What the Oracle Really Meant:
The Quest for PL/SQL Testing

Using Code Tester

December 4, 2007
Lawrence Livermore National Laboratory
Arnold
Weinstein
-
Computer Scientist

Tom

Crook

-
Computer Scientist

Contents:

11
Abstract:

22
Introduction

23
Why test?

34
Test practices

65
Understanding the test tool

96
Conclusion

1 Abstract:

Software developers face constant pressure to produce highly complex PL/SQL code under tight deadlines. Without an efficient and reliable way to perform thorough code testing, software is released with defects that would otherwise be eliminated. Using an automated test tool carries risks that may be mitigated by certain practices. These practices greatly improved our ability to develop high quality and efficient testing software. In this paper, we will share some of these practices.

2 Introduction

In ancient times the Oracle at Delphi was known for vague pronouncements, leaving her supplicants confused. Today figuring out Oracle based software leaves many developers confused.

If the code being investigated appears to meet requirements, can we assume it has no problems? If testing indicates requirements have been met does this mean the code is error free? For example, the assertion that somewhere at least one unicorn exists may or may not be true. Evidence for a single unicorn supports the assertion, whereas failure to produce a unicorn does not disprove it.

Test code is often more complex and therefore more error prone than the application being tested. It is very important to develop a rigorous process for developing test code so that errors and false positives are minimized. Unfortunately, rigorous processes for developing test code are rarely practiced.

3 Why test?

Motivations for testing are often opaque to the casual observer. The domain in which testing occurs may be so specialized that it’s difficult to even explain the answers returned by the testing.

Software errors have very real costs. Sometimes these costs are in human lives lost - not just money. Therefore, Software Quality Assurance (SQA) should be a major focus of the application development team. Failure to adequately test application code is a matter of life and death!

At what point does testing become reverse engineering? When does the distinction between discovering what a thing does, versus how a thing is constructed, break down? With a semi-automated test tool, and the testing techniques discussed in this paper, we were able to do more than just test to meet requirements; we also verified and enhanced those requirements.

4 Test practices

We use an automated test tool from Quest called Code Tester.

Code Tester is a relatively complex tool with multiple features and functions. There was a learning curve, and a considerable amount of time was spent fighting the tool before we developed our method of using this tool. Code Tester will generate code in many different ways. Finding ways to manage and impose order on seeming chaos is essential to making progress using this or any automated test tool. A chain saw will cut more wood than a handsaw – but only if you remember to start the motor.

This software targets a very specific testing tactic: white-box unit testing at the level of PL/SQL functions and procedures. This requires that the developers of the unit testing software acquire detailed knowledge of how the code to be tested is implemented.

Because construction of specific test cases relies on implementation knowledge, the test cases are often relatively straightforward. Although it may seem counterintuitive, the more simple tests often reveal the most surprises.

Oracle application testing is often destructive; that is, the act of testing alters or even destroys that which is tested. Repeatable testing is usually desired and therefore requires that the testing environment have the capability to heal or resurrect itself.

Testing software is often a time consuming and difficult task. Our technique of testing is an attempt to reduce the time and difficulty of testing PL/SQL code. Our technique is an iterative process best done in very small pieces. Make small changes per iteration, and make a lot of iterations! The best way to eat an elephant is one bite at a time.

Often, the most difficult part of testing is determining where to start. By taking small incremental steps, the choice of a starting point becomes less critical. We often started by working on smaller/simpler helper functions & procedures. This gave us a greater understanding of the more complex ones.

Sometimes looking at the source code helps you develop the test code, but be careful not to just duplicate source code in your test procedures – doing so may produce false positive results.

Well constructed and thought out customized initiation and cleanup code makes testing easier, faster, and more accurate. Consistent use of symbolic names for constants or otherwise hard-coded values become even more essential when using this tool. It is very easy to “lose” something that ends up hiding in some obscure place within Code Tester’s many features. Predefining variables (see table 1, 2) and customized testing procedures (see table 3) in one place reduces the chances of encountering inconsistencies in the tool – such as when and when not to quote literals. It also makes finding and changing test code simpler because it’s all in one place.

We found that time spent working on the initialization procedures in the customization section greatly improved the quality of the test. Setting up pre-execution values then using them in the test steps made developing test code easier and more accurate. Customized procedures allowed us to dynamically create test data. This greatly improved the quality of the test code and simplified writing the test steps. The cleanup section allowed us to make our test self-healing. This allowed us to iteratively create new test steps without having to worry about resetting the environment.
Table 1.0 Declaration of constants
-- Declarations of public constants

 gv_argon_id chemical.chemical_id%TYPE := 4704;

 gv_helium_id chemical.chemical_id%TYPE := 4719;

 gv_argon_cryo_id chemical.chemical_id%TYPE := 21079;

 gv_argon_mix_id chem_synonyms.syn_id%TYPE := 1034879;

 gv_nitrogen_id chemical.chemical_id%TYPE := 4930;

 gv_ethanol_id chemical.chemical_id%TYPE := 4346;

 gv_tungsten_id chemical.chemical_id%TYPE := 4702;

 gv_air_id chem_synonyms.syn_id%TYPE := 1025715;

 gv_acrylic_id chem_synonyms.syn_id%TYPE := 1024889;

 gv_apcompound_id chem_synonyms.syn_id%TYPE := 1041825;

Table 2.0 Declaration of scalar variables and record types
Declarations of public variables

-- scalars

gv_cu_ft_s300 NUMBER := NULL; gv_cu_ft_main NUMBER := NULL;

gv_gal_s300 NUMBER := NULL;

gv_gal_main NUMBER := NULL;

gv_lbs_s300 NUMBER := NULL;

gv_lbs_main NUMBER := NULL;

-- rowtype record

gv_hhmp_s300_rec hmmp_v%ROWTYPE;

gv_hhmp_main_rec hmmp_v%ROWTYPE;

-- scalar record

TYPE grec_bldg IS RECORD(bldg primecontainer.bldg%TYPE);

TYPE grec_type IS RECORD

(container_type primecontainer.container_type%TYPE);

Table 3.0 Customization Package Headers
-- custom public program elements headers

PROCEDURE calc_bldg_global(p_chemid IN NUMBER);

PROCEDURE calc_step_log_global

(p_chemid IN NUMBER, p_error_msg OUT VARCHAR2);

PROCEDURE calc_rec_syn_global(p_chemid IN NUMBER, p_rec_s300 OUT hmmp_v%ROWTYPE, p_rec_main OUT hmmp_v%ROWTYPE);

5 Understanding the test tool

The good news about the assertion code is that the tool automatically generates it. The bad news about the assertion code is that the tool automatically generates it… This means that generated code is difficult to understand. Over time, we noticed that we only looked at generated test code when debugging to determine which test steps had errors or produced unexpected results. In a test step, you can either hard code a value or evaluate a variable. The differences between, for example, comparing ‘0’ and ‘v_low_value’ are very clear in the assertion code; however, in the test step, the only difference is a check box. This is not the only reason for avoiding hard-coded literals, but it‘s a major one. Without this practice, finding out which piece is located where can quickly become very burdensome.

Building test code, even with a sophisticated wizard like Code Tester, still requires good technique. It is very possible to write elaborate tests proving nothing. Before a test step is built, you should understand the domain of the data being tested. Next, factor out as many global variables and constants as possible. Then, work a few test steps by hand and verify that the expected results match your actual automated test results. Using hard coded values and queries are relatively easy to build in test code. But using variable-based values and queries greatly improves the quality and flexibility of your test code. It also allows you to write many test steps more quickly. Often you will only need to change one variable to create a new test step.

Developing naming conventions for each step in the test harness greatly improves your ability to understand what each step is testing.

We were able to create much more elaborate test steps because we could capture data after a function/procedure executed. By using customization (see table 4,5,6) , we were able to capture entire records of data and compare columns within a row. This made setting up testing steps much easier and faster.

Table 4.0 Customization Package with scalar out parameters

Table 5.0 Customization Package with typed out parameters
PROCEDURE calc_rec_syn_global

(p_chemid IN NUMBER, p_rec_s300 OUT hmmp_v%ROWTYPE, p_rec_main OUT hmmp_v%ROWTYPE) IS

v_cnt NUMBER := NULL;

--

BEGIN

 SELECT MAX(action_num) INTO gv_actn_num

 FROM actn_log

 WHERE action_name = 'HMMP MODULE';

--

 SELECT COUNT(*) INTO v_cnt

 FROM hmmp_v

 WHERE chem_syn_id = p_chemid AND site = 'Site 300'

 AND action_num = gv_actn_num;

--

 IF v_cnt >= 1 THEN

 SELECT * INTO p_rec_s300

 FROM hmmp_v

 WHERE chem_syn_id = p_chemid

 AND site = 'Site 300' AND action_num = gv_actn_num;

 END IF;

--

 SELECT COUNT(*) INTO v_cnt

 FROM hmmp_v

 WHERE chem_syn_id = p_chemid AND site = 'MAIN'

 AND action_num = gv_actn_num;

--

 IF v_cnt >= 1 THEN

 SELECT * INTO p_rec_main

 FROM hmmp_v

 WHERE chem_syn_id = p_chemid AND site = 'MAIN'

 AND action_num = gv_actn_num;

 END IF;

--

EXCEPTION

 WHEN OTHERS THEN

 NULL;

END calc_rec_syn_global;

Table 6.0 Customization Packages setting global variables
PROCEDURE calc_bldg_global(p_chemid IN NUMBER) IS

BEGIN

 gv_bldg_s300_all := NULL;

 gv_bldg_main_all := NULL;

 BEGIN

 FOR grec_bldg IN (SELECT DISTINCT bldg FROM pcunit_v2

 WHERE chemid IN (SELECT chemical_id

 FROM chemical

 WHERE cas_number IN (SELECT cas_number

 FROM chemical

 WHERE chemical_id = p_chemid))

 AND SUBSTR(bldg, 1, 1) = '8'

 ORDER BY bldg) LOOP

--

 gv_bldg_s300_all := gv_bldg_s300_all || grec_bldg.bldg || ' ,';

 END LOOP;

--

 gv_bldg_s300_all := RTRIM(gv_bldg_s300_all, ',');

--

 EXCEPTION

 WHEN OTHERS THEN

 gv_bldg_s300_all := NULL;

 END;

--

 Begin

 ...

 end;

 ...

END calc_bldg_global;

6 Conclusion

When we completed a test harness and were satisfied it was working properly, we often found errors or unanticipated problems with the code. We could show the test harness output to the developer, who would then make changes or let us know what the behavior should be. We could then rerun the test harness and if everything evaluated properly, we had greater confidence that the code was working properly. In the future, if changes are needed the test harness can be rerun or enhanced. This dramatically reduces the test software development time and increases the quality of code maintained and tested.

Up to 90% of test code developed using this tool will be machine-generated. Even worse, the tool consists of many different ways of triggering production of code and many different ways of looking at it. These are some of the risks associated with generated test code. Generated code is often very difficult to debug, let alone understand. Literals and even the tests using them can easily “hide” within the tool.

Fortunately, a number of practices were found which dramatically mitigate these risks:

· Use symbolic values instead of hard-coded literals.

· Developing centralized custom test procedures.

· Make very small changes in each development cycle – multiple dozens per day not unusual.

· Frequently saving versions of the test harnesses after each development cycle in an incremental set.

· If your latest iteration has an error that you are having a difficult time debugging, sometimes it’s much quicker to simply restore from the previous incremental set and start over.

By using an automated test tool and the testing techniques discussed in this paper, you will be able to do more than just test to meet requirements. You will be able to verify and enhance those requirements.

PROCEDURE calc_step_log_global

(p_chemid IN NUMBER, p_error_msg OUT VARCHAR2) IS

BEGIN

 SELECT MAX(action_num)

 INTO gv_actn_num

 FROM actn_log

 WHERE action_name = 'HMMP MODULE';

--

 SELECT error_msg

 INTO p_error_msg

 FROM actn_step_log

 WHERE action_num = gv_actn_num

 AND step_descr = TO_CHAR(p_chemid);

END calc_step_log_global;

PAGE
4

