
Gil Asherie & Heather Compher
Gil.Asherie@quest.com; Heather.Compher@quest.com

Space Management & Reorganization Products
Quest Software

Oracle Open World 2000

Tuning Database
Reorganizations

 for Maximum Speed

Agenda

� Why Reorganize?
� Available Reorganization Methods
� Tuning Tips
� Case Studies

Why Reorganize?

� Performance, availability and manageability
– Condense data in tables
– Tidy up indexes
– Recover wasted disk space
– Relocate objects
– Restructure objects

Available Reorg Methods

� Oracle Export-Import
� SQL to unload, SQL*Loader to reload
� SQL & PL/SQL scripts
� Third-party products

Data Movement

� DB -> File System -> DB
� DB -> Temp location in database -> DB
� DB -> New location in DB

Reorg of Table EMP
� Create temp table EMP_ (with optimal storage)
� Copy data from original table EMP to EMP_
� Drop EMP
� Rename EMP_ to EMP
� Recreate indexes
� Reapply constraints
� Recreate triggers and other dependencies on EMP

Three Types of Insert
� Singleton insert

– insert into… values (:a1, :a2, :a3)
� Internal array insert

– insert into… select * from…
– Import
– Only works with small rows (significantly less than a

block)
� Direct path block insert

– SQL*Loader Direct = Yes
– create table… as select…

“Create” & “Copy” steps“Create” & “Copy” steps“Create” & “Copy” steps“Create” & “Copy” steps
� Create...; Insert...

create table EMP_ (col1, col2, …)

tablespace USER_DATA

storage (initial 10M Next 10M …);

insert into EMP_ (col1, col2, …)

select col1, col2, …

from EMP;

� Create... as Select...
create table EMP_

tablespace USER_DATA

storage (initial 10M next 10M …)

as

select col1, col2, …

from EMP;

The NOLOGGING Option
� Turns off writing to redo logs for table/index builds
� 30-50% performance boost
� Invalidates Oracle Standby Database
� After reorg with NOLOGGING Option, a hot

backup of affected tablespace is recommended
� For tables, only works with direct path load !!!!!!!!!!!!
� For index, only works DURING the Create Index

Insert and NOLOGGING

� Singleton insert/update – always writes to log
– insert into… values (:a1, :a2, :a3)

� Internal array insert – always writes to log
– insert into… select * from…
– Import direct = yes (yes, always writes to log!)

� Direct path block insert – does not write to log
– SQL*Loader Direct = Yes
– create table… as select…

The NOLOGGING Option
� Syntax for Tables:

create table EMP_

nologging

tablespace USER_DATA

storage (initial 10M next 10M …)as
select col1, col2, …

from EMP;

� Syntax for indexes:
create index EMP$NAME on EMP (Name)

nologging

tablespace USER_INDEX

storage (initial 10M next 10M …);

Parallel Query Option (PQO)

� Syntax for building tables and indexes
� How PQO Works
� Choosing a Degree of Parallelism
� Tuning the Query Server Pool
� Extent Size Considerations

PQO Syntax for Table Builds
� Alter session enable parallel DML;
� Parallel clause in Create Table Doesn’t Help!

create table EMP_
tablespace USER_DATA
parallel (degree 4 instances default)

storage (initial 10M, next 10M, …)
as
select
col1, col2, …
from EMP;

� This parallelizes future access to the data,
but not the table build itself!

PQO Syntax for Table Builds
� Instead, use parallel hint in subquery

create table EMP_

unrecoverable

tablespace USER_DATA

storage (initial 10M, next 10M, …)

as

select /*+ Parallel(EMP, 4, default) */

col1, col2, …

from EMP;

� Both read of the data from the source table
(EMP) and the write into the new table (EMP_)
will be done in parallel

PQO Syntax for Index Builds

� Syntax for Indexes (parallel create clause)
create index EMP$NAME on EMP (Name)

parallel (degree 4 instances default)

nologging

tablespace USER_INDEX

storage (initial 10M next 10M …);

alter index EMP$NAME noparallel;

� Without Alter statement cost-based optimizer
gets confused!

How PQO Works
� PQO asks Oracle to use multiple processes for

table/index builds
� Parallel Degree N for Tables --> N+1 processes

– N Parallel Slaves
– 1 Query Coordinator

� Parallel Degree N for Indexes --> 2*N+1 processes
– N table scanning processes
– N row Sorting processes
– 1 Query Coordinator
– Each sorting process may consume up to SORT_AREA_SIZE of

memory

Choosing a Degree of
Parallelism

� Parallel degree for Tables <= 2 * (# of CPUs)
– To avoid CPU time contention

� Parallel degree for Indexes <= # of CPUs
– Index creations should become CPU intensive if sorting

is optimally done in memory

Query Server Pool

� Common set of parallel query server processes
available in an instance

� To tune, use init.ora parameters:
– parallel_min_servers: number of processes started

when instance starts (eliminates overhead of frequent
process startups and shutdowns)

– parallel_max_servers: maximum number of process in
query server pool. Recommended:

2 * max_degree * num_of_reorgs

Query Server Pool

� To monitor contention for parallel query servers:
select Statistic, Value

from V$PQ_SYSSTAT

order by Statistic;

� If value of statistic “Servers Busy” is high,
increase parallel_max_servers

Extent Sizes and PQO
� Number of parallel processes will affect extent

allocation!
� When building tables or indexes, each degree of

parallelism will result in the allocation of
MINEXTENTS

� For example, creating a table with:
PARALLEL degree 4; MINEXTENTS 2;
INITIAL 20 MB; NEXT 20 MB
will produce: 4 * 2 * 20MB = 160MB total allocation!

Extent Sizes and PQO
� To minimize over-allocation, choose smaller extent

sizes
� Multiple extents (within reason) should not pose a

problem
– See Oracle Whitepaper #711: “The performance for DML is

largely independent of the number of extents in the segments”
– #711 outlines strategy for using multiple equally-sized extents to

eliminate free space fragmentation at tablespace level
� Check for adequate freespace for both table and

indexes!

ALTER SESSION Parameters

� ALTER SESSION can set certain parameters
dynamically for reorganizing session, without
affecting other users

� Consider:
– db_file_multiblock_read_count
– Sorting Parameters

db_file_multiblock_read_count
� Controls number of data blocks read for each read

request during a full table scan (FTS)
� Significant performance boost is properly tuned, for

example:
OS read buffer = 64KB
db_block_size = 4KB
db_file_multiblock_read_count = 8
– During FTS, each I/O operation will read:

4KB * 8 = 32KB
– Resetting db_file_multiblock_read_count = 16 gives:

4KB * 16 = 64KB

db_file_multiblock_read_count
� Goal:

db_block_size * db_file_multiblock_read_count
= max OS read buffer
� 64KB on older UNIX systems
� 256K on NT

� In any case, db_file_multiblock_read_count
cannot be larger than db_block_buffers / 4

Sorting Parameters
� sort_area_size (in bytes): maximum amount of

memory for each sort
– When using parallelism on index builds

Total Sort Area = degree * sort_area_size
• Oracle allocates Sort Area dynamically in 8K increments

– Goal is:
Total sort_area_size used = size of largest index reorg’d
• If this requires too much memory, try using 50% or 25%

of this amount plus 10% to minimize sort runs written
to disk

Sorting Parameters
� sort_direct_writes: allows Oracle to bypass buffer

cache when writing sort runs to temporary tablespace
(Oracle 7.3.4 and 8.0.x)

� Can improve performance by factor of three!
� To use, set:

sort_direct_write = true
sort_write_buffers = 8
sort_write_buffer_size = 65536

� sort_direct_writes obsolete in 8i
– Sorts always use direct writes and automatically

configure the number and size of direct write buffers

MTS Considerations

� For reorganizations, use a dedicated connection.
� This will use sort_area_size from the PGA

instead of the SGA
� Set up dedicated connection in your tnsnames

and use that service name for the job

Case Studies

Restructuring an OraApps DB

� Oracle Applications 10.7, Oracle 7.3.4
� HP-UX, 12 CPUs, 3.4 GB RAM
� EMC Model 3930 - 4 channel, 5 GB cache, SCSI

card
� Relocated all tables (Over 3000 tables, 60

tablespaces) from older to newer EMC array
� Data volume restructured: 208 GB

Tuning Tips Used

� Enabled Sort_direct_writes
� Increased sort_area_size from 2M to 60M
� Increased sort_area_retained_size from 1M to 30M
� Tuned parallel query servers
� Implemented PQO degree 4 for large objects
� Unrecoverable

Results
� Trial run - 69 hrs
� Live run - 16 hrs
� Throughput 13GB / hr
� Cut run time of batch job from 12 to 5 1/2 hrs
� Optimized datafile size
� Regained 60GB disk - 29% Total
� Backups 50% faster

– Due to faster disk array and smaller database size

Large SAP Table Reorg

� SAP R/3 version 4.0B - 13,887 tables
� SUN ES6000
� 20 CPUs
� 11GB RAM
� Oracle 8.0.5
� COEP: table 28.1 GB, indexes 19.5 GB

Tuning Tips Used for COEP

� Used Quest LiveReorg
� PQO - set to 8
� Degree 6 optimal for this configuration
� Tuned db_file_multiblock_read_count to stripe

width - 256K
� NOLOGGING
� Enabled sort_direct_writes

Results

� Total runtime 5:50hrs: Tables - 2:05, Indexes - 3:45
� Total downtime 4 seconds!
� Throughput 8.2 GB / hr

– Heavy tablespace & data file creation was running
concurrently

� Regained 16.6 GB disk - 35% Total
– Regained 12.1 GB on table
– Regained 4.5 GB on indexes

Speed of PQO

� SAP Table CE1CPPA - 6GB
� Table copy without PQO - 3:14hrs
� Table copy with PQO - 1:35hrs

Tuning Tips Used for VBFA

� SAP table VBFA - 6 GB, 16 GB indexes
� Tuned sort_area_size

– With 32 KB => Index builds took 3:36 hrs
– With 32 MB => Index builds took 1:18 hrs

Conclusions

� Consider SQL-based reorgs
� Understand Oracle’s advanced options
� Tune your reorganizations for required

performance
� When terminal velocity is not enough, consider

LiveReorg

