March 25, 2005
Oracle 10g DataPump, Part 1: Overview
By Jim Czuprynski
Synopsis. Oracle 10g's new DataPump utility is designed as the eventual replacement for the original Oracle Import and Export utilities. This article - the first in a series - provides an overview of the DataPump's suite of tools for extracting, transforming, and loading data within an Oracle database.
Oracle's Import and Export utilities offer a great way to create, retain, and reload a point-in-time snapshot of a database's structure and contents at the table, schema, tablespace, or database level. Database exports also have a place as a potential third line of defense in an in-depth disaster recovery plan (please view my article on Becoming A Master of Disaster for a more detailed discussion of this concept).

I have also used these utilities on a regular basis to migrate data from our production environment to multiple development environments, but as reliable as these utilities are, they do have some drawbacks that needed to be addressed:

Operations are difficult to restart. If an export session died because it ran out of disk space, or if the session was terminated deliberately or accidentally, the only option is to restart the entire export from the beginning, or to create a new export control file at the point of failure and initiate the export again.

Execution is client-side and single-threaded. The Import and Export utilities use a client process to execute their respective operations. This means that the most powerful source of information - the database server itself - is unavailable to help control the Import or Export operation. Also, there is no way to utilize parallel processing on a database server while exporting data, so each Export operation is essentially one single, serial, potentially long-running task.

Dump files can grow enormously. The Export utility creates one or more export dump files during each session; during a complete dump of a database, these files can obviously grow quite large. Since it is difficult to estimate the approximate expected size of the completed export files, the operation may fail due to disk space constraints. Also, to import just one table or database object from a multi-schema export file, the Import utility has to read all dump files to locate the object before it can be restored - obviously not an optimal situation!

Tuning mechanisms are limited. Methods to tune a poorly executing Export or Import operation are relatively limited and somewhat arcane. Experimenting with different settings for the BUFFER parameter -- which controls the maximum number of rows fetched into the Export utility's buffer at one time - is one of the few recommended options for improving performance.

Progress monitoring is difficult. While a DBA can certainly monitor the command session that is running the operation, or review the spooled output from an operation, there is no simple way to tell exactly how efficiently an Export or Import operation is performing, and there is no simple way to tell exactly what percentage of a large operation is completed.

Database object filtering features are limited. While it is certainly possible to export and import selected individual tables from a database or schema, filtering features are relatively limited. For example, it is impossible to export all tables with common names across schemas within the same export session. It is also impossible to select specific database object types other than tables (like packages, stored procedures, or triggers) for inclusion in an export dump file.

Enter The DataPump: Features Overview

Fortunately, Oracle 10g has addressed many of these issues with the DataPump, a new set of utilities that significantly expands the capabilities of the original Export and Import utilities.

Server-side parallel execution. DataPump Import and Export operations are scheduled and processed within the database server itself as a DataPump job - a much more effective method than client-side execution. In addition, if the database server's OS and hardware can adequately support it, DataPump export operations can take advantage of parallel processes to write out multiple data streams simultaneously.

Improved control and restartability of operations. Since the database server controls the DataPump, a DBA can start an Export or Import operation and then detach from it, allowing the operation to run to completion without further intervention. The DBA can also reconnect to the operation from another command-line session, interrogate its current status and choose to pause the operation if necessary. And if it appears that the operation is dangerously close to failing - for example, because of insufficient disk space for an export file - the DBA can even add more disk files "on the fly" without canceling the existing operation. This provides a level of control at least an order of magnitude more powerful than the current Export/Import utilities.

Simplified monitoring of operational status. DataPump provides a new STATUS parameter that shows the status of an ongoing Export or Import operation. When STATUS is specified at operation startup, Oracle will report the operation's status to the terminal session of the command-line interface at the specified interval. The DBA can also reattach to a detached DataPump job, issue a STATUS request, determine how far the operation has progressed, and then detach from the job again.

Automated performance tuning. Unlike the traditional Export and Import utilities, DataPump implements self-tuning mechanisms to insure that tables are exported and imported in the most efficient manner. Gone are the BUFFER, COMMIT, COMPRESS, CONSISTENT, DIRECT, and RECORDLENGTH parameters.

Improved database object filtering. DataPump implements filtering of the database objects to capture during an Export operation or include as part of an Import operation with a new set of mutually-exclusive parameters, INCLUDE and EXCLUDE. These parameters allow the DBA to specify almost any database object for inclusion or exclusion based on its object type and object name. This dramatically improves flexibility when exporting and importing; for example, it is now possible to gather objects with similar names across an entire database.
Export dump file control enhancements. In prior releases, the DBA could specify more than one dump file as a destination for an Export session; however, once the session commenced, no additional files could be specified. DataPump Export improves upon this by permitting parameterized file names similar to the naming conventions for redo logs and RMAN backup files.

DataPump Concepts

The DataPump is the next logical progression in a series of improvements that have appeared during the last few Oracle releases. The two most dramatic upgrades involve the ability to read data extremely quickly via direct path unloading, and the capability to write data directly to external tables.

Direct Path Unloads. Prior releases of Oracle had introduced the concept of the direct path load, which permits the server to bypass SQL parsing of INSERT statements so that data can be inserted directly and with blinding speed into database tables, providing the tables met certain conditions. Building on this concept, Oracle 10g adds the capability to perform direct path unloads of database tables within the same limits that apply for direct path loads.

Writing To External Tables. Oracle 9i Release 2 introduced the ability to read data from files stored outside the database as external tables using existing Oracle SQL*Loader access methods. Oracle 10g expands upon this feature by including a new access method, ORACLE_DATAPUMP, that allows the server to write directly to an external file.

DataPump Export uses these two enhancements to unload data extremely quickly. Even better, DataPump needs virtually no assistance in deciding which method is fastest for exporting data, and is relatively self-tuning. For example, the concept of direct vs. conventional exports is now meaningless, and several of the tuning parameters (e.g. BUFFER, RECORDLENGTH) have been deprecated.

The DataPump engine will choose to write to external tables over direct path unload whenever a table meets any of the following criteria:

· The table is part of a cluster.

· There is an active trigger on the table.

· Fine-grained access control is enabled for the table for INSERTs.

· One of the table's columns has a referential integrity constraint.

· The table has an LOB column, and that LOB column has a domain index.

· The table contains a BFILE column or VARRAY column, and those column(s) have an embedded, opaque TYPE.

March 25, 2005
Oracle 10g DataPump, Part 1: Overview
By Jim Czuprynski
DataPump Components

DataPump consists of three components that work in concert to manage and perform operations:

Command-Line Interface. Like the original Export (EXP.EXE) and Import (IMP.EXE) command-line interfaces, the DataPump provides two command-line interfaces, EXPDP.EXE and IMPDP.EXE, for controlling DataPump Export and Import operations, respectively.

DataPump also expands the command-line interface's capabilities by providing Interactive-Command Mode. This mode allows the DBA to start a DataPump operation and then disconnect from it by simply issuing a CTL+C keystroke. Later, the DBA simply opens another DataPump session while specifying the operation's job name and then issues the ATTACH directive to reconnect to the session. The DBA can then issue a series of commands, from taking a pulse of the operation via the STATUS directive, to adding more export dump files, or even terminating a long-running operation if desired.

DBMS_METADATA. Introduced in Oracle 9i, this PL/SQL supplied package provides methods to extract and format metadata - literally, "information about information" - from an Oracle database. At its core, DBMS_METADATA stores metadata in XML format for ultimate flexibility in its presentation of that metadata.

DataPump Export uses DBMS_METADATA to gather all metadata about the database objects being processed then stores that metadata in the Export operation's master table. DataPump Import uses the corresponding master table to extract information from the export dump file(s), and then uses DBMS_METADATA to create the DDL statements it needs to create new database objects as part of the Import operation.

DBMS_DATAPUMP. At the heart of the DataPump is the new DBMS_DATAPUMP PL/SQL supplied package. This package contains methods for exporting data from and importing data into any Oracle database. EXPDP and IMPDP are actually making calls to this new package to perform their respective operations.

What is especially powerful about DBMS_DATAPUMP is that a DBA can also utilize it directly, either in anonymous PL/SQL blocks or within a stored procedure, stored function, or package, to create custom DataPump Export and Import jobs. I will demonstrate how to accomplish this in the final article in this series when we look at some of the other advanced features of the DataPump.

DataPump Jobs, Master Processes, and the Master Table

DataPump also implements major (and in my opinion, elegant!) improvements to the execution and management of Export and Import operations. Each DataPump operation uses a master process to manage and control the export or import session. Each master process is identified by a unique job name, and DataPump automatically assigns one by default if one is not specified at execution time.

The master process controls the DataPump operation by invoking at least one worker process that actually performs the Export or Import. (This is extremely similar to the way Recovery Manager (RMAN) manages backup, restoration and recovery processing.) If the DataPump operation has requested additional parallel processes for multiple-threaded processing, more than one worker process will be created and managed.

The master process also creates a master table as a user table within the user account in which the DataPump job is invoked. This master table is always named the same as the DataPump job, and it is used slightly differently depending on the type of DataPump operation, but it is always created within the same user account that is invoking the operation.

During an Export operation, the master table is created when the job commences, contains all target objects for the Export, and is retained until the job finishes successfully, at which point it is dropped. However, if the job is paused or fails due to error, the Export process uses the master table to determine what objects still need to be exported and how best to resume the job. Once the job completes successfully, the master table's contents are written to the Export file itself for use by an Import process.

On the other hand, an Import operation reads the master table from the Export dump file and then creates the master table under the appropriate user account. During an Import, the master process uses the master table to decide which database objects need to be created and in what order before any data is actually imported.

A Simple DataPump Export Scenario

To demonstrate an example of how easy it is to use DataPump for exporting data, I will create a dump file containing all database objects stored in the Human Resources (HR) schema for use in a later DataPump Import operation. (The next article will greatly expand upon the capabilities of DataPump Export, I assure you!)

Listing 1.1 shows how to create a DIRECTORY database object for storage of all DataPump dump files. DataPump also uses the DIRECTORY object as a default location for log files and parameter files.

Listing 1.2 provides a set of queries to display listings of what object types can be processed with the DataPump, and whether a filter can be applied against the object type at the database, schema, or table level.

Listing 1.3 shows the DataPump Export command issued, its corresponding parameter file, and the log file that documents the results of the DataPump Export operation.

A Simple DataPump Import Scenario

Using DataPump to import data is equally simple. To illustrate, I have constructed the following scenario:

· The DataPump Export dump file created in the previous scenario will be used to import data into a new schema, HR_OLTP, that will eventually become the target of a new online transaction processing application under development.

· The new schema needs all of the tables from the existing HR schema and those tables' related objects, i.e. referential constraints, indexes, sequences, and triggers.

· No other database objects should be loaded to this new schema from the existing HR schema.

See Listing 1.4 for the SQL to create the new schema, the DataPump Import command issued, its corresponding parameter file, and the log file that documents the results of the DataPump Import operation.

Monitoring DataPump Operations

Oracle 10g provides two new views, DBA_DATAPUMP_JOBS and DBA_DATAPUMP_SESSIONS that allow the DBA to monitor the progress of all DataPump operations. Listing 1.5 shows two queries that return valuable information about ongoing DataPump jobs and sessions.

Conclusion

Oracle 10g's new DataPump offers significant improvements over the original command-line-based Export and Import utilities, including multi-threaded processing, improved object filtering capabilities, and restartability. The next article in this series will dive deeply into utilizing the DataPump effectively to accomplish some typical (and not so typical!) "real-world" export and import tasks.

References and Additional Reading

While there is no substitute for direct experience, reading the manual is not a bad idea, either. I have drawn upon the following Oracle 10g documentation for the deeper technical details of this article:

B10750-01 Oracle Database New Features Guide
B10825-01 Oracle Database Utilities
April 28, 2005
Oracle 10g DataPump, Part 2: Implementation
By Jim Czuprynski
Synopsis. Oracle 10g's new DataPump is designed as the eventual replacement for the Oracle Import and Export utilities. This article - the second and final in this series - focuses on using the DataPump's features in real-world scenarios, including creation of custom DataPump jobs with DBMS_DATAPUMP.
The previous article in this series identified some of the deficiencies of the original Export and Import utilities, and then provided a broad overview of Oracle 10g's new DataPump utility. This article will concentrate on how to effectively utilize the DataPump for common import and export tasks, including how to create custom DataPump scheduled tasks that can be scheduled via the Oracle 10g Scheduler. I will start with some real-world scenarios that show how Oracle 10g's DataPump Export utility provides plenty of flexibility in handling typical export requirements.

DataPump Export Scenarios

Creating a Nightly Disaster Recovery Export Scheme. As part of my personal list of Oracle disaster recovery "best practices," I have made a habit of building a nightly disaster recovery export scheme for a new Oracle database shortly after the database's creation. In addition, whenever I create a new schema for an existing database, I make sure to add that schema to the existing nightly export scheme. At a minimum, I insure that at least the contents of all tables are exported regularly.

Setting up a nightly export scheme via the DataPump Export utility is relatively simple. Listing 2.1 shows the DataPump parameter file used to generate the export files. Since my target database for this example is relatively small, I am using the FULL parameter to generate an export that contains the entire contents of the database including all metadata, all database objects, and of course the data itself. I am also using the STATUS parameter to tell the DataPump to write the status of the ongoing operation to the log file at regular intervals - in this case, every 30 seconds. Log 2.1 shows the resulting log file generated during this DataPump Export operation.

Estimating an Export's Size. Export operations like the nightly disaster recovery export scheme I have just described can obviously use quite a bit of storage, especially for a large database. Thankfully, DataPump offers improved mechanisms for estimating an export's size. The ESTIMATE_ONLY parameter accepts a value of either BLOCKS (the default), which performs an estimate based on the number of physical blocks that will be accessed, or STATISTICS, which performs an estimate based on stored database statistics (providing, of course, that statistics have been generated for the objects that are being exported).

Listing 2.2 shows the DataPump parameter file that generates the probable sizes of the export files for the nightly disaster recovery export. Note that I have set ESTIMATE_ONLY to a value of STATISTICS, and that the DUMPFILE directive has been removed (and in fact will cause an error if included during an estimates-only operation). See Log 2.2 for the resulting log file generated during this DataPump Export operation.

Multiple Server Processes and Dump Files During Exports. Another common request I receive regularly involves producing a subset of a production database to refresh the same tables in a development database. For example, recently one of my developers asked me to export the data from just one schema from our production database so she could import that data into another database to use it for application regression testing. In addition, the developer wanted to save the data on alternate media - in this case, standard 650MB CD-ROMs - for archival purposes.

The new DataPump Export makes quick work of this type of request. To demonstrate, I will configure the FILESIZE directive to limit the file size to only 650 MB, and I will provide for multiple export dump files to be written by specifying the %U variable for the DUMPFILE parameter. By attaching %U to the file name, DataPump will automatically increment a number in the range of 01 to 99 each time that a new file is created.

To speed up this operation, I will specify the use of multiple server processes by setting the PARALLEL parameter to 2 to enable two DataPump worker processes to distribute the load. Oracle recommends that there are at least as many DUMPFILEs available as the number of PARALLEL processes specified.

Listing 2.3 shows the DataPump parameter file that generates these export files, and Log 2.3 contains the resulting log file generated during this operation.

Exporting Selected Tables. As part of our regular development cycle, I need to refresh data held in several tables for a database used by our HR department for training Payroll application users. This database contains a mere fraction of the total transactional data in our production databases - just enough to provide examples that match our current training class documents - but any outstanding payroll transactions need to be applied to this "baseline" information at the start of each training class.

To make quick work of this task, I will use DataPump Export to dump out just the data from the required tables by specifying them as values for the TABLES parameter. Listing 2.4 shows the corresponding DataPump parameter file to perform this operation, and Log 2.4 displays the resulting log file generated.

Exporting Different Versions of a Database Object. Occasionally a developer needs to see how data in a table was stored before an operation took place, or which version of a particular database object was in force at a particular date and time. DataPump Export can export an object as of a particular system control number (SCN) specified for the FLASHBACK_SCN parameter, or as of a particular time specified for the FLASHBACK_TIME parameter. (Note that these options are mutually exclusive.)

Listing 2.5 shows an example of a DataPump Export parameter file that would export all objects in the HR schema while reflecting the state of those objects as of April 10, 2005 just before midnight.

April 28, 2005
Oracle 10g DataPump, Part 2: Implementation
By Jim Czuprynski
DataPump Import Scenarios

Oracle 10g's DataPump Import utility also demonstrates its power and flexibility when it is aimed at some real-world data and object import requirements:

Importing From Multiple DataPump Export Dump Files. DataPump Import automatically uses all available export dump files during an import operation as long as the dump file name qualifier specified for the DUMPFILE parameter matches that of the desired export files (including that handy %U variable).

To illustrate, I will use the export files I created via the example in Listing 2.4 as the data source. I will target those few tables that need to be refreshed in the Human Resources schema for the Payroll application refresh scenario. Listing 2.6 shows the DataPump Import control file used to accomplish this, and Log 2.6 contains the resulting log file generated.

Importing Selected Objects. Just as the original Import utility did, DataPump Import can load data from an existing DataPump Export dump file into existing tables. DataPump Import has enhanced this capability by providing a more robust set of parameters, INCLUDE and EXCLUDE, to specify limits on which objects should be imported.

Listing 2.7 shows the DataPump Import control file that illustrates this feature. I will use the disaster recovery nightly export dump file I generated in a previous example as the source for reloading data into the Sales History (SH) schema. I have specified the tables I want to reload in the INCLUDE parameter, and I have also instructed DataPump Import to first truncate the tables before loading them by specifying a value of TRUNCATE for the TABLE_EXISTS_ACTION parameter.

Log 2.7 contains the resulting log file from this import operation. Note that the DataPump wisely did not truncate any tables upon which a foreign key constraint depended, and gently reminded me of this fact by logging an error message during the attempted TRUNCATE operation.

Generating SQLFILES Instead of Importing Data. DataPump Import also offers the ability to save the resulting DDL statements that the DataPump would have executed to create the objects and tables in the export file to a SQLFILE.

To demonstrate, I will set up a DataPump Import control file (shown in Listing 2.8) that redirects the DDL to a SQLFILE stored within the export directory; Log 2.8 shows the SQLFILE output that results from this type of operation. The SQLFILE output produced is virtually identical to the type of metadata output generated from DBMS_METADATA.GET_DDL when that function is run against a database's objects - not surprising, of course, since DataPump relies on that supplied PL/SQL procedure to generate all metadata during export and import operations.

Remapping Database Object Attributes During DataPump Imports. Another handy feature of DataPump Import is the ability to remap database tables and objects stored in one schema to another completely new schema. See Listing 1.4 from the prior article in this series for an example of how to implement this feature.

Monitoring and Controlling DataPump Jobs

As mentioned in the prior article, the DataPump utility provides a new interactive mode that gives an Oracle DBA extensive control over DataPump Export and Import operations.

Switching Between Logging and Interactive Client Mode. To illustrate, I will initiate a long-running DataPump Export based on the parameter file shown in Listing 2.9:

C:\RMANCMD>expdp system/oracle parfile=c:\rmancmd\longexport.dpectl
Export: Release 10.1.0.2.0 - Production on Saturday, 16 April, 2005 12:44

Copyright (c) 2003, Oracle. All rights reserved.

Connected to: Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - Production

With the Partitioning, OLAP and Data Mining options

FLASHBACK automatically enabled to preserve database integrity.

Starting "SYSTEM"."LONGEXPORT": system/******** parfile=c:\rmancmd\longexport.dpectl

Estimate in progress using BLOCKS method...

Processing object type DATABASE_EXPORT/SCHEMA/TABLE/TABLE_DATA

Now I will immediately switch this job to interactive client mode by typing CTRL-C:

Export>
Viewing Job Status. From interactive mode, I can issue the STATUS command to view the job's current status:

Export> status

Job: LONGEXPORT

 Operation: EXPORT

 Mode: FULL

 State: EXECUTING

 Bytes Processed: 0

 Current Parallelism: 1

 Job Error Count: 0

 Dump File: c:\oracle\export_dir\long_export_%u.dmp

 size: 262,144

 Dump File: C:\ORACLE\EXPORT_DIR\LONG_EXPORT_01.DMP

 size: 262,144

 bytes written: 4,096

Worker 1 Status:

 State: EXECUTING

Closing and Reattaching To A Job. To switch from interactive client mode back to logging mode, I can issue the CONTINUE_CLIENT command, and if I want to detach from a client session, but leave a running job still executing, I can issue the EXIT_CLIENT command:

Export> exit_client
C:\RMANCMD>

Likewise, to reattach to a running job after closing the client connection, I can reopen a session while specifying the ATTACH=<job_name> parameter on the command line:

C:\RMANCMD>expdp system/oracle attach=longexport
Export: Release 10.1.0.2.0 - Production on Saturday, 16 April, 2005 13:03

Copyright (c) 2003, Oracle. All rights reserved.

Connected to: Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - Production

With the Partitioning, OLAP and Data Mining options

Job: LONGEXPORT

 Owner: SYSTEM

 Operation: EXPORT

 Creator Privs: FALSE

 GUID: 0CC46AD48B4B4C5AB17B9CBD2C85810C

 Start Time: Saturday, 16 April, 2005 13:03

 Mode: FULL

 Instance: zdcdb

 Max Parallelism: 1

 EXPORT Job Parameters:

 Parameter Name Parameter Value:

 CLIENT_COMMAND system/******** parfile=c:\rmancmd\longexport.dpectl

 DATA_ACCESS_METHOD AUTOMATIC

 ESTIMATE BLOCKS

 INCLUDE_METADATA 1

 LOG_FILE_DIRECTORY EXPORT_DIR

 LOG_FILE_NAME LongExport.explog

 TABLE_CONSISTENCY 0

 State: IDLING

 Bytes Processed: 0

 Current Parallelism: 1

 Job Error Count: 0

 Dump File: c:\oracle\export_dir\long_export_%u.dmp

 size: 5,242,880

 Dump File: c:\oracle\export_dir\long_export_01.dmp

 size: 5,242,880

 bytes written: 4,096

Worker 1 Status:

 State: UNDEFINED

Export>

Controlling A Job's Execution. If I decide to add more files to the job, I can do that via the ADD_FILE command, and if I want to add more worker processes, I can issue the PROCESSES command:

Export> status
Job: LONGEXPORT

 Operation: EXPORT

 Mode: FULL

 State: EXECUTING

 Bytes Processed: 0

 Current Parallelism: 1

 Job Error Count: 0

 Dump File: c:\oracle\export_dir\long_export_%u.dmp

 size: 262,144

 Dump File: C:\ORACLE\EXPORT_DIR\LONG_EXPORT_01.DMP

 size: 262,144

 bytes written: 4,096

Worker 1 Status:

 State: EXECUTING

Export> parallel=2
Export> status
Job: LONGEXPORT

 Operation: EXPORT

 Mode: FULL

 State: EXECUTING

 Bytes Processed: 0

 Current Parallelism: 2

 Job Error Count: 0

 Dump File: c:\oracle\export_dir\long_export_%u.dmp

 size: 262,144

 Dump File: C:\ORACLE\EXPORT_DIR\LONG_EXPORT_01.DMP

 size: 262,144

 bytes written: 4,096

Worker 1 Status:

 State: EXECUTING

Worker 2 Status:
 State: WORK WAITING

I can also halt the execution of the job via the STOP_JOB command:

Export7gt; stop_job;
At this point, I have two options. If I want to restart the job, I can reattach to the job and issue the START_JOB command. The job will resume at its current point. On the other hand, if I want to end the job -- perhaps because it is running too long, was executed in error, or is consuming too much space - I can reattach to the session and then issue the KILL_JOB command:

C:\RMANCMD>expdp system/oracle attach=longexport

Export: Release 10.1.0.2.0 - Production on Saturday, 16 April, 2005 13:03

Copyright (c) 2003, Oracle. All rights reserved.

Connected to: Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - Production

With the Partitioning, OLAP and Data Mining options

Job: LONGEXPORT

 Owner: SYSTEM

 Operation: EXPORT

 Creator Privs: FALSE

 GUID: 0CC46AD48B4B4C5AB17B9CBD2C85810C

 Start Time: Saturday, 16 April, 2005 13:03

 Mode: FULL

 Instance: zdcdb

 Max Parallelism: 1

 EXPORT Job Parameters:

 Parameter Name Parameter Value:

 CLIENT_COMMAND system/******** parfile=c:\rmancmd\longexport.dpectl

 DATA_ACCESS_METHOD AUTOMATIC

 ESTIMATE BLOCKS

 INCLUDE_METADATA 1

 LOG_FILE_DIRECTORY EXPORT_DIR

 LOG_FILE_NAME LongExport.explog

 TABLE_CONSISTENCY 0

 State: IDLING

 Bytes Processed: 0

 Current Parallelism: 1

 Job Error Count: 0

 Dump File: c:\oracle\export_dir\long_export_%u.dmp

 size: 5,242,880

 Dump File: c:\oracle\export_dir\long_export_01.dmp

 size: 5,242,880

 bytes written: 4,096

Worker 1 Status:

 State: UNDEFINED

Export> kill_job

Are you sure you wish to stop this job ([y]/n): y

C:\RMANCMD>

April 28, 2005
Oracle 10g DataPump, Part 2: Implementation
By Jim Czuprynski
What to Do If a DataPump Job Crashes

Each DataPump job uses a master table that is created within the schema of the user account that is executing the job to control the requested operation's activities, record its current status, and maintain its restartability. The master table is named the same as the DataPump operation being executed, even if the job name has been generated automatically (the default behavior if no job name is specified via the JOB_NAME parameter).

If a DataPump job should crash, however, this master table will remain behind in that schema. Oracle will not permit another instance of that job to be started until this master table is removed from the schema via the DROP TABLE <job_name>; command.

Building a Custom DataPump Job

As I mentioned in my prior article, DataPump utilizes three components to do its work: a command-line interface to control DataPump operations; DBMS_METADATA, for dumping and processing DDL; and the DBMS_DATAPUMP PL/SQL package that is supplied with Oracle 10g Enterprise that actually performs DataPump Export and Import operations. One really neat byproduct is that it is now possible to create a stored procedure or package that calls DBMS_DATAPUMP procedures and functions directly to create and manage DataPump jobs.

To illustrate, I will create a new stored procedure named HR.SP_EXPORT. This new procedure will control a DataPump Export job that dumps out all metadata and data for all tables and their dependent objects in the Human Resources (HR) schema. Most of the DBMS_DATAPUMP procedure and function names are extremely similar to those used in DataPump interactive mode, so I found that coding this simple example to be quite intuitive (but not trivial).

Listing 2.10 shows the stored procedure source code I used to implement this example, and Log 2.10 shows the resulting DataPump Export log file generated when this export session was executed.

Since I can create virtually any DataPump task as a stored procedure or package, this also grants me the flexibility to schedule this task using the new Oracle 10g Scheduler. Here is an example of how to schedule this new stored procedure to execute on a nightly basis at 23:00 every day:

BEGIN

DBMS_SCHEDULER.CREATE_JOB (

 job_name => 'HR_EXPORT'

,job_type => 'PLSQL_BLOCK'

,job_action => 'BEGIN HR.SP_EXPORT;END;'

,start_date => '04/18/2005 23:00:00.000000'

,repeat_interval => 'FREQ=DAILY'

,enabled => TRUE

,comments => 'Performs HR Schema Export nightly at 11 PM'

);

END;

/

For more information on the Oracle 10g Scheduler, please review my earlier series on this set of scheduling tools.
Conclusion

As these previous practical examples have shown, Oracle 10g's DataPump Export and Import utilities offer an impressive range of control over export and import operations than ever before, The new interactive command mode available during DataPump operations grants an Oracle DBA a high level of control over DataPump tasks. Finally, Oracle DBAs can create customized DataPump jobs by calling DBMS_DATAPUMP methods and attributes directly, and these jobs can be scheduled via the Oracle 10g Scheduler. These new capabilities are a welcome addition to any Oracle DBA's "tool belt" and offer significant alternatives to the original Import and Export utilities.

References and Additional Reading

While there is no substitute for direct experience, reading the manual is not a bad idea, either. I have drawn upon the following Oracle 10g documentation for the deeper technical details of this article:

B10750-01 Oracle Database New Features Guide
B10825-01 Oracle Database Utilities
