOUG’s Iggy Fernandez posits that the infrastructure as
code idea eliminates the need for managed services like AWS
RDS. I think he is right and that he has defined the measure of
completeness for an infrastructureascode system. Today, AWS
CloudFormation lacks a good way to control the installation and
configuration of operating system and application software on
arbitrary, unmanaged servers. Generic alternatives like SaltStack
excel at that task but don’t support the full range of AWS services,
resource types, and properties. I challenge cloud service provid
ers and configuration management system designers to meet in
the middle. The ideal configuration management system will be
able to accomplish everything that a human can do in the AWS
Console (just like CloudFormation) and at the Linux command
line (just like SaltStack, Chef, etc.). s

Paul Marcelin can be reached at marcelin@alumni.cmu.edu.
Please send suggestions for the next infrastructure-as-code article.
Should it be about AWS CloudFormation fine points? Microsoft
Azure? Oracle Cloud?

Answer to question about masked pass word: In the original
CloudFormation template, I specified NoEcho: true when I de
fined the DbMasterUserPassword parameter. See https://github.
com/sqlxpert/infra-as-code-aws-nocoug-journal/blob/mas-
ter/cloudformation/0-aws-rds-oracle-all-in-one.yaml#L25.

© 2018 Paul Marcelin

https://github.com/sqlxpert/infra-as-code-aws-nocoug-journal/blob/master/cloudformation/1-aws-rds-oracle-disk-bigger.yaml
https://github.com/sqlxpert/infra-as-code-aws-nocoug-journal/blob/master/cloudformation/1-aws-rds-oracle-disk-bigger.yaml
https://github.com/sqlxpert/infra-as-code-aws-nocoug-journal/blob/master/cloudformation/1-aws-rds-oracle-disk-bigger.yaml
https://github.com/sqlxpert/infra-as-code-aws-nocoug-journal/blob/master/cloudformation/0-aws-rds-oracle-all-in-one.yaml#L25
https://github.com/sqlxpert/infra-as-code-aws-nocoug-journal/blob/master/cloudformation/0-aws-rds-oracle-all-in-one.yaml#L25
https://github.com/sqlxpert/infra-as-code-aws-nocoug-journal/blob/master/cloudformation/0-aws-rds-oracle-all-in-one.yaml#L25

21The NoCOUG Journal

I N T E R V I E W

Editor’s note: RMOUG president Tim Gorman recently stepped
away from the Rocky Mountain Oracle Users Group (RMOUG)
after 26 years as a member and 23 years on the board with 9 of
those years as president. This interview with him was originally
printed in the August 2014 issue of the NoCOUG Journal.

You are old, father Gorman (as the young man said) and your
hair has become very white. You must have lots of stories. Tell us
a story!

Well, in the first place, it is not my hair that is white. In point
of fact, I’m as bald as a cue ball, and it is my skin that is pale from
a youth misspent in data centers and fluorescentlit office cen
ters.

It is a mistake to think of wisdom as something that simply
accumulates over time. Wisdom accumulates due to one’s pas
sages through the world, and no wisdom accumulates if one re
mains stationary. It has been said that experience is what one
receives soon after they need it, and experience includes both
success and failure. So wisdom accumulates with experience, but
it accumulates fastest as a result of failure.

About four years ago, or 26 years into my IT career, I dropped
an index on a 60 TB table with 24,000 hourly partitions; the
index was over 15 TB in size. It was the main table in that pro
duction application, of course.

Over a quartercentury of industry experience as a developer,
production support, systems administrator, and database admin
istrator: if that’s not enough time to have important lessons
pounded into one’s head, then how much time is needed?

My supervisor at the time was amazing. After the shock of
watching it all happen and still not quite believing it had hap
pened, I called him at about 9:00 p.m. local time and told him
what occurred. I finished speaking and waited for the axe to
fall—for the entirely justified anger to crash down on my head.
He was silent for about 3 seconds, and then said calmly, “Well, I
guess we need to fix it.”

And that was it.
No anger, no recriminations, no humiliating micromanage

ment. We launched straight into planning what needed to hap
pen to fix it.

He got to work notifying the organization about what had
happened, and I got started on the rebuild, which eventually took
almost 2 weeks to complete.

It truly happens to all of us. And anyone who pretends other
wise simply hasn’t been doing anything important.

How did I come to drop this index? Well, I wasn’t trying to
drop it; it resulted from an accident. I was processing an ap
proved change during an approved production outage. I was
trying to disable a unique constraint that was supported by the
index. I wanted to do this so that a systemmaintenance package
I had written could perform partition exchange operations
(which were blocked by an enabled constraint) on the table.
When I tested the disabling of the constraint in the development
environment, I used the command ALTER TABLE . . . DISABLE
CONSTRAINT and it indeed disabled the unique constraint
without affecting the unique index. Then I tested the same op
eration again in the QA/Test environment successfully. But
when it came time to do so in production, it dropped the index
as well.

Surprise!

Singing the
NoCOUG Blues

with Tim Gorman
Tim Gorman

“You are old, Father William,” the young man said,
“And your hair has become very white;

And yet you incessantly stand on your head—
Do you think, at your age, it is right?”

“In my youth,” Father William replied to his son,
“I feared it might injure the brain;

But now that I’m perfectly sure I have none,
Why, I do it again and again.”

22 November 2018

“You are old,” said the youth, “As I mentioned before,
And have grown most uncommonly fat;

Yet you turned a back-somersault in at the door—
Pray, what is the reason of that?”

“In my youth,” said the sage, as he shook his grey locks,
“I kept all my limbs very supple

By the use of this ointment—one shilling the box—
Allow me to sell you a couple?”

I later learned that the unique constraint and the supporting
unique index had been created out of line in the development
and QA/test environments. That is, first the table was created,
then the unique index was created, and finally the table was al
tered to create the unique constraint on the alreadyexisting
unique index.

But in production, the unique constraint and the supporting
unique index had been created inline. When the table was cre
ated, the CREATE TABLE statement had the unique constraint
within, along with the USING INDEX clause to create the unique
index.

So when I altered the table in production, disabling the con
straint also caused the index to be dropped.

After the mishap, I found the additional syntax for KEEP
INDEX, which could have been added to the end of the ALTER
TABLE . . . DISABLE CONSTRAINT command because Oracle
recognized the difference in default behaviors.

But that was a discovery I experienced after I needed it.
As to why my supervisor was so calm and matteroffact

throughout this disaster, I was not surprised; he was always that
way, it seemed. What I learned over beers long after this inci
dent is that, in his early life, he learned the true meaning of the
words “emergency” and “catastrophe.” He was born in Afghan
istan, and he was a young child during the 1980s after the
Soviets invaded. His family decided to take refuge in Pakistan,
so they sought the help of professional smugglers, similar to
what we call “coyotes” on the MexicanAmerican border. These
smugglers moved through the mountains bordering Afghanistan
and Pakistan at night on foot, using camels to carry baggage and
the very old, the sick and injured, and the very young.

My supervisor was about 9 years old at the time, so the smug
glers put him on a camel so he would not slow them down.

During the night, as they were crossing a ridge, they were spotted
by the Soviets, who opened fire on them using machine guns
with tracer bullets. Everyone in the caravan dove to the ground
to take cover. Unfortunately, they all forgot about the 9yearold
boy on top of the 8foothigh camel. My supervisor said he saw
the bright tracer bullets arching up toward him from down
below in the valley, passing over his head so close that he felt he
could just reach up and grab them. He wanted to jump down,
but he was so high off the ground he was terrified. Finally, some
one realized that he was exposed and they pulled him down off
the camel.

As he told this story, he laughed and commented that practi
cally nothing he encountered in IT rose to the level of what he
defined as an emergency. The worst that could happen was no
more catastrophic than changing a tire on a car.

I’ve not yet been able to reach this level of serenity, but it is
still something to which I aspire.
We love stories! Tell us another story!

A little over 10 years ago, I was working in downtown L.A.
and arrived in the office early (5:00 a.m.) to start a batch job. I
had a key card that got me into the building and into the office
during the day, but I was unaware that at night they were locking
doors in the elevator lobby. I banged on the doors and tried call
ing people, to no avail. Finally, after a halfhour, out of frustra
tion, I grabbed one of the door handles and just yanked hard.

It popped open.
I looked at it in surprise, thought “sweet!”, walked in to the

cubicle farm, sat down, and started my batch job. All was good.
Around 7:00 a.m., the LAPD showed up. There were about a

dozen people in the office now, so the two officers began ques
tioning folks nearest the door. From the opposite side of the
room, I stood up, called out “Over here,” and ’fessed up.

They told me that if I hadn’t called them over immediately,
they would have arrested me by the time they got to me. Have a
nice day, sir.

The NoCOUG Blues

NoCOUG membership and conference attendance have been
declining for years. Are user groups still relevant in the age of
Google? Do you see the same trends in other user groups? What
are we doing wrong? What can we do to reverse the dismal trend?
Give away free stuff like Tshirts and baseball caps? Bigger
raffles? Better food?

Yes, the same trends are occurring in other users groups. IT
organizations are lean and can’t spare people to go to training.
The IT industry is trending older as more and more entrylevel
functions are sent offshore.

Users groups are about education. Education in general has
changed over the past 20 years as online searches, blogs, and
webinars have become readily available.

The key to users groups is the quality of educational content
that is offered during live events as opposed to online events or
written articles. Although online events are convenient, we
all know that we, as attendees, get less from them than we do
from facetoface live events. They’re better than nothing, but
communities like NoCOUG have the ability to provide the
facetoface live events that are so effective.

One of the difficulties users groups face is fatigue. It is diffi
cult to organize events month after month, quarter after quarter,

23The NoCOUG Journal

year after year. There is a great deal of satisfaction in running
such an organization, especially one with the long and rich his
tory enjoyed by NoCOUG. But it is exhausting. Current volun
teers have overriding work and life conflicts. New volunteers are
slow to come forward.

One thing to consider is reaching out to the larger national
and international Oracle users groups, such as ODTUG, IOUG,
OAUG, Quest, and OHUG. These groups have similar missions
and most have outreach programs. ODTUG and IOUG in par
ticular organize live onsite events in some cities, and have webi
nar programs as well. They have content, and NoCOUG has the
membership and audience. NoCOUG members should encour
age the board to contact these larger Oracle users groups for
opportunities to partner locally.

Another growing trend is meetups, specifically through
Meetup.com. This is a resource that has been embraced by all
manner of techsavvy people, from all points on the spectrum of
the IT industry. I strongly urge all NoCOUG members to join
Meetup.com, indicate your interests, and watch the flow of an
nouncements visit your inbox. The meetups run the gamut
from Hadoop to Android to Oracle Exadata to InMemory to Big
Data to Raspberry Pi to vintage Commodore. I think the future
of local technical education lies in the intersection of online or
ganization of local facetoface interaction facilitated by Meetup.
com.

Four conferences per year puts a huge burden on volunteers.
There have been suggestions from multiple quarters that we
organize just one big conference a year like some other user
groups. That would involve changing our model from an annual
membership fee of less than $100 for four singleday conferences
(quarterly) to more than $300 for a single multipleday con
ference (annual), but change is scary and success is not guar
anteed. What are your thoughts on the quarterly vs. annual
models?

I disagree with the idea that changing the conference format
requires increasing annual dues. For example, RMOUG in
Colorado (http://rmoug.org/) has one large annual conference
with three smaller quarterly meetings, and annual dues are $75
and have been so for years. RMOUG uses the annual dues to pay
for the three smaller quarterly education workshops (a.k.a. quar
terly meetings) and the quarterly newsletter; the single large
annual “Training Days” conference pays for itself with its own
separate registration fees, which of course are discounted for
members.

Think of a large annual event as a selfsufficient, selfsustain
ing organization within the organization, open to the public with
a discount for duespaying members.

Other Oracle users groups, such as UTOUG in Utah (http://
utoug.org/), hold two large conferences annually (in March and
November), and this is another way to distribute scarce volunteer
resources. This offers a chance for experimentation as well, by
hiring one conferencecoordinator company to handle one event
and another to handle the other, so that not all eggs are in one
basket.

The primary goal of larger conferences is ongoing technical
education of course, but a secondary goal is to raise funds for the
continued existence of the users group and to help subsidize and
augment the website, the smaller events, and the newsletter, if
necessary.

It costs a fortune to produce and print the NoCOUG Journal,
but we take a lot of pride in our unbroken 28year history, in our
tradition of original content, and in being one of the last printed
publications by Oracle user groups. Needless to say it also takes
a lot of effort. But is there enough value to show for the effort
and the cost? We’ve been called a dinosaur. Should we follow the
other dinosaurs into oblivion?

I don’t think so. There are all kinds of formats for publication,
from tweets to LinkedIn posts to blogs to magazines to books.
Magazines like the NoCOUG Journal are an important piece of
the educational ecosystem. I don’t think that any of the Oracle
users groups who no longer produce newsletters planned to end
up this way. They ceased publishing because the organization
could no longer sustain them.

I think today the hurdle is that newsletters can no longer be
confined within the users group. Both NoCOUG and RMOUG
have independently come to the realization that the newsletter
must be searchable and findable online by the world, which pro
vides the incentive for authors to submit content. Today, if it
cannot be verified online, it isn’t real. If it isn’t real, then there is
little incentive for authors to publish.

So making the NoCOUG Journal available online has been key
to its own viability, and NoCOUG membership entitles one to a
real hardcopy issue, which is a rare and precious bonus in this
day and age.

Oracle Database 12c

Mogens Norgaard (the cofounder of the Oak Table Network)
claims that “since Oracle 7.3, that fantastic database has had
pretty much everything normal customers need,” but the rest

“You are old,” said the youth, “And your jaws are too weak
For anything tougher than suet;

Yet you finished the goose, with the bones and the beak—
Pray, how did you manage to do it?”

“In my youth,” said his father, “I took to the law,
And argued each case with my wife;

And the muscular strength which it gave to my jaw,
Has lasted the rest of my life.”

http://meetup.com
http://meetup.com
http://meetup.com
http://meetup.com
http://rmoug.org/
http://utoug.org/
http://utoug.org/

24 November 2018

of us are not confirmed Luddites. What are the musthave fea
tures of Oracle 12c that give customers the incentive to upgrade
from 11g to 12c? We’ve heard about pluggable databases and the
inmemory option, but they are extracost options aren’t they?

I know for a fact that the Automatic Data Optimization
(ADO) feature obsolesces about 3,000 lines of complex PL/SQL
code that I had written for Oracle 8i, 9i, 10g, and 11g databases.
The killer feature within ADO is the ability to move partitions
online, without interrupting query operations. Prior to Oracle
12c, accomplishing that alone consumed hundreds of hours of
code development, testing, debugging, and release management.
Combining ADO with existing features like OLTP compression
and HCC compression truly makes transparent “tiers” of storage
within an Oracle database feasible and practical. The ADO fea
ture alone is worth the effort of upgrading to Oracle 12c for an
organization with longer data retention requirements for histori
cal analytics or regulatory compliance.

What’s not to love about pluggable databases? How different is
the pluggable database architecture from the architecture of
SQL Server, DB2, and MySQL?

I think that first, in trying to explain Oracle pluggable data
bases, most people make it seem more confusing than it should
be.

Stop thinking of an Oracle database as consisting of software,
a set of processes, and a set of database files.

Instead, think of a database server as consisting of an operat
ing system (OS) and an Oracle 12c container database software;
a set of Oracle processes; and the basic control files, log files, and
a minimal set of data files. When “gold images” of Oracle data
base servers are created, whether for jumpstart servers or for

virtual machines, the Oracle 12c CDB should be considered part
of that base operating system image.

Pluggable databases (PDBs) then are the data files installed
along with the application software they support. PDBs are just
tablespaces that plug into the working processes and infrastruc
ture of the CDBs.

When PDBs are plugged in, all operational activities involving
data protection—such as backups or redundancy like Data
Guard replication—are performed at the higher CDB level.

Thus, all operational concerns are handled at the CDBs and
the operational infrastructure from the PDBs and the applica
tions.

Once the discussion is shifted at that high level, then the
similarities are more visible between the Oracle 12c database and
other multitenant databases, such as SQL Server and MySQL. Of
course there will always be syntactic and formatting differences,
but functionally Oracle 12c has been heavily influenced by its
predecessors, such as SQL Server and MySQL.

Bonus Question

Do you have any career advice for the younger people reading
this interview so that they can be like you some day? Other than
actively participating in user groups!

This sounds corny and trite, but there is no such thing as a
useless experience, and while it may be frustrating, it presents the
opportunity to build. Understand that everyone starts at the bot
tom, and enjoy the climb.

Understand that learning causes stress. Stress is stress and too
much can be unhealthy, but if it is a result of learning something
new, then recognize it for what it is, know it is temporary and
transitory, tough it out, and enjoy knowing the outcome when it
arrives.

Also, don’t voice a complaint unless you are prepared to pres
ent at least one viable solution, if not several. Understand what
makes each solution truly viable and what makes it infeasible.
If you can’t present a solution to go with the complaint, then
more introspection is needed. The term “introspection” is used
deliberately, as it implies looking within rather than around.

Help people. Make an impact. Can we go wrong in pursuing
either of those as goals? Sometimes I wish I had done more along
these lines. Never do I wish I had done less. s

Tim Gorman is a technical consultant for Delphix (http://www.
Delphix.com), who enable database and storage virtualization to
increase the agility of IT development and testing operations. He
has co-authored six books, tech-reviewed eight more, and written
articles for RMOUG SQL_Update and IOUG SELECT magazines.
He has been an Oracle ACE since 2007, an Oracle ACE Director
since 2012, a member of the Oak Table Network since 2002, and
has presented at Oracle OpenWorld, Collaborate, KScope, Hotsos,
and local Oracle users groups in a lot of wonderful places around
the world. Tim lives in Westminster, Colo., with his partner, Kellyn
Pot’Vin, and their children.

“You are old,” said the youth, “one would hardly suppose
That your eye was as steady as ever;

Yet you balanced an eel on the end of your nose—
What made you so awfully clever?”

“I have answered three questions, and that is enough,”
Said his father; “don’t give yourself airs!

Do you think I can listen all day to such stuff?
Be off, or I’ll kick you down stairs!”

http://www.delphix.com
http://www.delphix.com

25The NoCOUG Journal

P I C T U R E
D I A R Y

NoCOUG Conference #127
Post-Conference Reception Hosted by Quest Shareplex

26 November 2018

NoCOUG Conference #127
Post-Conference Reception Hosted by Quest Shareplex

Supercharge Oracle
Performance with
Vexata NVMe Arrays

Accelerates OLTP & Analytic
workloads

Deploys with FC SANs or
Gigabit Ethernet Fabrics

Unmatched low-latency IOPS
and throughput

DATABASE MANAGEMENT SOLUTIONS
Develop | Manage | Optimize | Monitor | Replicate

Maximize your
Database Investments.

https://www.vexata.com
https://www.quest.com

NoCOUG
P.O. Box 3282
Danville, CA 94526

RETURN SERVICE REQUESTED

FIRST-CLASS MAIL
U.S. POSTAGE

PAID
SAN FRANCISCO, CA

PERMIT NO. 11882

!"#$%#"&'()!!
*!)++$+

!"#$%&'()*+*,'-#./0#/1 ()*+*,'!"#$%&'2.+*,'
3*'345'5&06"/

()*+*,'!"#$%&'2.+*,'
378#*$&7'39:'9/"#/&,+&.

;&"<6"=#*$&'3*#%>.+.'
3*7'()*+*,

(32?:('@A'

!"#$%&"!'&()*+

http://www.solarwinds.com/dpa-download
http://orapub.com
mailto:support%40orpub.com?subject=

